
N. Ti.

Maseresi, F

Digitized by the Internet Archive in 2016 with funding from Wellcome Library

MR. JAMES BERNOULLI'S
DOCTRINE
or
PERMUT'ATIONS AND COMBINATIONS,

AND

SOME OTHER USEFUL MATHEMATICAL TRACTS.

$$
{ }^{\prime}+1+1+1
$$

$$
\ldots \therefore \therefore-\therefore-\cdots-\cdots-1
$$

D O C TRINE

OF

 PERMUTATIONS AND COMBINATIONS,

 PERMUTATIONS AND COMBINATIONS,}
EEING

AN ESSENTIAL AND FUNDAMENTAL PART

```
OF the
```


DOCTRINE OF CHANCES;

As it is delivered by Mr. JAMES BERNOULLI, in his excellent Treatife on the Doctrine of Chances, intitled, Ars Conjectandi, and by the celebrated Dr. JOHN WALLIS, of Oxford, in a Tract intitled from the Subject, and publifhed at the end of his Treatife on Algebra :

In the former of which Tracts is contained,
A Demonfration of Sir Isiac Newton's famous Binomial Theorem, in the Cafes of Integral Powers, and of the Reciprocals of Integral Powers.

TOGETHER WITH

SOME OTHER USEFUL MATHEMATICAL TRACTS.

```
PUBLISHED BY
FRANCIS MASERES, ESQ CURSITOR BAION OE THE COURT OF EXCHEQUER.
```

L O N D O N:

$E R R A T A$.

IN THE PREFACE.

In page xv , line 14 from the bottom, inftead of place, read place.

IN THE BOOK.

In page 5 , line 20 , inftead of indicunt, read inducunt.
In page 7 , line I_{3} from the bottom, inftead of Autiorum, read ACtorum.
In page 21 , line 6 , inftead of 3$) 2(2: 2$, read 3$) 3(2: 2$.
And in the fame page 21 , line 11 , inftead of 3) $2(4: 3$, read 3$) 4(4: 3$.
In page 23, line 6 from the bottom, in itcad of tabulà, read tabulâ.
In page 25 , line 16 , inftead of $\frac{\overline{n-3 \cdot e}}{r}$, read $\frac{\overline{n-3 \cdot c}}{r}$.
In page 27, line 5, after the word "primam" dele the figure of 1 .
And in the fame page ${ }_{2}{ }_{7}$, line the 3 d from the bottom, inftead of $\frac{n . n-1}{1.2}, \operatorname{read} \frac{n . \overline{n-1}}{1.2}$.
In page 28 , line 10 , after the word "fubquintuplum," infert a comma.
And in the fame page 28 , line 15 , inftead of $\frac{n . n-1}{1.2}$, read $\frac{n \cdot n-1}{1.2}$.
In page 30, the bottom line, initead of $-\frac{5}{2} n n$, read $+\frac{1}{2} n n$.
In page 3^{2}, in the laft line but one of the lines that are parallel to the fide of the page, inftead of $-\frac{1}{12} n n$, read $-\frac{3}{20} n n$.
In page 50, line 2 from the bottom, infert the mark " after the word " Mathematicks."
In page 69 , line 21, inftead of of rows, read or rorus.
In page 72, in the note at bottom, inftead of Alterations, read Alternations.
In page 73, line 6, inftead of 252,462 , read 210,330 .
In page 87 , dele the figure of 1 at the end of the firit line.
In page 101, line 3, inftead of 71 , read 74 .
In page 102, line 12 , inftead of 7 , read 74 .
In page 103, line 12, inftead of $\frac{n \times \overline{f+c}+\bar{d}+c+b+a}{r}$, read $\frac{n \times \overline{f+c}+d+c+b+a}{r}$.

In page in2, line 16 , inftead of $\frac{\pi \cdot n-1 \cdot \overline{n-2} \cdot \overline{n-3}}{2 \times 3 \times 4}$, read

$$
\frac{n \cdot \overline{n-1} \cdot \overline{n-2} \cdot \overline{n-3}}{2 \times 3 \times 4}
$$

And in the fame page 112 , line 1%, inflead of

$$
\frac{n \cdot \overline{n-1} \cdot \overline{n-2} \cdot \overline{n-3} \cdot n-4}{2 \times 3 \times 4 \times 5}, \text { read } \frac{n \cdot \overline{n-1} \cdot \overline{n-2} \cdot \overline{n-3} \cdot \overline{n-4}}{2 \times 3 \times 4 \times 5} .
$$

In page I1\%, line II frum the bottom, inftead of $\mathrm{B} a^{\mathrm{I}}{ }^{-2} b^{\mathrm{r}}$, read $\mathrm{B} a^{1-2} b^{2}$.
In page 144, line 7 from the bottom, inftead of $-56 x$, read $-56 x^{5}$.
In page 15 r , in the bottom line, inftead of $-\frac{n}{-} \mathrm{A}_{x}$, read $-\frac{n}{1} \mathrm{~A}_{\mathrm{N}}:$
In page 358 , line 3 , inflead of $21 x^{5}+36 \cdot x^{6}$, read $+21 x^{5}+28 x^{6}+36 \cdot x^{7}$. In page 183 , lines 6,7 , and 8 , the figure of 2 is not clear in the powers of 12 in the numerators of the fractions $\frac{\overline{12} 17}{2}, \frac{12 \times \overline{127^{7}}}{8}$, and $\frac{7 \times \overline{121^{3}}}{2}$.
In page 184, line 5 from the bottom, inflead of 16,12 , read 116,122 .
In page 196 , line S from the bottom, infead of $\frac{I 1}{I L}$, read $\frac{n^{I I}}{11}$.
In page 197 , the top line, inftead of $\frac{522}{6}$, read $\frac{52}{60}$.
In page 218 , line 3 , inftead of

$$
\begin{aligned}
& +n \mathrm{~B} x^{n-1} d^{2}+n \times \frac{n-1}{2} \mathrm{~B} x^{n-2} d^{3}+n \times \frac{n-\mathrm{I}}{2} \times \frac{n-2}{3} \mathrm{~B} x^{n-3} d^{4}, \mathrm{Sc} \\
& \text { read }+n \mathrm{~B} x^{n-1} d+n \times \frac{n-1}{2} \mathrm{~B} x^{n-2} d^{2}+n \times \frac{n-\mathrm{I}}{2} \times \frac{n-2}{3} \\
& \mathrm{~B} x^{n-3} d^{3}, \& \mathrm{cc} .
\end{aligned}
$$

And in the fame page $21 S$, line 4 , inftead of

$$
\begin{aligned}
& +n-1 \times \mathrm{Cx}^{n-2} d^{3}+n-1 \times \frac{n-2}{2} \mathrm{C}_{x^{n}}^{n-3} d^{4}, \& \mathrm{c}, \text { read } \\
& +\overline{n-1} \times \mathrm{C}_{x^{n}}^{n-2} d+\overline{n-1} \times \frac{n-2}{2} \times \mathrm{C} \cdot i^{n-3} d^{2}, \text { \&cc. }
\end{aligned}
$$

And again in the fame parge 218 , line 5 , inftead of $+n-2 \mathrm{D}_{x^{n}}^{n-3} d^{4}, \& \mathrm{C}_{2}$ read $+\overline{n-2} \times \mathrm{D}_{x^{n-3}} d$, axc.
In page 221, line $;$ from the bottom, inftead of $\frac{n \times n-1 \times n-2}{2 \cdot j \cdot 4 \cdot 5 \cdot 6}$, read
$n \times \overline{n-1} \times \overline{n-2}$ $\frac{n \times \overline{n-1} \times \overline{n-2}}{2: 3 \cdot+\cdot 5 \cdot 6}$

And in the fame page 225 , line 2 from the bottom, infead of

$$
\frac{n \times n-1 \times n-2 n^{n-3}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}, \text { read } \frac{n \times \overline{n-1} \times \overline{n-2} \times x^{n-3}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}
$$

And again in the fame page 221 , the bottom line, inftead of

$$
\frac{n \times n-1 \times n-2}{2.3 \cdot+\cdot 5 \cdot 6}, \text { read } \frac{n \times \overline{n-1} \times \overline{n-2}}{2 \cdot 3 \cdot+\cdot 5 \cdot 6} .
$$

In page 239 , line 11 , inftead of a_{m}, read $a^{n \prime 2}$.
In page $2 \sigma_{4}$, line 6 from the bottom, inftead of $\widehat{1+1}$, read $\overline{I+1}{ }^{n}$.
In page 298 , line 6 , inftead of $b c$, read $b b c$.
In page 302 , line 10 from the bottom, the firft figure after 10, which fhould be a 3, is not clear.
In page 340 , line 16 from the bottom, inftead of 33 r , read igr.
In page 341 , line 15 from the bottom, inftead of 3,67 , read 31,67 . In page 350 , line 11 , inttead of 92×7^{6}, read 29×67.
In page 369 , line 9 from the bottom, column ${ }_{17}$, initead of. p, read 7 .
In page 371 , line 6 from the bottom, column 14, inflead of 19 , read 37.
In page 374, line 1 from the bottom, column 10, inftead of 73 , read 10%
In page 435 , line 9 from the bottom, inflead of 3 , read 2.
In page 44^{6}, line 13 from the bottom, initead of $\frac{4 m^{2} n^{3}}{m m+n n^{2}}$, read

$$
\frac{4^{n 2^{2} n^{2}}}{m m 2+m n^{2}} .
$$

In pages $470,47 \mathrm{I} ; 472$, and 473 , the title at the top of the pages is wrong. It fhould be, Of the Extraction of the Cube-root by Mr. de Lagny's Méthocd of Approximation.
In page 472 , lines 8 and 9 from the bottom, initead of 3.264 , read 0.3264 .

In page 488 , line 4 , after the letter π, infert the firlt mark of a parenthefis, to wit (.
In page 495, line 7 , inftead of $\frac{a^{3}-c \times a}{c+2 a^{3}}$, read $\frac{\overline{a^{3}-c} \times a}{c+2 a^{3}}$.
In page 5 If, line 4 from the bottom, inftead of $-\mathrm{C} \dot{a}^{m-2} \approx^{2}$, read $+\mathrm{C} a^{m-2} z^{2}$.
And in the famc page 5 II, linc 2 from the bottom, inftead of $+\mathrm{Ca}_{a}^{m-2}$, read $+\mathrm{Ca}^{m-2} z^{2}$.
In page 54°, lines 10 and 15 , inftead of $\sqrt{3}^{3}$, read $\sqrt{17}^{7 n}$.

In page 542 , line 9 from the bottom, inftead of $\frac{2 a \times a^{m}-N}{m_{m}-1 \times N+m+1 \times a^{m^{2}}}$

$$
\text { read } \frac{1 a \times a^{m}-N}{m-1} \times \mathrm{N}+\overline{m+1} \times a^{m} .
$$

In page 561 , in the Note, line 19 from the bottom, inftead of $-b_{2} r_{3}$, read - $b^{2} \cdot x^{3}$.

THE

p R E F A C E.

IT is well known to perfons acquainted with the hiftory of the Mathematicks, that Sir Ifaac Newton's celebrated Theorem concerning the powers of a binomial quantity, fuch as $a+b$, was communicated by him to the world, in the latter part of the laft century, without'a demonftration. And many other writers on Algebra fince Sir Ifaac's death, and, amongit the reft, the famous Profeffor Saunderfon, of the Univerfity of Cambridge, have followed his example in taking this important Theorem for granted, and delivering it to their readers without attempting to demonftrate it. For the chapter on this fubject in the fecond volume of the Profeffor's Elements of Algebra, in two volumes, quarto, contains nothing more than a full and clear defcription of the Theorem, with an application of it to a good number of wellchofen examples, by way of illuftration. This neglect of demonftrating fo important a propofition has always appeared to me very ftrange; as the great merit and glory of the mathematical Sciences confifts in the certainty of the principles on which they are founded, and the clearnefs and regularity with which all the fubfequent conclufions obsained in them are deduced from thofe fundamental principles. There have been, however, other eminent Mathematicians who have fupplied this great omilion, and given us juft and accurate demonftrations of this Theorem in fome of the more obvi-
ous and important cafes of it, though not, perhaps, in all its cales. And of thefe I confider Mr. Fames Bernculli (who was Profeffor of Mathematicks at Bafil, or Bafle, in Switzerland, in the latter part of the latt century,) as one of the moft fuccefsfull. For, in the 3d chapter of the fecond part of his exceHent Treatife on the Doctrine of Chances, intitled, Ars Conjentandi, (which was publithed at Bafil in the year If 3 , in a forall quaro volume, fome years after his death,) there is a demonttration of this celebrated Theorem in the firt, or fimpleft, cafe of it, (or when 1, or the index of the power of the binomial quantity $a+b$, is an affirmative whole number, that is deduced from the very nature of Multiplication and the properties of the Figurate numbers, in the clearelt and molt accurate manner polfible. So that no demonftration of it ought to be expected, or need be defired, that fliall exceed, or even cqual, this in point of accuracy and perfpicuity, though fome others may, perhaps, be fomewhat fhorter. This demonftration I was therefore defirous of making more generally known to the Students of the Mathematicks ; and with that vievi I refolved to republifh it, together with fo much of the concomitant text of Mr. Berroulli's faid valuable 'Treatife, as was neceffary to the thorough underfanding of it, in a volume of a modeyate fize and price. This was the inducement that gave rile to the prefent publication.

To anfwer this purpofe in the mof effectual manner, I thought it would be beft to re-publifh the whole of the three firf chapters of the fecond Part of the faid Ireatife of Mr. James Bernoulli, together with the Preface to the faid fecond Part ; but without the firt Part of the fame work, becaufe the faid firft part, (though in itfelf important and curious, and eflential, I doubt not, to the full undertanding of the Doatrine of Cbances,) is not at all neceffary to the underfanding of the Cecond Part, which treats of the Doctrine of Permutations and Combinations, and begins, in the moft diftinct and clementary manner, with the firft foundations of that doctrine. And further, as there are many perfons in England that are fond of the Mathematical Sciences withous
without having much acquaintance with the Latin language, I have, in order to render the contents of thefe three valuable chapters acceffible to fuch perfons, tranflated thefe chapters into Englith, and fubjoined the tranflation to the ariginal text in Latin; fo that the reader may chufe in which of the two languages he will perufe them. And in this tranflation I have expreffed myfelf in a fuller manner than Mr. Bernoulli had adopted in the original, becaufe I had oblerved that the great degree of brevity with which Mr. Bernoulli had expreffed himfelf had rendered fome parts of the original rather obfcure. And I have likewife added a few notes both to the original and the tranflation, where the text leemed to me to require them.

And further, in the latter part of the tranflation of thefe chapters, I have alfo done fomething more than merely tranflate themi. For, as 1 obferved that Mr . Bernoulli's conclufions concerning the properties of the Figurate numbers, (which he had applied to the demonftration of the binomial theorem in the firf, or fimpleft, cafe of it, or when m, or the index of the power of the binomial quantity $a+b$, was an affirnative woble number, might eafily be applied to the demonitration of the binomial theorem in another cale of it, to wit, in that cafe of it in which m, or the index of the binomial quantity $a+b$, is a negutive woble number, I drew up fonic additional articles, that are not contained in Mr. Bernoulli's text, for this purpole. Thele additional articles, (which contain a demonltration of the binomial theorem in the cafe of integral and negative powers, or in the cale of the quanticy $\overline{a+0^{-m}}$, extend from page 123 to page 166 ; after which the tranflation of Mr . Bemoull's text is refumed, and centinues to page 213.

Thefe three chapters contain a moft accurate and diftinct explanation of the fundamental parts of the Doctrine of Permutations and Combinations, and of the moft remarkable properties of the Figurate numbers, which, it is well known, are of the moft extenfive ufe in various branches
of the Mathematicks. And they likewife contain an applícation of the properties of thefe important numbers to the fummation of the fquares of the natural numbers $x, 2,3,4$, $5,6,7,8,9,10,11,12, \& c$, continued to any propofed number n, and to the fummation of the cubes, and of the fourth powers, and of the fifth powers, and of all the following powers, of the fame numbers, (which is a matter of much nicety and difficulty, and was formerly a great object of inquiry to Mathematicians,) as well as to the demonftration of the binomial theorem in the cale of integral and affirmative powers, and (with the articles I have added to it in pages 123 , \&rc, to 166 ,) in the cale of integral and negative powers. All which, together, makes a confiderable body of very ufeful mathematical learning.

Immediately after thefe three chapters of Mr. James Bernoulli's Ars Conjectandi, I have re-publifhed the tenth Mathematical Effay of the late very learned and ingenious Mathematician, Mr. Thomas Simpfon, of Woolwich Academy, which is a folution of the followng Problem, to wit, "To find the fum of any Jeries of powers whole roots are in "critbinctical progreffoin, as $m+a]^{n}$, $m+\left.2 d\right|^{n}, \overline{m+3} \|^{n}$, $" \overline{m+4 d}{ }^{n}, m+5 d n, \cdots x^{n}$, the letters m, d, and "n, denoting any mitimeirs wbatfoever." This Effay of Mr. Simpfon had been alluded to in a note to the tranflation of the foregoing extract from Mr . Bernoulli's bouk, at the bortom of page 213 ; and it is fo nearly connected with the fubject of the latter part of that extract relating to the fums of the powers of the natura! numbers $1,2,3,4,5,6,7$, $8,9,10,11,12, \&<c$, that I thought it would be agreeable to the reader to have it laid before him immediately after the faid extract; and therefore 1 caufed it to be reprinted in that place. It extends from page 214 to page 224.

The next Tract is one of myy own compofition, and contains An Inceffigation and Demonflution of Sir Ifaac Neroton's

Biunomial Thborem in the cafe of integral and affirnative powers; in wobich the laro of the generation of the numeral coefficients
of the terins of the firics cobich is equal to the quantity $\overline{a+b} b^{m}$, is difcovered by a conjecture grounded on the obfervation of the lave of the Jaid co.efficients in Jome particular examples; but, zubeit So dijfcuered, is 乃berwn to be true univerfally in all otber integral and affirmative poriers whatfoever of the jaid binomial quanity, by a frict and accurate demonftration. This Traet begins in page 227, and ends in page 268, and contains, as I believe, the beft and mot fatisfactory demonftration of the Binomial Theorem in the cafe of integral and affirmative powers that has yet been given of it, next to that contained in the foregoing Extract from Mr. James. Bernoulli's Treatife, intitled Ars Conjectandi. The conjectural inveftigation of the law of the numeral co-efficients of the terms of the feries that is equal to $a+6{ }^{m}$, given in this Tract, is fuggefted by Profeffor Saunderfon, in the fecond volume of his Algebra, in the chapter on the Binomial Theorem; where (as I before obferved,) the reader will find a good explanation and illuftration of the faid celebrated Theorem by a variety of examples, both in the cafe of integral powers and in the cafe of roots and other fractional powers, and even in the cafe of negative powers and of powers that are both fractional and negative; but no demonttration of it in any cafe, not even in that of integral and affirmative powers. And the following ftrict demonftration of this Theorem in the cale of integral and affirmative powers, (which begins in page 252 , and ends with page 264 ,) is nearly the fame with that which is given by Mr. John Stewart, of Aberdeen, in the 6th fection of his Commentary on Sir Iface Newton's curious little Tract, intitled, Ana'ys is per AEquationes numero terminorun infuitas, or Analyis by Liquations of an infinite number of Terms. See his edition of Newton's Treatife on the Quadrature of Curves, and of the faid Tract, intitled, Analyjis, Ejc, with his learned comments on both, in one volume, quarto, publifhed at London in the year 1745, page 47 I , art. 155°

This Tract, concerning the faid conjectural inveftigation and fubfequent general demonftration of the Binomial Theorem in the cafe of integral and affirmative powers, contains the fubftance of two Tracts publified in the year 1792, in the fecond volume of the Collection of Mathematical Tracts, in quarto, called, Scriptores Logaritbmici, to wit, the 15 th Tract, which extends from page 153 to page 169 , of the faid fecond volume, and the 23 d , or laft, Traet in the faid volume, which extends from page $58 j$ to page 59 r .

Next to this Tract on the Inveftigation and Demonftration of Sir Ifaac Newton's Binomial Theorem, I have republifhed a Tract of the learned Dr. John Wallis, of Oxford, on the fame Doctrine of Permuations and Combinations, which is the fubject of the foregoing Extract frons Mr. James Bernoulli's work above-mentioned. This Tract was publithed with Dr. Wallis's Algebra in the year 1685 , under the title of A Difcourse of Combinations, Alternations, and Aliquot Parts, and is mentioned by Mr. James Bernoulli in the foregoing Extract of his Ars Conjectandi, in the Scholium in pages 29 and 166 , as a well-known and valuabie Treatife on the properties of the Figurate numbers. And it does indeed contain a great deal of excellent and curious matter concerning thofe numbers, and the other fubjects of which it treats, but wilhout that accuracy and regularity in the manner of deducing the conclufions of it one from another, which diftinguifh the foregoing chapters of Mr. Bernoulli's work. However, on account of its intrinfick merit, and its relating to the fame fubjects, in a great meafure, as the faid Extract from Mr. Bernoulli's book, I thought it would be agrecable to my readers to fee a re-publication of it in the fame volume with the faid Extract, and therefore I have given it a place in this Collection. It begins in page 271 , and extends to page 35^{1}.

Much of this Difcourfe of Dr. Wallis relates to Prime, or Incompoofit, numbers, and to curious arichmetical queftions depending on them. And in one part of it, to wit, in page 318, the Doctor fpeaks of the great convenience of having
at hand a Table of Prime Numbers fet down in regular order, to be referred to when we want to know into what prime numbers a given odd number may be refolved. And he mentions a very ufeful Table of this kind that had been drawn up by a Mr. Thomas Brancker, M. A. and publifhed by him in the year 1668, in an Appendix to an Englifh tranflation, made by him, of Rbonius's Algebra, which had been publihhed in the German language at Zurich in Switzerland, in the year 1659, under the title of Algebra Rbonii, Germaniuè. This Englifh tranflation of Rhonius's Algebra was publifhed by Mr. Brancker under the infpection, and with the affiflance, of Dr. John Pell, an eminent Mathematician in the reign of King Charles the Second, and fome confiderable additions were made to the tranflation by Dr. Pell himfelf; which has given occafion to the book's being fometimes fpoken of by fubfequent writers of Mathematicks, and amongft others by Dr. Wallis himfelf in this Difcourfe, page 319 , by the name of Dr. Pell's Algebra.

This Table of Prime Numbers Dr. Wallis fet a high value on, infomuch that he took the pains to examine it carefully throughout, and to correct the few errors that he found in it; fo that now, with his corrections, it may be confidered as very accurate. This Table therefore, together with the Appendix in which it is contained, I have here caufed to be re-printed immediately after the foregoing Difcourfe of Dr. Wallis. It contains not only all the Prime numbers that are lefs than 100,000 , but all the odd numbers whatfoever that are lefs than that number, (except fuch odd numbers as end with the figure of 5 , and are therefore cvidently divifible by the number 5 ,) and it diftinguifhes the Prime numbers from the other oud numbers, by annexing to them the letter p; and it annexes likewife to every other odd number (that is not a Prime, or Incompofit, number, but is the product of the multiplication of two, or more, leffer numbers, the leaft of the prime numbers into which it may be refolved. This Appendix, with the faid Table of odd numbers contained in it, extends from page 353 to page 416 .

The next Traet in this Collection relates to the Rational Numbers that will exprefs the Sides of Right-angled Triangles, and contains two methods of finding as many fets of numbers as we pleafe that fhall have this property. The firft of thefe methods begins in page 417, and ends in page 431 , and the fecond reaches from page 431 to page 44^{8}; after which I have inferted a Table of the Squares of the feveral natural numbers $1,2,3,4,5,6,7,8,9,10,11$, $12,13, \& \mathrm{c}$, as far as 1oo, together with two additional columns adjoining to the column of the faid fquares, in the former of which I have fet down the differences of the faid fquares, and in the latter the differences of thofe differences, or the fecond differences of the fquares themfelves; which fecond differences are all equal to each other, and to the number 2. This Table begins in page 449, and is accompanied with fome remarks which extend to page 457 . This Tract has a confiderable refemblance to fome parts of the foregoing Difcourfe of Dr. Wallis, and may afford fome amulement to fuch readers as are fond of contemplating the properties of numbers.

The next Tract relates to the Cubes of the natural numbers $1,2,3,4,5,6,7,8,9,10,11,12,13, \& c$, and to the differences of the faid cubes, and the differences of the faid differences, or the fecond differences of the faid cubes themfelres, and to the differences of the faid fecond differences, or the third differences of the cubes; which third differences are all equal to each other, and to the number 6. And in pages $460,46 \mathrm{I}$, and 462 , I have exhibited a Table of the Cubes of all the faid natural numbers as far as roo, together with the ift, 2d, and 3d differences of the faid cubes in adjoining columns; after which follows an extratt from a learned letter of the celebrated Mr. Leibnitz to Mr. Oldenburgh, the Secretary of the Royal Society of London, dated from London on the 3 d day of February, $1672-3$, relating to the fubject of the differences of the powers of the natural numbers $1,2,3,4$, $5,6,7,8,9,10,11,12,13,8 c c$, and to the feveral fucceffive orders of finch differences, and to the ultimate equa-
lity of the feveral fucceffive differences in the fecond, or third, or fourth, or fifth, or other fubfequent, order of the faid differences, according to the height of the power to which the faid numbers are raifed, and relating to other curious properties of numbers. This letter is in Latin, and cxtends from page 463 to page 469 , and is re-printed from the celebrated Commercium Epifolicumn of Mr. John Collins, and other eminent Nathematicians of the latter part of the laft century, that was firft printed by the order of the Royal Society in the year 1712 , and was afterwards re-printed in the year 1722. The remaining part of this Tract, from page 469 to page 504, relates to Monfieur de Lagny's Method of Extracting the Cube-roots of Numbers by Approximation, and begins with thewing the ufefulnefs of the foregoing Table of Cubes, in finding the firlt near value of the cube-root fought, to one, or two, places of figures, which is to be the balis of a further approximation to it by Mr. de Lagny's method. The four expreflions given by Mr. de Lagny for the fecond near value of the cube-root that is foughr, are ftated in pages 470 and 471 ; and in the following pages to page 483 , examples are given of the extraction of the cube-roots of the three numbers 2,231 , and 37,945, and of the long number $696,536,483,318,640,035,073,641,037$, to a great degree of exactnefs, by means of fome of the faid expreffions, atter the firtt near values of the faid cube-roots to one or two places of figutes, have been obtained by the help of the foregoing table of the cuhes of the firlt hundred numbers. Thefe four examples (in which the feveral procefles are Etated very much at length,) will, I apprehend, he fufficient to make the reader familiarly acquainted with the method of ufing the faid expreffions of Mr. de Lagny in the extraction of the cube-roots of numbers, and at the fame time to convince him of the great ufefulnefs of thete expreffions for effecting that purpofe; and they will likewife fhew the ufefulnefs of the foregoing Table of Cubes, in obtaining the firft near values of the cube-roots fought, to one, or two, places of figures, from which the more accurate values of them are afterwards derived by means of Mr. de Lagny's expreffions. After thefe four examples of Mr. de b

Lagny's

Lagny's method of Approximation, follows a Scholium (in pages 484,485 , and 486 , concerning the invention of theie expreffions, and of Mr. Raphfon's and Sir Ifaac Newton's methods of extracting the Cube-roots, and other higher roots, of given numbers, and even the roots of affected equations of any order, by fimilar approximations; which methods were invented by thofe eminent Mathematicians before the publication of thefe expreffions of Mr. de Lagny. And, then, (in pages $486,487,488, \& c$, to page 500 , I have given very full and accurate invertigations of the firegoing expreffions of Mr. de Lagny, which had been only ltated in pages 470 and 471 , and illuftrated by examples in the following pages, from page 471 to page 483 . And, laftly, "in pages $501,502,503,504$, I have given a further illuftration of the laid expreflions of Mr. de Lagny, by applying fome of them to the extraction of fome of the cuberoots which had been obtained in the foregoing examples by means of others of them; with a view to make a comparifon between the different expreffions given for the fame purpofe by Mr. de Lagny, and to difcover which of them are the moft exact, or the moft eafy to practice, and in which cafes it will be molt advilcable to refort to fome of them in preference to the others. This Tract (which begins in page 459 , and ends in page 504,) I confider as a very ufeful one to young fudents of Arithmetick and Algebra.

Having in the foregoing Tract very fulliy explained, and illuftrated by examples, Mr. de Lagny's method of Extracting the Cube-roots of given numbers by Approximation, I proceed in the next Tract to ftate his general method of Extracting any ligher Roots whatfoever of given numbers. by fimilar Approximations. All thefe approximations are grounded on the fame principle, and conift in purting fome letter of the alphabet, as a, for the known part of the root fought, (which known part is found by conjecture, or otherwife, as the cafe may admit,) and putting fome other letter, as z, for the unknown difference by which x, or the true root of the given number (which may be called N ,) exceeds, or falls fliort of, the firft value c, (which is fuppofed to be known, and then fubftituting $a+z$, or $a-z$,
inftead of x, in the original equation $x^{5}=\mathrm{N}$, or $x^{7}=\mathrm{N}$, or, in general, $x^{\prime \prime \prime}=\mathrm{N}$, (whereby the faid equation will be transformed into another equation in which z will be the only unknown quantity,) and, lafly, in refolving this transforned equation (of which z is the root,) as if it was only a quadratick equation, or omitting, or expunging from it, all the terms that involve any higher' power of z than the fquare. By fuch a refolution of this transformed equation Mr. de Lagny obtains a value of z that approaches nearly to its true value: and confequently, by fubftituting this near value of z, inftead of z, in the binomial quantity $a+z$, or $a-z$, (which is equal to x, or the root fought, or the m th root of the given number $N_{\text {, }}$) he obtains a near value of $a+z$, or $a-z$, or a fecond near value of x, or $\checkmark^{n z} \mathrm{~N}$, which is much nearer to its true value than a, or its firtt near value, was. To explain in a full and diftinet manner this method of extracting the m th root of any given number N , and to illuftrate it by a few examples of the extraction of fome high roots of given numbers, by means of the general expreffions of the values of $a+z$ and $a-z$ derived from it, is the object of the prefent Tract. And, as the inveftigations neceffary for this purpofe are very general, and, from that circumftance, are rather more fubtle and difficult than the inveftigations in the preceeding Tract, (which related only to the extraction of the cube-roots of given numbers,) I have taken great pains to fet down all the fteps in them in regular order, as clearly and plainly as I could; which may make them appear longer than might, perhaps, have been expected, but will, in fact, enable the reader to make bimfelf perfect matter of then in lefs time than if they had been compreffed within a narrower compafs. The general expreffions that are thus inveltigated, are no lefs than four; to wit, two near values of $a+z$, obtained by confidering the aforefaid transformed equation (arifing from the fubtitution of $a+z$, inftead of x, in the
original equation $x=\mathrm{N}$,) as a quadratick equation, and refolving it, as fuch, in two different manners, to wit, firft, b 2 imperfectly,
imperfectly, and fecondly, in an accurate manner; and two near values of $a-z$ obtained in like manner, by confidering the other transformed equation, (arifing from the fubfitution of $a-z$, inftead of x, in the original equation $x^{2 / 2}=\mathrm{N}$,) as a quadratick equation, and refolving it, as fuch, in two different manners, to wir, firft, imperfectly, and fecondly, in an accurate manner. In order to perform thefe inveftigations the more eafily and diftinctly, I have divided the fubject into two cafes, with Problems correfponding to them, according as x, or $V^{n \prime 2} \mathrm{~N}$, is greater, or lefs, than its firt value a, or is equal to $a+z$, or to $a-z$. The firl cafe, or that in which x, or $\sqrt{\prime}^{m} N$, is equal to $a+z$, is confidered in the firt Problem; and the fecond cafe, or that in which x, or $\sqrt{ }^{m z} \mathrm{~N}$, is equal to $a-z$, is confidered in the fecond Problem: and from the Solution of the firlt l'oblem we obain the two following expreffions, to wit, $a+\frac{2 a \times N-a^{m}}{\overline{m-1} \times N+\overline{m+1} \times a^{m}}$ and
$a+\sqrt{\frac{a a}{m-1)^{2}}+\frac{2 \times x-a^{m}}{m \times \frac{1}{m-1} \times a^{m-2}}}-\frac{a}{m-1}$, for
near values of the binomial quantity $a+z$, or for fecond near values of x, or $V^{n} \mathrm{~N}$; and from the Solution of the fecond Problem we obtain the two following expreffions, to wit, $a-\frac{2 a \times \overline{a^{m}-N}}{m-1} \times \overline{m+1} \times a^{m} \quad$ and
$a-\frac{a}{m-1}+\sqrt{\frac{a a}{m-1)^{2}}-\frac{2 \times a^{m}-N}{m \times m-1 \times a}}$, for
near values of the refidual quantity $a-z$, or for fecond near values of x, or $\sqrt{ }^{m \prime} N$. And the Solutions of both thele Problems aie ilyutrated by a few fuitable examples, placed at the end of each fulution refpeatively, of the extraction
traction of different roots of given numbers by mieans of the faid general expreffions obrained in the preceeding folutionis. The Solution of the firtt of thefe Problems begins in page 508 , and ends in page 516 ; and is followed by three examples, which begin in page 516 and end in page 525 : after which I have inferted a scholium containing a comparifon between Mr. de Lagny's aforefaid method of extracting the roots of given numbers, and Mr. Raphfon's method of performing the fame thing; which is fomewhat fimpler and eafier than Mr. de Lagny's method, though not quite fo exact. For the difference between the two methods confilts only in this, that, whereas Mr. de Lagny refolves the transformed equation arifing from the fubftitution of $a+z$ inftead of x in the original equation $x^{m}=\mathrm{N}$, as if it was a quadratick equation, omitting all the terms of it that involve any higher power of z than its fquare, Mr. Raphfon refolves the fame equation as if it was a mere fimple equation, or omits all the terms of it that involve any higher power of z than its fimple power, or z itfelf; which makes his expreffion of the near value of $a+z$, or of the fecond near value of x, or $\mathfrak{V}^{\prime \prime 2} N$, derived from the faid transformed equation, a good deal fimpler and eafier to manage than thofe of Mr. de Lagny. This Scholium extends from page 525 to page 529 , and is followed by a fourth example of the extraction of the root of a very long number by Mr. de Lagny's method, which extends to page 534. The Solution of the fecond of the faid Problems begins in page 536 , and extends to page $5+6$, and is followed by two examples of the extraction of the roots of given numbers by means of the general expreflions obtained in it, that extend from page 547 to page 554. And then the Tract concludes with fome Obfervations, in pages 555 and 556 , on the feveral different methods that may be taken for the extraction of the roots of numbers.

This Tract, as well as the laft before it, concerning the Extraction of the Cube-roots of given Numbers, will, I hope, be found to be of great ufe to the Students of Arithmetick and Algebra.

The laft Tract in this Collection is intitled, Obfervations on Mr. Raphyon's Metbod of refolving. Affected Equations of all degrees by Approximation. It begins in page 559, and ends in page 590 ; and its contents may be defcribed as follows. The firtt part of it, as far as page 57 I , is intended, partly, to remove fome difficulties that occur in reading Mr. Raphfon's excellent Treatife on the Refolution of all Equations, (whether pure or affected,) by Approximation, intitled, Analy is Equationum Univerfalis, which difficulties are not inherent in the fubject itfelf, or neceffarily belonging to his method of refolving equations, but have arifen merely from his having unfortunately adopted the doctrine and Janguage of negative roots of equations, by which the Science of Algebra, or Univerfal Arithmetick, has been difyraced and rendercd obfcure and difficult, and difguting to men of a juft tafte for accurate reafoning, ever fince its introduction by Harriot and Des Cartes. The firf part of this Tract is, I fay, intended, partly, to remove fome difficulties of this kind, in the faid Treatife of Mr. Raphfon, and, partly, to illuftrate his method of refolving high equations in other cafés, or where no negative ronts are mentioned, by performing the refolution of one of the equations given by him in his examples, to wit, of the equation $x^{5}+7 x^{4}+20 x^{3}$ $+155 \times x=10,000$, in a very full and diftinct manner, with every ftep of the refolurion, and the reafonings upon which it is grounded, fet forth at length, agreeably to the principles laid down by him in the beginning of the faid Treatife, inftead of reforting (as he lias done in his refolution of the fame cxample, and in thofe of all his other examples,) to the repeated application of a general theorem, or canon, that he has deduced from the faid principles: becaufe that way of performing the faid refolution, by means of a theorem, or canon, affords much lefs fatisfaction to the mind of the reader, or operator, in the ufe of it, than he would receive by performing the refolution of the equation by the immediate application of the principles themfelves, as I have done, in the refolution here given of the faid equation. And the following part of this Tract contains a comparifon between Mr. Raphfon's method of Refolving Equations

Equations by Approximation, and Sir Iface Newton's method of Refolving them alfo by Approximation, (which, after the firft procels of the approximation, or the difcovery of the fecond near value of the root of the equation, differs a little from Mr. Raphfon's method,) in order to difcover which of the two methods deferves to be reckoned the moft convenient. This comparifon between thefe two methods of refolving equations by approximation, (the refult of which is, that Mr. Raphfon's method appears to me, upon the whole, more convenient than Sir Ifaac Newton's,) reaches from page 57 I to page 586 : and the few remaining pages of this Tract, from page 586 to page 590 , relate partly to the method of trying the exactnefs of the near value of x, or the root of the propofed equation, which has been obtained by either of the faid two methods of Approximation, and, partly, to the merhod of finding a, or the firtt near value of x, or of the root of the propofed equation, to a moderate degree of exactnefs, in certain difficult cafes, to wit, in thofe cafes in which the propofed equation either has, or (from the changes of the figns of its terms from + to -, and from - to + ,) feems to have, more than one real and affirmaive root.

In the next plaee I have re-publifhed a ufeful Table of Numbers, from a book inticled The Calculator, publifhed in octavo in the year 1747, by the late learned Mr. James Dodfon, being a Table of the Square-roots and Cube-roots of all the natural numbers $1,2,3,4,5,6,7,8,9,10$, 1I, $12,1 \hat{j}, \& \mathrm{c}$, to 180 , carried to feven places of figures; which may often be the means of faving a Student of thefe Sciences fome time and pains in performing the calculations that may occur in them. This Table is contained in pages 591 and 592.

And in the laft place I have re-publifhed a Table of the Square-roots of all the natural numbers $1,2,3,4,5,6$, $7,8,9,10,11,12,13, \& c$, as far as 1000 , and likewife of the Reciprocals of all the faid numbers, or of the values
of the fractions $\frac{1}{1}, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}, \frac{1}{8}, \frac{1}{9}$, $\frac{1}{10}, \frac{1}{11}, \frac{1}{12}, \frac{1}{13}, \& \& \mathrm{c}$, as far as $\frac{1}{1000}$, expreffed in decimal fractions, from the fourth volume of Dr. Charles Hutton's Mijcellanea Mathematica, publifhed in the year 1.775, in four little volumes, duodecimo. This Table begins in page 595, and ends in page 604, and, with Dr. Hutton's explanatory: account of it in pages 605 and 606 , concludes the prefent volume.

ARTIS CONJECTANDI

PARS SECUNDA,

CONTINENS

DOCTRINAM DE PERMUTATIONIBUS ET COMBINATIONIBUS.

PROOEMIUM.

\%NFINITAM varietatem, quæ cum ini naturæ operibus, tùm in actionibus mortalium elucet, quáeque præcipuam hujus univerfi pulchrirudinem conftituit, non aliunde quàm ex diverfimodâ compofitione, mixturâ \& tranfpofitione partium ejus inter fe originem ducere palàm eft. Sed, quia multitudo rerum ad effectum aliquem producendum concurrentium fæpenumerò tanta eft támque varia, ut difficillimum fit recenfere vias omnes, quibus earundem compoficio, vel mixtura, fieri, vel non fieri, potef, hinc fit ut nullum fit vitium, in quod homines etiàm maximè prudentes $\& x$ circumfpecti frequentiùs incidant illo, quod Logici communitèr appellant infufficienten enumerationem partium; adeò quidem ut non verear dicere, lanc unicam ferè fcaturiginem effe infinitorum, corumque gravifimorum, errorum, quos in ratiociniis noftris circà res tum cognofcendas tum agendas quotidiè committimus. Quarè merito fuo utiliffma cenfenda eft ars, combinatoria dicta, qua huic mentis noftre defectui medetur, docétque fic enumerare modos omnes poffibiles,
iecundùm
fecundùm quos res plures permifceri, tranfponi, vel conjungi, invicèm poffunt, ut certi fimus, nos nullum coruinz pratermififfe, qui inftituto noftro conducere valent. Quanquam enim hoc negotii eatenùs fit confiderationis Mathematica, quatenùs in fubducendo calculo terminatur ; fi tamen ufum \& neceffitatem fpectes, univerfale prorfus eft \& ita comparatum, ut fine illo nec fapientia Philofophi, nec Hiftorici exactitudo, nec Medici dexteritas, aut Politici prudentia, confiitere queat. Argumento fit hoc unicum, quòd omnis horum labor in conjectando, \& omnis conjectura in trutinandis caufarum complexionibus aut combinationibus verfatur. Unde quoque nomnulli eximii viri, ac nominatim Schootenius, Leibnitius, Wallifus, Preftetus, materiam hanc fibi tractandam fumpfêre, ne quis exiftimet nova effe hìc omnia quæ prolaturi fumus; tametfi quædam non contemnenda de noftro adjecimus, imprimis demonftrationem generalem \& facilem propr:etatis numerorum figuratorum, cui cætera pleraque innituntur, \& quam nemo, quod fciam, ante nos dedit eruítve. Cùm itaque nondum plenum Artis fŷtema habeanus, tùm verò, ne illa quæ habemus aliunde petere fit opus, vifum eft totam Doctrinam ab oro ordiri, ac, ne quid indemonftratum relinquatur, ex primis fundamentis eruere; quod tamèn brevitèr fiet \& fuccinctè, nec nifi in quantum inftituti noftri ratio exigere videtur. Totam Tractationem ad duo fumma capita referimus, quorum unum Permutationum, alterum Combinationum doctrinam perfequitur; cui accedit tertium, quod utrafque mixtim contemplatur.

C A P U T I.

DE PERMUTATIONIRUS.

PERMUTATIONES rerum voco variationes, juxtì quas, fervatâ eâdem rerum multitudine, ordo fitứque inter ipfas diverfimodè permutatur.

Itaque fi quæratur, quoties nonnullæ res tranfponi vel permiferi invicem poffint, fic ut femper accipiantur omnes
folo ordine fitúve mutato, dicentur quæri omnes permutationes rerum illarum.

Res autem permutandæ vel omnes poffunt effé diverfx, vel aliquot earum eædem; quæ quidem per totidem Alphabeti literas, five diverfas five eafdem, commodè defignabuntur.

1. Si res omnes permutande funt diverfa:

CUM numerus permutationum in rebus pluribus iniri nequeat, nifi idem priùs in omnibus aliis numero paucioribus compertus habeatur, liquet in hâc inquifitione utendum viâ fynthericâ, hoc eft, ordiendum nobis effe ab hypothefibus omnium primis \& fimpliciffimis:

Unius rei, vel literæ, a, una tantùn fumptio vel pofitio eft.

Duarum rerum, aut literarum, $a \& b$, vel a præcedit $\& \varepsilon$ b fequitur, vel præcedente b fequitur a; unde duo ipfarum fiunt ordines $a b \& b a$.

Tres, porrò, literæ a, b, c, ita collocari poffunt, ut primas locus vel ipfi a vel b vel c concedatur : $f_{i} a$ primum tenet locum, reliquæ duæ duobus, ut diximus, modis difponi queunt: fii b in primum locum transferatur, reliquarum duarum duplex itidem poterit effe pofitio; quod \& intelligendum, ubi tertia 6 primam fedem occupaverit. Unde trium literarum in univerfum ter duæ, feu 6 , exiftunt permutationes $a b c, a c b: b a c, b c a: c a b, c b a$.

Similitèr, fi 4 extent literæ a, b, c, d, earum unaquæque primum obtinere locum poteft, intereà dum tres reliquæ, ut nunc oftenfum, ter bis, feu fexiès, ordinem variabunt: quare cùm earum, quæ primo loco poni poffunt, fint quatuor, fequitur omnes quatuor quater ter bis, feu quater fexies, hoc eft, vicies quater fitum inter fe permutare poffe.

Ob eandem rationem accedente 5 tâ literâe inftitui poffunt quinquies tot variationes, quot in cafu præcedenti, hoc eft, quinquies 24, feu 120. Et generalitèr, datis quorcunque literis, numerus permutationum, quas fubire poffunt omnes, totiès excedit numerum permutationum, quas recipiunt literre unâ pauciores, quot funt unitates in dato literarum numero. Unde fponte manat fequer's

Regula pro inveniendis omnibus permutationibus rerum quotcunque datarum.

MNES numeri ab unitate fe confequentes naturali ordine, ad datum ufque rerum numerum inclafivè, ducantur in fe invicèm ; productum manifeftabit quafitum.

Putà, fil datus rerum numerus fit n, numerus permutationum erit $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5$. \& c. ufque ad n; vel etiam (quia unitas non multiplicat) $2 \cdot 3 \cdot 4 \cdot 5 \cdot \ldots$. n. Nota, punctula numeris interjecta hic et ubique in fimili materiâ continuum numerorum in fe ductum fignificant. Exempli gratiâ, feptem rerum permutationes funt $2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 .=5040$. Ratio patet ex diettis, operatio ex adjunctâ Tabellà :

I	-	-	-	I
.				2
				\square
2	-	-	\bullet	2
				3
3	-	-	-	6
				4
4	$\stackrel{-}{*}$	-	$=$	24

$5-$| 120 |
| ---: |
| 6 |
| $6-720$ |

IO
10 - 3,628,800 .3628800

II - 39,916,800 79833600
$12-479,001,600$
2. Si rerum permutandarum nonnulle funt eadem:
Quòd fi literæ una pluréfve recurrant frpiùs, hoc eft, fi in dato rerum numero aliquæ res fimiles fint five eædem ; ut, fi datæ fint $a a a b$ $c d$, ubi litera a ter repetitur; numerus permutationum multo minor evadit: ad quem inveniendum cogitandum eft, quo̊d, flomnes effent diverfæ, putâ, fi loco a a a fcriberetur $a \propto a$, poffent hæ tres literæ etiam nullâ cæterarum loco motâ inter fe fexiès tranfponi, per præce. dentem Regulam; unde totidem diverf nafcerentur permutationes; at nunc cùm funt eædem, fex iftæ permutationes literarum a o a nullam univerfarum difpofitioni varia-

$$
\begin{array}{r}
7-\begin{array}{r}
5040 \\
8
\end{array} \\
8-\frac{40320}{}
\end{array}
$$ tionem indicunt, ac proinde pro unâ eâdemque habendæ funt: quod cùm de quâcunque difpofitione literarum paritèr fit intelligendum, indicium præbet, numerum permu-

$$
9
$$ tationum rerum datarum fexiès, hoc

$$
9=362,880
$$ eft, totiès minorem effe numero permutationum, quas fubire poffent $\mathfrak{f i}_{\mathbf{i}}$ omnes effent diverfæ, quotiès inter fe permutari queunt res fimiles: fed fi omnes 6 literæ diverfæ exifterent, permutari poffent, juxtà præcedentem tabellam, 720 . vicibus. Ergò nunc ubi tres ipfarum conve. niunt, permutari duntaxat poterunt vicibus 120.

Iterùm fi datæ fint 6 literæ $a a a$ $60 c$, ubı præter 1 teram a quæ ter recurrit, etiam litera b bis repetitur; manifeftum eft, numerum permutationum, adhuc bis minorem evadere, quam in pracedenti calu fucrat, adeó-
que folum ad 60 fe extendere: quandoquidem binx quxlibet permutationes, quæ ex folâ tranfpofitione duplici literafum $b b$, fi diverfæ effent, nafcerentur, nunc coïncidunt. Eodem pacto colligendum, fi plures literæ repeterentur fæpiùs, pro fingulis earum numerum permutationum minui toties, quoties feorsìm inter fe permutari poftunt eædem literæ. Unde ratio habetur fequentis Regula.

Regula pro inveniendis rerum permutationibus, cùn carm nonmulla funt eadem.

NUMERUS permutationum, quas admitterent datæ res fi omnes differentes effent, dividatur per numerum permutationum, quas fubire poteft res fimilis fecundum multicudinem fuam, fi una fit quæ fæpiùs repetatur: aut per productum ex numeris permutationum, quas feorsìm recipere poflunt fingulæ res fimiles fecundùm multitudinem fuam, fis plures fint quæ fæpiùs recurrant; \& quotiens exhibebit quæfitum.

Ufus doctrinæ Permutationum infignis eft in definiendo numero Anagrammatum alicujus vocis. Exempli gratiâ ; Tranfpofitiones omnes poffibiles literarum in voce R oma funt I . $2 \cdot 3 \cdot 4$. $=24$, ob 4 differentes literas, per I Regulam: et in voce Leopoldus $\frac{362880}{2.2=4}=90720$: et in voce Studiofus $\frac{362880}{2.6=13}=$ 30240: ob 9 utrobique literas, intérque illas ibi geminum l et geminum 0 , hìc geminum u \& triplex s; per 2 Regulam.

Hùc pertinent verfus nonnulli ob variationum multitudinem Protei dicti, quos inter celebrantur Lanfii, Scaligeri, Bauhufii. Thomæ Lanfio hoc difichon debemus:

> Lex, Rex, Grex, Res, Spes, Fus, Tbus, Sal, Sol, (bona) Lux, Laus:

Mars, Mens, Sors, Lis, Vis, Styx, Pus, Nox, Fax, (mala) Crux, Fraus.
, finguli verfus per Regulam priman, ob I imonofyl(diffyllabis vocibus bona \mathcal{J} mala 5 tæ femper regioni affixis)
fixis) falvâ metri lege variari poffunt $39,916,800$ vicibus. Et quanquam aliàs contingat, ut pleræque variationes in metri leges arietent, nec non ut plerique Anagrammatifmi fint non-fignificantes \& barbari ; levi tamen plerumque induftriâ opus eft ad fecernendum utiles ab inutilibus, illorúmque numerum feorsìm ineundum, fi aliquem in iis inquirendis ordinem obferves. Quemadmodùm cernere eft in hexametro à Bernhardo Bauhufio, Jefuitâ Lovanienfi, in laudema Virginis Deiparæ conftructo:

Tot tibi funt dotes, Virgo, quot fidera calo;

quem dignum peculiari operâ duxerunt plures viri celebres: Erycius Puteanus in libello, quem Thaumata Pietatis infcripfit, variationes ejus utiles integris 48 paginis enumerat, eâfque numero ftellarum, quarum vulgò 1022 recenfentur, accommodat, omiffis fcrupulofiùs illis, quæ dicere videntur, tot fidera cœlo effe, quot Mariæ dotes ; nam Marix dotes effe multo plures. Eundem numerum 1022 ex Puteano repetit Gerhardus Voffius cap. 7. de Scientiis Marhematicis; Preftetus, Gallus, in primâ editione Elementorum Mathematicorum, paginâ 343 , Proteo huic 2196 variationes attribuit; fed, factâ revifione in alterâ editione, tomo primo, paginâ 133 , numerum earum dimidio ferè auctum ad 3276 extendit. Induftrii Auctorum Lipfienfium Collectores menfe Junii 1686, in recenfione Tractatûs Wallifiani de Algebrâ, numerum in quæftione (quem Auctor ipfe definire non fuis aufus) ad 2580 determinant. Et ipfe poftmodùm Wallifus in editione Latinâ operis fui, Oxonixe anno 1693 impreffà, paginâ 494, eundem ad 3096 profert. Sed omnes adhuc à vero funt deficientes, adeò ut delufam tot virorum, poft adhibitas quoque fecundas curas, in re levi perfpicaciam me-ritò mireris. F'acto enim examine deprehendo, fcetum hunc Bauhufianum, exclufis etiàm fpondaïcis, admiffis verò iis qui cafurâ deftituti funt, falvâ metri lege omninoò tèr milliès', tercentiès, ac duodeciès variabilem effe. At prolixiùs de his agere tanti non intereft, nec inftitutum noftrum patitur.

TYPUS VARIATIONUM VERSÛ́S BAUHUSIANI :

Tot tibi funt dotes, Virgo, quot fidera ccelo.

Quintam Regionem Hexametri occupat vel

Sidera, quam vocem excipit aut vox
| Diffyllaba una, nempe vel
| Calo, ac tum vox Tibi inter fex reliquas occu-
pat locum vel
| | Sicundum, præcedente voce nunc
$1 \mid$ Monofyllabab, eâque vel

Tertium, proeuntibus
1 I Unâ monofyllabâ \& unâ difjyllabâ, primas tenente vel

1 Duabus diffyllabis, nempe, Dotes Virgo,
18
1 Quartum, precedentibus
1 Tribus monofyllabis,

Quot funt, vel Sint quot; voce Tibi occupante
locum vel
| Secundum, primo relicto voci
$\begin{array}{llll}\text { Monofyllaba, Tot: } & - & - & 12 \\ \text { Diffllabre, Virgo: } & & \\ \text { Tertium, præcedentibus } & & & \end{array}$
; Monofyllabâ cum diffyllabâ, . - 24
' Duabus diffyllabis, quarum poft Virgo, 8
Quartum, præeuntibus
1 : Monofyllabâ cum duabus diffyllabis, 3^{6}

- Tribus diffyllabis, quarum ultima Virgo,

4
| 2uintum,
1
1 Tot funt, vel, sunt tot, totidem
Toi quot, aut, 2uot tot, totidem
| Calo, voce Sidera occupante locum aut

C A P. II.

> DE COMBINATIONIPUS, IISQUE PRIMO CONSIDERATIS
> SIMPLICITER.

COMBINATIONES rerum funt conjunctiones, juxtà quas ex datâ rerum multitudine nonnullæ eximuntur, intérque fe conjunguntur nullo ordinis fitûs-ve ipfarum refpectu habito.

Idcircò cùm quæritur, quoties ex dato rerum numero vel binæ, vel ternæ, vel quaternæ, \&c. accipi poffint, fic ut nunquam omnes eædem res fumantur fæpiùs quàm femèl, dicentur quæri omnes combinationes diverfæ rerum datarum.

Numerus, fecundùm quem res datæ conjunguntur, dicitur Exponens Combinationis: Ita, fi res binæ fumuntur, Exponens erit 2 ; fi ternæ, 3 ; fi quaternæ, 4. Res verò fecundùm hos exponentes junctæ dicuntur Binarii, Ternarii, Quaternarii, \&c. vel Biniones, Terniones, Quaterniones, \&c. \& confonantèr etiàm Uniones, vel Unitates, quando res fumuntur fingulæ, \& Nulliones cùm nulla planè fumitur.

Conjunctiones ipfas nonnulli vocant Combinationes, Conternationes, Conquaternationes, \&cc. quas omnes vulgò unâ voce Combinationum complecti folent, tametf hæc vox ftrictiori fignificatu propriè non nifi illas conjunctiones indigitare videatur, quibus res binæ invicèm junguntur. Quamobrem alii generaliori voce Complicationum vel Complexionum uti malunt : alii magìs appofitè Elecziones vocant, ut \& illæ fubintelligi poffint rerum acceptiones, quibus res fingulæ feorsìm fumuntur, aut quibus etiàm nulla planè fumitur.

Res autènı quæ inter fe combinanda funt, vel omnes pof= funt effe diveriæ, vel aliquot ipfarum eædem; eáeque vel ita combinari debent, ut in nullâ combinatione res eadenx fxpiùs contineatur, quàm ipßa reperitur in toto rerum numero : vel fic, ut in câdem combinatione res eadem etiàm frpiùs recurrere, hoc eft, ut fecum ipfâ quoque combinari C. 2
pofit.
poffit. Iterúmque quæri poteft numerus combinationum vel fecundùm omnes exponentes conjunctim, vel fecundùm fingulos feorsìm. Atque infupèr circà unumquemque horum combinandi modorum plures formari poffunt quæftiones \& problemata, è quibus illa tantùm delibabimus, quæ in fequentibus alicui ufui fore judicamus.
I. Si res onnes combinandes funt diverfe, inque nullà combinatione eadem res bis occurrere dibet, invenire omnes Combinationes fimplicitè five fecundìm omnes exponentes conjunEFim.

SUNTO combinandæ modis omnibus literæ a, b, c, d, c, \&c. Fiant tot feries quot literæ, hoc modo: In primâ ferie ponatur fola litera a.

In fecundâ ponatur b, nunc feorsìm, nunc junctìm cum a, ut habeatur $a b$ vel $b a$. Eadem enim conjunctio eft, quæ b cum a, \& a cum b jungit, cùm nullus ordinis, fitûs-ve ipfarum inter fe, refpectus haberi fupponatur.

In tertiâ collocetur c, eáque primò Cola, dein juncta, partìm cum $a \& b$, ut fiant biniones $a c, b c$; partìm cum ipfo binione $a b$, ut fiat ternio $a b c$.
$\frac{\frac{a .}{b . a b .}}{c . a c, b c, a b c .}$
d. ad. bd. cd. abd. acd. bcd. abcd.
e.ae.be.ce.de. abe.ace.bce.ade.bde. cde.abce.abde.acde.bcde.abcde.

In quartâ ponatur d, primò fola, deinde juncta cum fingulis præcedentium literarum a, b, c, fingulifque earum tum binariis $a b, a c, b c$, tum ternario $a b c$; ut fiant novi biniones $a d, b d, c d$, terniones $a b d, a c d, b c d, \&$ quaternio $a b c d$.

Similitèr quintæ feriei agmen ducat litera e, quam primò ingrediatur fola, dein juncta cum omnibus præcedentium fesierum electionibus. Eâdémque methodo procedendum effet,
fil plures effent datæ literæ. Quâ ratione fatis manifeftum eft, datas literas in iftis feriebus omnifariàm inter fe junctas effe, nullámque earum fieri poffe electionem, quæ non in unâ harum ferierum reperiatur, fed \& nullam effe quæ alicubi bis occurrat; adeóque omnes unà feries fuppeditaturas omnes electiones poffibiles, quæ circà datas literas inftitui queunt.

Harum igitur numerus initur facile, fi confideretur quòd in qualibet femper ferie una ampliùs inveniri debeat electio, quàm in antecedentibus omnibus feriebus fimul: quoniam litera, quæ illius feriei caput eft, ibidem femel ponitur fola, \& prætereà unà affumit fecum omnes electiones præcedentium ferierum. Hinc enim fequitur, quia in primâ ferie eft electio unica, fore in fecundâ electiones duas, in tertiâ 4 , in quartâ 8 , \&e fic deinceps in progreffione geometricâ duplâ: quandoquidem progreflionis duplæ ab unitate hanc quoque naturam effe conftat *, ut fumma terminorum quotlibet unitate aucta fequentem terminum exhibeat. Quocircà fumma eiectionum in feriebus omnibus æqualis eft fummæ terminorum totidem progreffonis duplæ ab unitate, hoc eff, per modò memoratam proprietatem, ipfi termino fubfequenti
> * Hoc autèm ita demonftrari poteft.

Propositio.

Sit feries terminorum in geometricâ ratione unitatis ad numerum binarium continuò crefcentium, fcilicet, $1,2,4,16,3^{2}, 64,128,256$, \&c, ufque ad n terminos. Horum terminorum fumma vocetur S. Manifeftum eft ultimum, five maximum, hujus feriei terminum fore æqualem 21^{n-1}. Augeatur jam hæc feries uno adjecto termino, fcilicet, $2 \times \overline{2})^{n-1}$, feul $)^{n}$. Dico, quòd novus terminus 2^{n} erit æqualis $S+1$, five fummæ S omnium priorum terminorum unà cum unitate.

Demonstratio.
Duplicando terminos feriei S, five $1+2+4+8+16+3^{2}+64+$ $2+2^{n-1}$, orietur feries $2+4+8+16+3^{2}+64+128+8 c \cdot+22^{n}$, cujus termini omnes, excepto ultimo 27^{n}, funt refpectivè æquales terminis omnibus prioris feriei, excepto primo 1 ; hoc eft, 2 S crit $=\mathrm{S}-\mathrm{I}+\overline{2}{ }^{\prime \prime}$. Ergò $2 S+1$ crit $=S+21^{n}$, ct 2 2 n crit $=2 S+1-S$, feu $S+1$.
ejufdem progreffionis unitate multato; qui quidem terminus fubfequens idem eft cum producto binarii toties, five tot vicibus, pofiti \& in fe ducti, quot ipfum in progreffione termini præcedunt, hoc eft, quot funt feries, quarum electiones quæruntur. Unde talis exurgit.

Regula pro inveniendis omnibus electionibus rerum datarum Secundùm omnes exponentes :

AProducto binarii totics, five tot vicibus, pofiti \& multiplicati in fe, quot funt datæ res, auferatur unitas: reliquum indicabit quæfitum.

Hoc eft, pofito rerum datarum numero n, numerus omnium electionum fimplicitèr, putà, omnium unionum, binionum, ternionum, \&c. erit 2^{n-1}. Hinc fi nullionem feu electionem, quâ ex rebus datis nulla fumitur, quaque in quâvis rerums multirudine una femper eft \& unica, fimùl comprehendas, fiet numerus ille 2^{n} : fin cum nullione ipfos quogue uniones releces, quorum numerus ipfi rerum numero perpetuò requatur, erit numerus binionum, ternionum, caeterarúmque complexionum $2^{n}-n$ - I. Exempli gratiâ. Septèm planetarum conjunctiones, vel complicationes, omnes diverfe funt $2^{7}-1=2.2 .2 .2 .2 .2 .2-1=128-1=$ 127 ; unde fi demas electiones 7 , quibus finguli planetæ feorsìm accipiuntur, quáeque propriè non conjunctiones, fed disjunctiones planetarum funt, relinquetur numerus omnium conjunctionum ftrictè dictarum, quibus planetæ vel bini, vel terni, vel quaterni, vel quini, vel feni, vel denique fepteni junguntur, $2^{7}-7-1=120$. Sic etiàm duodecìm, uti vocant, Regiftra, feu fiftularum ordines, in organo pneumatico, quibus fonus, mox fibilans, mox tremebundus, efficitur, aut alitèr modificatur, variari poffunt $2^{12}-1=4095$ vicibus.

Nota: Si quis examinet feries combinationum fuprà in typo expofitas, obfervabit in qualibet ferie (folâ primâ ex-
ceptâ, quæ unicum unionem a complectitur) numerum clec. tionum fecundùm exponentes pares æquari numero electionum fecundùm impares : faltèm, cùm id in aliquot $a b$ initio feriebus verum deprehenderit, idem quoque in ferie proximè fequente locum habere concludet. Nam litera, quæ illius feriei caput eft, juncta præcedentium ferierum electionibus iis, quæ impares exponentes habent, parium; \& iis vicifsim quæ pares habent juncta, imparium ; exponentium complexiones efficit : adfcifcens verò primæ feriei unionem a, paris; \& ipfa per fe fola accepta, imparis; exponentis electionem conftituit: unde \& in hâc ferie numerum harum numero illarum æquari conftat. In omnibus igitur feriebus fimûl fumtis numerus electionum fecundùm impares exponentes numerum elećtionum fecundùm pares unitate fuperabit; aut, fi his infupèr nullionem accenfeas, æquabit. Quocircà, cùm numerus omnium electionum fimplicitèr, inclufo nullione, oftenfus fit 2^{n}, erit ejus femiffis, five poteftas binarii proximè minor, 2^{n-1}, numerus electionum fecundùm folos impares ; \&, dempto rursùm nullione, 2^{n-1} - I numerus electionum fecundùm folos pares exponentes. Idem quoque demonftrabitur infrà in coroll. 6. cap. 4.

C A P. III.

DE COMBINATIONIBUS SECUNDUM SINGULOS EXPONENTES SEORSIM ; UBI DE NUMERIS FIGURATIS, EORUMQUE

PROPRIETATIBUS AGITUR.

EX typo combinationum precedentis capitis manifeftum fit, literam quæ cujunibet feriei caput eft, adjunctam unombus ferierum precedentium efficere fuæ feriei biniones, adjunctam binionibus efficere terniones, ternionibus quaterniones, \& fic porrò: adcóque numerum binionum in quâvis ferie æquari fummæ unionum in omnibus feriebus antecedentibus, numerum ternionum fummx binionum, numerum quaternionum fummæ ternionum, \& generalitèr numerum combinationum fecundùm datum quemcunque exponentem in ferie quâcunque æquari fummæ combinationum omnium præcedentium ferierum fecundùm exponentem unitate minorem dato. Sequitur hiinc, quòd

Uniones, quia in fingulis feriebus reperiuntur finguli, omnes inter fe conftituunt feriem i.i.i.i.i. \&c. feu feriem unitatum.

Biniones in primâ ferie nulli funt, in fecundâ I , in tertiâ $1+1=2$, in 4 tâ $1+1+1=3$, in 5 tâ $1+1+1+1=4$, \&c. proinde omnes biniones inter le conftituunt feriem 0.1.2.3.4.5. \&cc, hoc eft, feriem numerorum arithmeticè progreffionalium, five Lateralium.

Terniones in primâ \& fecundâ ferie nulli funt, in 3 tiâ I , in 4 tâ $1+2=3$, in 5 tâ $1+2+3=6$, in 6 tâ $1+2+3+4$ $=10$. $\&<c$. Onmes itaque ordine accepti feriem conficiunt 0.0.1.3.6.10.15. \&c. hoc eft, feriem numerorum, ut vocant, Trigonalium, feu Triangularium.

Quaterniones in tribus primis fericbus nulli funt, in 4 tâ 1 , in 5 tâ $\mathrm{I}+3=4$, in 6 tâ $1+3+6=10$, in 7 mầ $\mathrm{I}+3+6$ $+10=20$. \&c. qui omnes ordine affumti feriem efficiunt 0.0 o. 1.4.10.20. \&c. feriem, videlicet, Pyramidalium.

Pari ratione Quiniones omnes feriem confituunt Triangulipyramidatium $0.0 .0 .0 .1 .5 \cdot 15.35 . \& \mathrm{c}$. Seniones feriem Pyranido-pyramidalium o.o.o.0.0. 1. 6. 21. \&c. aliáeque combinationes fecundùm altiores exponentes efficiunt alias atque alias feries numerorum figuratorum altioris generis in infinitum.*

Et fic occafione doctrinæ Combinationum in \{peculationem infperatam mumerorum figuratorum incidimus; quâ appellatione vulgò infigniuntur numeri, qui ex continuâ arithmeticè proportionalium, indéque ortorum numerorum, additione, vel collećtione, generantur.

Ut verò hæ figuratorum numerorum feries fub unum afpectum caderent, eóque faciliùs comprehenderentur quæ de illis dicenda fuperfunt, fequentem appofui tabellam, quam quis nullo negotio quoufque voluerit tum deorfum tum

* De horum numerorum nominibus eft inter auctores arithmeticos quadam variatio. Nam numeri o.0.0.0.1.5.15.35, \&c, qui hìc vocantur Trian-guli-pyramidales, vocantur à quibuldam fcriptoribus, et, inter alios, à Nicolao Mercatore, in celeberrimâ fuâ Logarithmotechniâ, Trigono-trigonales; et numeri o.o.0.0.0.1.6.21.56, \&c. qui hìc vocantur Pyramido-pyramidales, ab illo vocantur Trigono-pyramidales. Nomina quibus diverfi ordines numerorum figuratorum defignantur apud Merca:orem funt que fequuntur ; fcilicet, 1. unitates, 2. radices, 3. numeri trigonales, 4 . pyramidales, 5 . trigono-trigonales, 6. trigono-pyramidales, 7. pyramidi-pyramidales, 8. trigono-trigo-no-pyramidales, 9. trigono-pyramidi-pyramidales, io. pyramidi-pyramidipyramidales. Vide Scriptores Logarithmicos, tom. 1^{mum}, pag. 178. Ad evitandam hanc confufionem nominum fatius effe videtur diverfos horum numerorum ordines poft quartum ordinem, five numerorum pyramidalium, difinguere folùm per numeros exponentes ordinum defignandorum, appellando cos five numeros figuratos ordinis quinti, five ordinis fexti, five ordinis feptimi, five octavi, five noni, five decimi, aut alius cujufcunque ordinis.
dextrorfùm continuabit. Numeri barbari, feu Arabici, in finiftro tabulæ margine adfcripti numerant columnas tranfverfas, \& fimùl rerum combinandarum multitudinem : nu-

TABULA COMBINATIONUM, SEU NUMERORUM FIGURATORUM.

EXPONENTES COMBINATIONUM.

meri verò Romni in fupremo margine confpicui numerant columnas verticales \& unà exponemtes combinationum innuunt. Columnarum verticahum prima eft terics monadum feu unitatum; fecunda feries numerorum nuturalium, feu lateralium, $a b$ unâ cyphrâ incipiens; tertia feries trigonalium incipiens à cyphris duabus, quarta pyramidalium incipiens àtribus cyphris, quinta trianguli-pyramidalium incipiens à quatuor cyphris, \& fic dẹinceps.

Habet hæc tabula proprietates planè eximuias \& admirandas; præterquàm enin quòd Combinationum myfterium in illầ latere jam oftendimus, notum eft interioris geometriæ peritis, præcipua etiàm totius reliquæ mathefeos arcana inibi delitefcere. Nos proprietatum aliquas hìc delibabimus, \& quidem delibabimus tantum, nullius nifi primariæ illius, quæ propofito noftro infervit, demonftrationem accuratiorem zllaturi, cụ̀m cæteræ vel ex hâc oftendi poffint, vel ex ipfâ tabellæ
tabellæ conftructione $\&$ numerorum figuratorum genefi fatis patefcant.

Mirifice Proprietates Tabulce Combinationum:

1. Columnarum verticalium fecunda incipit ab unâ cyphrâ, tertia à cyphris duabus, quarta à tribus: \& generalitèr columna c à cyphris $c-1$.
2. Columnarum verticalium termini primi fignificativi à finiftrâ dextrorfúm obliquè defcendendo ordine fumpti reddunt ipfos terminos primæ columnæ verticalis, fecundi fecundæ, tertii tertiæ, \& ita deinceps : putà, primi conftituunt feriem monadum, fecundi lateralium, tertii trigonalium, \&c.
3. Secundus ab unitate terminus columnæ verticalis cujuflibet æquatur ipfius columnæ numero.
4. Terminus quivis tabellæ æquatur fummæ omnium fuperiorum præcedentis columnæ verticalis.
5. Quilibet terminus æquatur duobus aliis immediatè fuprà fe pofitis, quorum unus eft in eâdem verticali columnâ, alter in præcedente.
6. Columnæ cujufvis tranfverææ termini ab unitate aliquoufque crefcunt, deinde per eofdem gradus rursùm decrefcunt. Idem intellige de fummis columnarum verticalium æque-altarum, ceu terminis fequentis columnæ tranfverfæ per quartam proprietatem.
7. Columnarum verticalium æque-altarum bafes, five termini columnæ tranfverfæ cujuflibet, primus quidem \& ultimus fignificativus perpetuò inter fe æquantur, ut et fecundus \& penultimus, tertius \& antepenultimus, atque ita porrò, fi columna pluribus terminis fignificativis confter.
8. Quin \& fumptis ab initio columnis verticalibus quotcunque cum totidem tranfverfis, collectifque in unam fummam qui in eâdem verticali fibi re $\int_{;}$ondent terminis, erit fumma prima æqualis penultimæ, fecunda antepenultimæ, tertia proantepenultimæ, \& fic dcinceps. Lxhibent enim hæ fummæ ipfos columnæ tranfverfæ fequentis terminos, primo excepto. Confer proprictates 4 \& 7 . Excmpli gratiâ: D 2

Quinque primæ columnæ tum verticales tum tranfverfæ funt:
I. 0 . O. 0.0 .
I. I. O. O. O.
I. 2. 1. O. O.

1. 3. 3. 4. 0 .
1. 4. 6. 4 . 1.
1. 10. 10. 5. 6. Termini fextre columnæ tranfverfa, primo excepto.
1. Columnæ tranfverfæ ordine exhibent coëfficientes omnium poteftatum à radice aliquâ binomiâ genitarum; nempe fecunda coëficientes radicis 1. 1. tertia quadrati 1.2.1. quarta cubi $1 \cdot 3 \cdot 3$. 1. quinta biquadrati 1.4 .6 . 4. 1. \& fic porrò.
2. Summæ ferierum tranfuerfarum progrediuntu* in continuâ ratione duplâ : fummarum verò fummæ ab initio collectæ terminos conftitunt progrefionis duplæ unitate multatos; putà

$$
\begin{aligned}
1 & =1 \\
1+1 & =2 \\
1+2+1 & =4 \\
1+3+3+1 & =8 \\
1+4+6+4+1 & =16 \\
1+2 & =1=2-1 \\
1+2+4 & =3=4-1 \\
+2+4+8 & =15=16-1 \\
2+4+8+16 & =31
\end{aligned}
$$

fluit ex iis quæ in præcedente capite de Combinationibus fimpliciter fpectatis dicta funt.
II. Termini feriei verticalis cujunlibet ordine divifi per terminos collaterales feriei præcedentis (initio vel ab unitate vel à fuis refpectivè cyphris facto) exhibent quotos arithmeticè proportionales, quorum communis differentia eft fractio, cujus numerator eft unitas, \& denominator ipfe numerus, five fecundus
fecundus ab unitate terminus ferici dividentis. Exempli gratiâ :

Divif.)	divid.	(quot.
I)	I	$(2: 2$
$2)$	3	$(3: 2$
$3)$	6	$(4: 2$
$4)$	10	$(5: 2$
5)	15	$(6: 2$

Divif.) divid. (quot.

1) $0 \quad(0: 2$
2) $\quad 1 \quad(\mathrm{I}: 2$
3) $2,(2: 2$
4) $6 \quad(3: 2$
5) 10 (4:2

Divif.) divid. (quot. | Divif.) divid. (quot.
Ј) $1 \quad(3: 3$
3) $2(4: 3$
6) 10 (5:3
10) $20(6: 3$
15) $35(7: 3$
I) $0 \quad 0: 3$
3) 1 ($1: 3$
6) $4 \quad(2: 3$
10) $10(3: 3$
15) $20(4: 3$

Non difficultèr hæc proprietas, fir opus foret, deduci poffet ex fequente.
12. Summa terminorum quotcunque feriei verticalis cujuflibet à fuis refpectivè cyphris incipientis ad fummam terminorum totidem ultimo æqualium eam habet rationem, quam habet unitas ad illius feriei numerum; hoc eft, aggregatum numerorum quotcunque lateralium ab unâ cyphrâ feriem aufpicantium eft ad aggregatum numerorum totidem maximo eorum, feu ultimo, æqualium, ut i ad 2 ; trigonalium à cyphris duabus, ut t ad 3 ; pyramidalium à tribus, ut I ad $4 ; \& c$. Idem quoque valet de ratione, quam habet fumma terminorum feriei cujullibet ab unitate incipientis ad fummam totidem maximum fequenti termino xqualium. Exempli gratiâ:

		- 6	
- 3	I 5	- 6	115
13	25	16	315
23	35	36	615
33	45	66	1015
6.12::1. 2	$10.20: 1.2$	10.30::1.3	20,60::

Cùm inter affectiones numerorum figuratorum hæc præcipua fit, eadémque fcopo noftro primario inferviat, vifum hìc eft exponere methodum, quâ talem proprietatis aं ${ }^{\prime}$ 'ósuğ exhibeo, quæ fimùl \& fcientifica fit, \& propofitum unıverfalitèr concludat. Quem in finem fequentia præftruo lemmata:

Lemma Primum.

Summa terminorum quotlibet primæ feriei ad fummam totidem terminorum ultimo æqualium rationem habet æqualitatis, five ut I ad I.

Demonstratio.

Cùm enim feries meris conitet unitatibus, erit fumma terminorum quotlibet, fumma tot unitatum, hoc eft, tot terminorum ultino æqualium, quot funt termini.

Q. E. D.

Lemma Secundum.

In quâlibet ferie à fuis refpectivè cyphris incipiente, fi quota elt ipfa inter feries, tot ab initio fumantur termini, erit fumma terminorum omnium ad fummam totidem ultimo xqualium, ut I ad feriei numerum.

Demonstratio.

Numerus enim cyphrarum quamounque feriem aufpicantium unitate minor eft feriei numero, per proprietatem pri-
mam. His igitùr fi accedat fequens terminus, numerus terminorum feriei numero æquabitur. Sed terminus, qui proximè cyphras fequirur, eft unitas, per proprietatem fecundam. Unde terminorum aggregatum æquatur unitati, \& aggregatum totidem ultimo æqualium æquatur ipfi feriei numero. Quarè conftat Propofitio.

Lemma Tertium.

In quâcunque numerorum ferie, fi fumma terminorum ab initio fumptorum ad fumman totidem ultimo æqualium perpetuò eandem habeat rationem, quotcunque accipiantur termini, putà ut 1 ad R , ita ut fumma terminorum æquetur fummæ totidem ultimo æqualium divif per R; erit numerus terminorum affumptorum ablato R ad eundem numerum unitate mulctatum, ut fumptorum penultimus ad ultimum.

Demonstratio.

Sumpti fint ab initio termini quotlibet A.B.C.D. quorum numerus fit N , penultimus C , \& ultimus D . Eft utique $A+B+C=A+B+C+D-D$, hoc elt, (per hypothefin) $\frac{\mathrm{c} \text { in } \mathrm{N}-1}{\mathrm{R}}$ eft $=\frac{\mathrm{DinN}}{\mathrm{R}}-\mathrm{D}, \&$ proinde, æque-multiplicando, C in $\mathrm{N}-\mathrm{I}$ erit $=\mathrm{D}$ in $\mathrm{N}-\mathrm{D}$ in $\mathrm{R}=\mathrm{D}$ in $\overline{N-R}$, adeóque $N-R: N-I:: C: D$. Q.E. D.

Lemma Quartum.

In tabulà numeroum figuratorum fi duæ fint columnæ verticales contigux, in quarum priore quotlibet ab initio termini ad totidem ulimo corum æquales habeant conftantem rationem, ut i ad r; habeant vero in pofteriore termini aliquot ab initio fumpti ad totidem fumptorum ultimo æquales rationem ut I ad $r+1$: habebit quoque, addito fequenti termino,
termino, fumma omnium terminorum unà cum adjecto ad̉ tot terminos adjecto æquales, quot funt cum adjecto termini, rationem ut I ad $r+\mathrm{I}$.

Demonstratio.

Sumpti fint in pofteriore columnâ termini E.F.G.H, quos proximè fequatur I ; atque fumantur in columnâ immediatè precedente termini totidem A.B.C.D; fumptorum verò utrinque numerus fit n. Erit $r \mathrm{H}=$ (ex numerorum figuratorum genefi per proprietatem quartam) r in $\mathrm{A}+\mathrm{B}+\mathrm{C}$ $=$ (per hypothelin) $n-I$ in $C=$ (per lemma tertium) $n-r$ in D ; quare $n-r: \mathrm{H}:: r: \mathrm{D}::$ (per hypothefin) $n: \mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}::$ (cx numeratorum figuratorum genefi per proprietatem quartam) n. I. Unde $\overline{n-r}$ in $\mathrm{I}=n$ $\mathrm{H}=$ (per hypothefin) $\overline{r+1}$ in $\mathrm{E}+\mathrm{I}+\mathrm{G}+\mathrm{H}$; adeoque $n-r: r+1:: \mathrm{E}+\mathrm{F}+\mathrm{G}+\mathrm{H}: \mathrm{I}, \&$, componendo, $n+1: r+1:: \mathrm{E}+\mathrm{F}+\mathrm{G}+\mathrm{H}+\mathrm{I}: \mathrm{I}$, hoc eft, $\mathrm{E}+\mathrm{F}$ $+G+H+1: n+1$ in $I:: 1: r+1 *$ Q. E. D.

Cum

Abstract

* Ifxc demonftratio pre nimiî brevitate mihi videtur efle obfcura. Poteft verò explicari et, ut opinor, fatis perfpicua reddi, modo fequente.

Sumpti lint in polteriore culumnâ termini E.F.G.H. ; quos proximè fequatur I ; atque lumantur in columnâi immediatè pracedente termini totidem A.B.C 1): fumptormm verò utrinque numerus fit n. Et fit fumma quotlibet terminorum A.B.C.D. ad totidem ultimo eorum æquales in ratione 3 ad r; et fit fumma terminorum E.F.G.H. ad n terminos ipfi H, corum ultimo, æquales, hoe eft, ad quantitatem $n \times H$, in ratione i ad $r+1$. Dico, quòd fumma omnium terminorum E. F. G. H. I erit ad $n+1$ terminos jpfi I rquales, hoceft, ad $n+1 \times I$, ut 1 ad $r+1$.

1) Emonstratio.

Ex numerorum figuratorum genefi, per proprictatem quartam fuprà memoratam, erit $r \times H$ xqualis $r \times \overline{A+B+C}$, idcóque (per hypothefin) xqualis $n-1 \times \mathrm{C}$, atque idcirco (per lemma tertium) xqualis $n-r \times \mathrm{D}$. Erit igitùr $n-r$ ad H ut r ad D . Sed (per hypothefin) $A+B+C+D$ eft ad $n \times \mathrm{I}$) ut I ad r; et proinde (permutando) $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$ erit ad 1 ut $n \times \mathrm{D}$ ad r, c_{i} (invertendo) lerit ad $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$ ut r ad $n \mathrm{D}$.

Cum olìm horum Fratri * copian feciffem, animadvertit ille poffe demonftrationem elegantèr abbreviari, poftremis tribus lemmatibus in unum conflatis, hoc modo:

Lemma.

In tabulâ numerorum figuratorum fi fumma terminorum $a b$ initio feriei verticalis cujufvis ad fummam totidem maximo æqualium ubique rationem habeat ut I ad r, habebit fumma terminorum feriei proximè fequentis ad fummam totidem maximo æqualium rationem ut I ad $r+\mathrm{I}$.

Demonstratio.

Sint feries fequentes a.b. c. d. \&c. \& o. g. b. i. \&c. nume-

Eft autem $n \times 1$, feu n, ad 1 , ut $n \times r$ eft ad r. Ergò, ex æquo, $n \times 1$, feu n, erit ad $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$ ut $n \times r$ ad $n \mathrm{D}$, hoc eft, ut r ad D . Erit igitùr $n-r$ ad H ut n ad $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$.

Sed (ex numerorum figuratorum genefi, per proprietatem quartam fuprà memoratam) terminus I eft equalis $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}$.

Erit igitùr $n-r$ ad H ut n ad I, et proinde $n-r \times I$ erit $=n \times \mathrm{H}$.
Sed, per hypothefin, $\mathrm{F}+\mathrm{F}+\mathrm{G}+\mathrm{H}$ eft ad $\pi \times \mathrm{H}$ ut r ad $r+1$;

Erit igitùr $\overline{n-r} \times I=\overline{E+F+G+H} \times \overline{r+1}$; àque ideò erit $n-r$ ad $r+i$ ut $\mathrm{E}+\mathrm{F}+\mathrm{G}+\mathrm{H}$ ad I , et proinde (componendo) erit $n-r+r$ +I , feu $n+1$, ad $r+1$ ut $\mathrm{E}+\mathrm{F}+\mathrm{G}+\mathrm{H}+\mathrm{I}$ ad I , et (permutando) $n+\mathrm{I}$ ad $\mathrm{E}+\mathrm{F}+\mathrm{G}+\mathrm{H}+\mathrm{I}$ ut $r+\mathrm{I}$ ad I , et (invertendo) $\mathrm{E}+\mathrm{F}+\mathrm{G}+$ $\mathrm{H}+\mathrm{I}$ ad $n+1$ ut I ad $r+\mathrm{I}$, et (multiplicando confequentes per I) $\mathrm{E}+$ $\mathrm{I}+\mathrm{G}+\mathrm{H}+\mathrm{I}$ ad $\bar{n}+\mathrm{I} \mid \times \mathrm{I}$ ut I ad $\overline{r+I} \times \mathrm{I}$, hoc eft, ut I ad $r+\mathrm{I}$. Q. E. D.

* Johanai Bernoullio.
$\frac{-e-2 d-3^{c}-4^{b}-5 a}{r}=$ (ex genefi numerorum figuratorum)
$\frac{\mu q-p-l-i-b-g}{r}$. Ergò $r q+r \cdot \overline{p+l+i+b+g}=n q-p-l$ -i-b-g; factâque tranflatione convenienti, $\overline{r+1} \times$ $\overline{p+i+i+b+g}=n q-r q$. Dividatur utrinque per $r+1$, erit $p+l+i+b+g=\frac{n q-r q}{r+1}$; additóque q habebitur $q+p+$ $l+i+b+g=\frac{n q-r q}{i+1}+q=\frac{\overline{n+1} \times q}{r i-1}$, hoc eft, $g+b+i+l$ $+p+q$ erit ad $\overline{n+1} \times q$ ut I ad +1 . Q. E. D.
Sẹquitur nunc Propofitio principalis, quæ talis eft.

Propositio Principalis.

In tabulà numerorum figuratorum fumma terminorum quotlibet à fuis refpectivè cyphris incipientium ad fummanı totidem ultimo æqualiunı : Item fumma terminorum quotvis incipientium ab unitate ad fummam totidem ultimum fequenti æqualium: in ferie primâ, feu monadum, eft ut \mathbf{I} ad 1 ; in ferie fecundâ, feu lateralium, ut I ad 2 ; in tertiâ, feu trigonalium, ut 1 ad 3 ; in quartâ, feu pyramidalium, ut I ad 4, \& generalitèr in ferie quâcunque ut 1 ạd illius feriei numerum.

Demonstratio Prime Partis hujusce Propositionis.

De primâ ferie conftat ex primo lemmate: de fecundâ, terriâ, quartâ, \& cc. è reliquis. Nam, quia fumma terminorum quotlibet ad fummam totidem ultimo æqualium in primâ ferie eft ut I ad I, erit, vi horum lemmatum, in fecundâ ut I ad $\mathrm{I}+\mathrm{r}=2 ; \&$, quia in fecundâ eft ut I ad 2 , erit in tertiâ ut 1 ad $2+1=3 ; \&$ proptereà etiàm in quartâ ut 1 ad $3+1=4$; in quintâ ut 1 ad $4+1=5$; \& genera. litèr in ferie c ut I ad c. Re E. D.

Demon.

Demonstratio Secunde Partis hujusce Profositionis.

Quia rationem i ad $r+\mathrm{I}$ memoratam in ultimo lemmate hìc interpretamur per rationem 1 ad c, erit $r=c-1=$ (per proprietatem primam I) numero cyphrarum, à quibus colunina c incipit. Quarè, cum in dicto lemmate repertum fit $g+b+i+l+p=\frac{\overline{n-r} \times q}{r+1}=\frac{\overline{n-r} \times q}{c}$, fequitur quòd $g+b$ $+i+l+p$ (fumma terminorum quiorum numerus eft n) fe habet ad q in $n-r$ (numerum terminorum minùs numero cyphrarum) ficut I ad c; hoc eft, fumma terminorum quotlibet $a b$ unitare incipientium ad totidem terminos fequenti ultimum æquales, ut I ad c^{*}. \&. E. d.

Consectarium.

Ex hâc oftensâ proprietate facile nunc eft invenire tùm terminum optatum, tùm fummam terminorum feriei cujuflibet. Sumpti intelligantur termini æque-multi ex pluribus continuè columnis, \& fit numerus fumptorum $a b$ initio cujufque columnæ n, adeóque numerus terminorum ab unitate (exclufis cyphris initialibus) in fecundâ columnâ $n-1$, in tertià $n-2$, in quartâ $n-3$, atque ita deinceps, per primam proprietatem: quo pofito, quafitum ita colligo. Summa terminorum n primæ columnæ, nempe, n unitates, feu $\frac{n}{1}$, æquatur termino $n+1$ no, hoc eft, termino fequenti ultimum, fecundæ columnæ, per quartam proprietatem, ex tabulæ genefi. Quarè termini hujus in $n-1$ (numerum terminorum ab unitate fecundæ columnæ) ducti fubduplum, feu $\frac{n, n-1}{1,2}$, per duodecimam proprietatem æquale eft aggregato terminorum fecundæ columnx, \& fimùl (per quartam proprietatem) ipfi termino fequenti ultimum tertix columnæ.

[^0]$$
\text { E } 2
$$

Unde

Unde fimilitèr hujus termini in $n-2$ (numerum terminorum ab unitate tertiæ columnæ) ducti fubtriplum, nempe ' $n \cdot \overline{n-1}, n-2$ $\frac{n \cdot x-1 \cdot n-2}{1 \cdot 2 \cdot 3}$, æquatur (per duodecimam proprietatem) aggregato terminorum tertiæ columnæ, infimúlque (per quartam proprietatem1) ipfi termino fequenti ultimum quartæ. Quocircal \& hujus termini in $n-3$ (numerum terminorum ab unitate quartie columnæ) ducti fubquadruplum, putà $\frac{\sqrt[n]{n-1} \cdot \overline{n-2} \cdot \overline{n-3}}{1 \cdot 2 \cdot 3 \cdot 4}$, exlibet fummam terminorum quarta colùmnæ, unáque terminum qui fequitur ultimum quintæ; \& rursùs iftius termini in $n-4$ ducti fubquintuplum nempe, $\frac{\frac{n \cdot n-1}{n-2} \cdot \overline{n-3} \cdot \overline{n-4}}{1 \cdot 2^{2} \cdot 3 \cdot 4 \cdot 5}$, producit fummam terminorum columnæ quintæ, \& fimùl terminum qui excipit ultimum fextæ; atque ita confequentèr. E quibus igitùr infertur, quòd fumma terminorum n primæ columnæ fit $\frac{n}{1}$, fecund $\frac{n \cdot n-1}{1 \cdot 2}$, tertix $\frac{n \cdot \overline{n-1} \cdot \overline{n-2}}{1 \cdot 2 \cdot 3}$, quartx $\frac{\sqrt[n]{n-1} \cdot \overline{n-2} \cdot \overline{n-3}}{1 \cdot 2 \cdot 3 \cdot 4}$, quintæ $\frac{x \cdot \overline{n-1} \overline{n-2} \cdot \overline{n-3} \cdot \overline{n-1}}{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}$, \& generalitèr columnæ c,
$\frac{\frac{n \cdot n-1}{n-2} \cdot \overline{n-3} \cdot \overline{n-4} \cdots \cdot \overline{n-c+1}}{1 \cdot 2 \cdot 3 \cdot \frac{4 \cdot 5 \cdot \cdots}{c}}$. Et, quia quælibet harum quantitatum etiàm exprimit terminum $n+1$ fequentis columnæ, fequitur quòd ipfe illius terminus optatus, feu ultimus, n habeatur mutato folummodo ubique n in $n-1$; adeóque quòd terminus optatus, fecundæ columnæ fit $\frac{n-1}{1}$, tertiæ $\frac{\overline{n-1} \cdot \overline{n-2}}{1 \cdot 2}$, quartæ $\frac{\overline{n-1} \cdot \overline{n-2} \cdot \overline{n-3}}{1 \cdot 2 \cdot 3}$, quinta $\frac{\overline{n-1} \cdot \overline{n-2} \cdot \overline{n-3} \cdot \overline{n-4}}{1 \cdot 2 \cdot 3 \cdot 4}$, \& , generalitèr, columnæ c_{2} $\frac{\overline{n-1} \cdot \overline{n-2} \cdot \frac{1}{n-3} \cdot \frac{2}{n-4} \cdot \cdots \cdot \overline{n-c+1}}{1 \cdot 2 \cdot 3 \cdot 4 \cdot \cdots \cdot 1}$.

Scholium.

Multi, ut hoc in tranfitu notemus, numerorum figurato. ium contemplationibus vacârunt (quos inter Faulhaberus \& Remmelini Ulmenfes, Wallifius, Mercator in Logarithmotechniâ, Preftetus, aliíque) ; fed qui proprietatis hujus demonftrationem univerfalem dederit \& fcientificam, novi neminem. Wallifius in Arithmeticâ Infinitorum fundamentum fur methodi jacturus, rationes quas habent feries quadratorum, cuborum, aliarúmque poteftatum, numerorum naturalium ad feriem totidem maximo æqualium, inductione inveftigat ; indéque in propofitione 176 , ad contemplationem numerorum trigonalium, pyramidalium, reliquorúmque figuratorum tranfit. Sed fatius fuiffet fortéque nature rei convenientius, fi vice versâ tractationem numerorum figuratorum, eámque univerfali \& accuratâ demonftratione munitam, præmififfet, ac tum demùm ad poteftatum fummas inveftigandas perrexiffet. Præterquam enim quòd modus demonftrandi per inductionem parùm fcientificus eft, infupérque pro quâlibet ferie peculiarem operam depofcit; illa utique omnium judicio præcedere debent, quæ cæteris naturâ funt priora \& fimpliciora, quales videntur effe numeri figurati præ poteftatibus, tùm quòd illi additione, hæ multiplicatione generantur, tùm, \& præcipuè, quòd feries figuratorum à fuis refpectivè cyphris incipientes ad feries æqualium rationem habent exactè fubmultiplicem, qualem non habere poffunt feries poteftatum (faltèm in terminis numero finitis) abfque aliquo exceffu vel defectu, quicunque cyphrarum numerus ipfis præfigatur. De cætero namque ex cognitis figuratorum fummis nilhilo difficiliùs invettigari porerunt poteftatum fummæ, atque ex his priores collegit muctor: quod quomodo fiat, paucis oftendam.

Inveftigatio Summarum que proveniunt ex additione quadratorum; cuborum, quadrato-quadratorum, et Sequentium poteftatum nunerorum naturalium $1,2,3,4,5,6,7,8,9,10, \& c$. ex numerorum figuratorum funmis derivata.

Proponatur feries numerorum naturalium ab unitate 1.2. 3.4.5. \&c. ufque ad n, \& quærantur omnium ipforum, item omnium quadratorum, cuborum, et fequentium poteftatum ex ipfis, fummæ. Quoniam in tabulâ combinationum terminus fecundæ columnæ indefinitè eft $n-1$, \& fumma omnium terminorum, hoc eft, fumma omnium n -1 , feu $\int \cdot \sqrt{n-1}$, per confectarium præcedens inventa, eft $\frac{\text { n. } n-\mathrm{x}}{1.2}=\frac{n n-n}{2}$, erit $f \cdot \sqrt{n-\mathrm{I}}$, five $f n-\int \mathrm{I},=\frac{n n-n}{2}, \&$ proinde $f n$ $=\frac{n n-n}{2}+\int_{1} ;$ fed \int_{I} (fumma omnium unitatum) eft n; quarè̀ fumma omnium n, feu \sqrt{n}, erit $=\frac{n n-x}{2}+n=\frac{1}{2} n n+\frac{1}{2} n$.

Porrò cum terminus, tertiæ columnæ indefinitè acceptus per idem confectarium fit $\frac{n-1, n-2}{1 \cdot 2}=\frac{n n-3^{n+2}}{2}$, \& fumma omnium terminorum (hoc eft), omnium $\frac{n n-3 n+2}{2}$)
$\frac{n \cdot n-1 \cdot n-2}{1 \cdot 2 \cdot 3}=\frac{n^{3}-\frac{3 n n+2 n}{6}}{6}$; erit $\int \frac{\overline{n n-3 n+2}}{2}$ five $\int \frac{x}{2} n n-\int \frac{3}{2}$ $n+\int_{1}=\frac{n^{3}-3 n n+2 n}{6}, \& \int \frac{1}{2} m n=\frac{n^{3}-3 n n+2 n}{6}+\int^{\frac{3}{2}} n-\int 1 ;$ fed $\int \frac{3}{2} n=\frac{7}{2} \int n=\left(\right.$ per modò oftenfa) $\frac{3}{4} n n+\frac{3}{4} n, \& \int_{1}=$ n: unde his fubftitutis fit $\int \frac{1}{2} n n=\frac{n^{3}-\frac{3 n n+2 n}{6}}{\frac{3 n n+3 n}{4}}-$ $n=\frac{1}{6} n^{3}+\frac{1}{4} n n+\frac{x}{T^{2}} n$, ejúfque duplum finn (fumma quadratorum ex omnibus n) $=\frac{1}{5} n^{3}-\frac{1}{2} n n+\frac{1}{4} n$ 。

Rursìs,

Rursùs, quia terminus n quartæ columnæ eft $\frac{n-\mathrm{P}, n-2, n-3}{1 \cdot 2 \cdot 3}$ $=\frac{n^{3}-6 n n+11 n-6}{6}$, \& fumma omnium terminorum
$\frac{4 . n-1 \cdot n n-\frac{2 \cdot n-3}{1 \cdot 2} \cdot \frac{3 \cdot 4}{4}=\frac{n^{4}-6 n^{3}+1 n n-6 n}{24} \text {, erit utique } \int}{}$
$\frac{n^{3}-6 n n+11 n-6}{6}$, hoc eft, $\int \frac{1}{6} n^{3}-\int n n+\int_{\frac{11}{6}}^{\frac{1}{6}} n-\int_{1}=$
$\frac{n^{4}-6 n^{3}+11 n n-6 n}{24}$, indéque $\int \frac{1}{6} n^{3}=\frac{n^{4}-6 n^{3}+\tau 1 n n-6 n}{24}+f n n-$ $\int \frac{1_{1}}{6} n+\int_{\mathrm{I}}$. Et quoniam per modò inventa $\int n n=\frac{1}{3} n^{3}+$
 $\int_{\mathrm{I}}=n$; hinc, factâ horum fubftitutione, emerget $\int \frac{1}{6} n^{3}=$ $\frac{n^{4}-6 n^{3}+11 n n-6 n}{24}+\frac{1}{3} n^{3}+\frac{1}{2} n n+\frac{1}{6} n-\frac{1}{5} \frac{1}{2} n n-\frac{1 x}{1} \frac{1}{2} n+$ $n=\frac{x^{\frac{1}{2}}}{\frac{1}{4}} n^{4}+\frac{1}{T_{2}^{2}} n^{3}+\frac{1}{\frac{1}{24}} n n$, ejúfque proin fextuplum $/ n^{3}$ (fumma cuborum) $=\frac{1}{4} n^{4}+\frac{1}{2} n^{3}+\frac{1}{4} m$. Atque fic porrò ad altiores gradatìm poteltates pergere, levíque negotio fequentem adornare laterculum licet;

Summe Poteftatum．

$$
\begin{aligned}
& \text { || || || || || || || || }
\end{aligned}
$$

$$
\begin{aligned}
& +t+t+t+t+t
\end{aligned}
$$

$$
\begin{aligned}
& +t+t+t+t+
\end{aligned}
$$

$$
\begin{aligned}
& \text { i"i *i i }
\end{aligned}
$$

$$
\begin{aligned}
& \text { * * * * * } \\
& +t+t+ \\
& \stackrel{\text { N }}{\text { NH }} \\
& \text { * 蕬 * } \\
& 111 \\
& \text { ~ト } \\
& \text { * } \\
& + \\
& \stackrel{\alpha_{n}}{\stackrel{\sim}{\nabla}}
\end{aligned}
$$

Quìn imò qui legem progreffionis terminorum in hoc lan terculo defcriptorum attentiùs infpexerit，eundem etiàm continuare poterit abfque his ratiociniorum ambagibus， Sumptà enim 6 pro poteftatis cujuflibet exponente，fir fums
ma omnium n, feul $\ln ^{c},=\frac{!}{c+1} n^{c+1}+\frac{1}{2} n^{c}+$

$$
\begin{aligned}
& \stackrel{C}{c} n^{c-1}+\frac{c \cdot c-1 \cdot c-2}{2 \cdot 3 \cdot 4} B n^{c-3}+\frac{c \cdot \overline{c-1} \cdot c-2 \cdot \overline{c-3} \cdot \overline{c-4}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6} \mathrm{Cn}^{c-5}
\end{aligned}
$$

ceps, exponentem poteftatis ipfius n continuè minuendo binario, quoufque perveniatur ad n vel $n n$. Literx capitales A, B, C, D, \&zc. ordine denotant coëfficientes ultimorum terminorum pro $f n n, \int n A, \int n^{6}, f_{n}{ }^{8}, \& c$. nempe $A=\frac{1}{6}, B=$ - $\frac{1}{30}, \mathrm{C}=\frac{1}{4}, \mathrm{D}=-\frac{1}{3}$. Sunt autem hi coëfficientes ita comparati, ut finguli cum cæteris fui ordinis coëfficientibus complere debeant unitatem ; fic D valere diximus - $\frac{1}{30}$; quia $\frac{1}{5}+\frac{1}{2}+\frac{2}{3}-\frac{7}{15}+\frac{2}{9}(+\mathrm{D})-\frac{1}{50}=1$. Hujus laterculi beneficio intrà femi-quadrantem horæ reperi, quòd poreftates decimæ, five quadrato-furfolidæ, mille primorum numerorum $a b$ unitate in fummam collecta efficiunt

$$
91409,924241424243424241924242500 .
$$

E quibus apparet, quàm inutilis cenfenda fit opera Ifmaeelis Bullialdi, quanı confcribendo tam fpiffo volumini Arithmeticæ fuæ Infinitorum impendit, ubi nihil preftitit aliud, quàm ut primarum tantum fex poteftatum fummas (partem ejus quod unicâ nos confecuti fumus paginâ) immenfo labore demonftratas exhiberet.

De Seriebus ferierum figuratarum analogis.

Antequam caput hoc finiamus, paucis adhuc indicare lubet quomodo, fuppofitis iis quæ de feriebus figuratis oftenfa funt, poffint quevis etiàm aliæ feries figuratarum analogæ (quæ, fcilicet, differentias fuas primas, fecundas, tertias, \&c. æquales habent, adeóque cx continuâ additione terminorum alicujus feriei æqualium generantur) ad homologas figuratas reduci, ac proinde fummari, vel poftremi ipfarum termini inveniri. Sit feries quævis xqualium D , ex cujus additione nafcatur feries C, \& ex hujus additione feries B, \& ex hujus tandèm collectione feries A, fumptis ad arbitrium primis fe-
rierum terminis d, c, b, a. Vocabitur feries A figuratarum analoga, cujus differentiæ primæ conftituunt feriem B , fecundæ feriem C, tertiæ feriem D, \&c. Et quoniàm appa-

D	C	B		A
d	c	b		
d	$c+d$	$b+c$	$a+b$	
d	$c+2 d$	$b+2 c+c$	$a+2 b+c c$	
d	$c+3 d$	$b+3 c+3 d$	$a+3 b+3 c+$	d
d	$c+4 d$	$b+4 c+6 d$	$a+4 b+6 c+4 d$	
d	$c+5 d$	$b+5 c+10 d$	$a+5 b+10 c+10 d$	

ret, feriem A componi ex feriebus unitatum $1,1,1,1, \& c$. lateralium $\mathrm{I}, 2,3,4,8 \mathrm{c}$. trigonalium 1, 3, 6, 10, \&c. pyramidalium $1,4,10,20, \& c$. in primos differentiarum terminos a, b, c, d, fcorsìm ductis, quarúmque ommium poftremi termini \& fummæ per ante dicta habentur, ipfus quoque hinc feriei A poftremum terminum \& fummam terminorum obtineri poffe conftat; nimirùm, fi numcrus terminorum vocetur n, erit ultimus terminus feriei $\mathrm{A}=a+\overline{n-1}$. $b+\frac{\overline{n-1} \cdot \overline{n-2}}{2} c+\frac{\overline{n-1} \cdot \overline{n-2} \cdot \overline{n-3}}{2 \cdot 3} d$; \& fumma omnium ter-

T R A N S L A T I O N

 OF THETHREE FIRST CHAPTERS

OF THE
SECOND PART, or BOCK,
of
Mrı JAMES BERNOULLI's EXCELLENT TREATISE ${ }_{B}$ INTITLED

ARS CONJECTANDI;

or'
" THE ART OF FORMING PROBABLE CONJECTURES CONCERNING EVENTS THAT DEPEND ON CHANCE."

Publifhed in a fmall Quarto Volume at Basil, or BAsLE, in Switzerland, in the Year 1713.

THE PROCEMIUM, OR PREFACE, TO THE SECOND PART OF THE SAID TREATISE

DE ARTE CONJECTANDI.

IT is eafy to perceive that the prodigious variety which appears both in the works of nature and in the actions of men, and which conftitutes the greateft part of the beauty of the univerfe, is owing to the multitude of different ways in which its feveral paris are mixed with, or placed near, each other. But, becaufe the number of caufes that concur in producing a given event, or effect, is oftentimes fo immenfely great, and the caufes themfelves are fo different one from another, that it is extremely difficult to reckon up all the different ways in which they may be arranged, or combined together,

$$
\mathrm{F}_{2}
$$

ic
it often happèns that men, even of the beft underftandings and greateft circumfpection, are guilty of that fault in reafoning which the writers on logick call the infufficient, or imperfeit enumeration of tarts, or cofes: infomuch that I will venture to affert, that this is the chicf, and almoft the only, fource of the vaft number of erroneous opinions, and thofe too very often in matters of great importance, which we are apt to form on all the fubjects we reflect upon, whether they relate to the knowledge of nature, or the merits and morives of human actions. It mult therefore be acknowledged, that that art which affords a cure to this weaknefs, or defect, of our underftandings, and teaches us fo to enumerate all the poffible ways in which a given number of things may be mixed and combined together, that we may be certain that we have not omitted any one arrangement of them that can lead to the object of our inquiry, deferves to be confidered as moft eminently ufeful and worthy of our higheft efteem and attention. And this is the bufinefs of the art, or dotrrine of combinations.

Nor is this art or doctrine to be confidered merely as a branch of the mathematical fciences. For it has a relation to almoft every fpecies of ufeful knowledge that the mind of man can be employed upon. It procceds indeed upon mathematical principles in calculating the number of the combinations of the things propofed: but by the conclufions that are obtained by it, the fagacity of the natural philofopher, the exactnefs of the hiftorian, the fkill and judgment of the phyfician, and the prudence and forefight of the politician, may be affifted; becaufe the bufnefs of all thefe important profeffions is but to form reafonable conjectures concerning the feveral ohjects which engage their attention, and all wife conjectures are the refults of a juft and careful examination of the feveral different effects that may poffibly arife from the caules that are capable of producing them. And, I prefume, it was from a fenfe of the great and general utility of this doctrine that feveral very eminent mathematicians have undertaken to treat of it in their public writings; and particularly Mr. Van Schooten (the learned commentator' on Des Cartes's geomerry), Mir. Leibnitz; Dr. Wallis, and

Monfieur Preftet: fo that the reader is not to confider every thing he will meet with in this treatife as entirely new and of my invention. I have, however, made fome improvements on the fubject, and thofe too of confiderable importance, which I may juftly call my own: and particularly I have difcovered a general and eafy demonftration of the principal and moft remarkable property of the figurate numbers, to wit, "that of the proportion between the fum of any number of terms of a feries of figurate numbers of any order whatfoever to the fum of the fame number of terms all equal to the laft term of the feries;" upon which property many of the following propofitions in this book are founded: for of this property I believe no other writer has ever before given a demonftration.

Indeed, none of the tracts hitherto publifhed on this fubject, can be faid to contain a full and fatisfactory account of it. And therefore I have thought it would be agreeable to my readers to fee it here treated in a regular manner, from the firt and moft fimple principles on which it is founded, to the higher and more extenfive propofitions which have been built upon them, without being under the neceffity of referring to other books upon the fubject. But, though, for thefe reafons, I have laid down the very firtt elements of the doctrine, and have endeavoured to demonftrate every thing as I went on, to the end that the chain of reafoning might be uniform and compleat, I have done it in as concife a manner as I could, and only as far as was neceffary to prepare the way to the fubfequent and more important parts of the book. The greater part of the treatife confifts of two principal heads, of which the firt contains the doctrine of permutations, and the fecond contains the doctrine of combinations; which is followed by a third branch, which fprings out of the two former, and treats of permutao fions and combinations joined together.

CHAPTER 1.

CONCERNING PERMUTATIONS.

Article i. Y the permutations of a number of things, made in their relative fituations, or pofitions, or in the order in which they may be made to follow each other, while their number continues the fame. So that, when it is propofed to find in how many different ways a given number of things may be ranged, or difpofed, without omitting any of them, this is faid to be requiring the number of their permutations.
2. The things of which we are required to difcover the number of permutations, may be either all diftinguifhed from each other by fome plain mark, fuch as a difference of fhape or colour, as cubes from fpheres, or black balls from white balls; or they may be exactly like each other, fo as to be liable to be miftaken one for another, as two fpherical black balls of exactly the fame fize and weight. In the former cate it will be proper to denote the feveral things by as many different letters of the alphabet; and in the latter cafe it will be convenient to denote fo many of the things as are exactly like each other, by the fame letter of the alphabet, repeated as often as any of the faid things which are like each other fhall occur, as will be feen in the courfe of the following pages. We will firft confider the former of thefe cafes, or that in which all the things are diftinguifhed from each other.

The firf Cafe of Permutations, in wobich all the things whofe permutations are required to be afigned, are difininguiblbed froms eack other.
3. As it is obvious that the number of changes of pofition that may happen in a great number of things cannot be determined without firt knowing the number of the like changes of pofition that may happen in all leffer numbers of them, it is manifeftly neceffary, in treating of this fubject, to proceed in the fynthetick method, and begin our reafonings from the firt and moft fimple cafes: which may bé done as follows.
4. If there is only one thing to be arranged, which is denoted by the letter a, it can be taken, or ranged, only in one manner.

5: If there are two things clearly diftinguifhed from each other, which are denoted by the letters a and b, it is evident that we may either place a before b, or b before a; fo that there will be two different ways of arranging them, to wit, $a b$ and $b a$; or, in other words, there will be two permutations of them. Q. E. I.
6. If there be three things diftinguifhed from each other, and denoted by the three different letters a, b and c, it is evident that either of the three letters may be placed before the other two. Now, if a is placed firft, the other two letters b and c may undergo two permutations, by what has been feen in the laft article, and the three letiers may be placed in thefe two pofitions, $a b c$, and $a c b$; and in like manner, if b is placed firt, the other two letters a and c may undergo two permutations, and the three letters may be placed in the two following pofitions, to wit, $b a c$ and $b c a$; and, laftly,
laftly, if c is placed firt, the other two letters a and b may undergo two permutations, and the three letters may be placed in the two following pofitions, to wit, $c a b$ and $c b a$. Therefore the whole number of permutations which the order, or pofition, of the three letters, a, b, and c may undergo, is three times 2, or 6 , to wit, $a b c, a c b, b a c, b c a, c a b$, and cba. e. e. I.
7. In like manner, if there are four different things clearly diftinguifhed from each other, and denoted by the four different letters a, b, c, and d, it is evident that either of' the four may be placed before the other three, and that, while each of them is placed firt, the other three may undergo 6 permutations, by what has been juft now fhewn in art. 6 . Therefore the whole number of permutations which thefe four things, or letters, may undergo, will be four times 6 , or 24 . Q.E.I.
8. And, for the fame reafon, if there were five things denoted by the five different letters a, b, c, d and e, the number of their permutations would be five times as great as in the laft cafe; or would be 5 times 24 , or 120 . And in general, whatever be the number of things or letters, the number of permutations, or changes of pofition, which they may be made to undergo, will be equal to the product that arifes by multiplying the number of permutations of the next fraller number of things by the given number of them. So that, if the whole number of things, or letters, be n, and the number of permutations in n - 1 things, or letters, be N , the number of permutations in all the n letrers, will be equal $n \times \mathrm{N}$. And hence arifes the following

from Games Bernoulli's Treatige De Arte Conjectandi.
 41

Rule for dijcovering the whole number of permutations, or relative changes of pofition, which any given number n, of things, mary be made to undergo.
9. Let all the numbers $1,2,3,4,5,6,7, \& c$, in their natural order, beginning from unity, up to the given number n, of things, or letters, whofe permutations are to be inveltigated, be multiplied one into the other; and the product $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8 \mathrm{cc} \ldots \times n$ will be the number of permutations that is required. Q. E. I.
10. It will be convenient fometimes to ufe a full point $[.$.$] inftead of the common mark of multiplication \times$; and then $1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8$ c. $\times n$ will be $=$ $1 \cdot 2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot \& \times \cdot n$, or (becaufe 1 has no effect in multiplication $)=2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot \& c \cdot n$; which will therefore be equal to the whole number of permutations, or changes of pofition, which n things may be made to undergo.
11. According to this rule, the number of permutations, or changes of pofition, which 7 different things may be made to undergo, is $2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7$, or 5040 . Thus, for example, the different changes that may be rung upon feven different bells is 5040. The multiplications of thefe numbers into each other will appear in the following table : A Traiflation of the foregoing Extract

The Number of Things.
The Number of Permutations, or Changes of Portion.
$\begin{array}{lll}\text { I } & - & - \\ 2\end{array}$
$3-\frac{3}{6}$
$4-\quad \begin{array}{r}4 \\ 24 \\ 5\end{array}$
5 - $\quad \begin{array}{r}120 \\ 6\end{array}$

12. We

from 'Fanes Bernoulli's Trealife De Arte Corjectandi. 43

12. We may fee by this table how very fatt the number of permutations increafes, as the number of things to be arranged becomes greater and greater. The four letters that compofe the word Roina may be arranged in 24 different ways; but the fix letters that compofe the word Romani may be arranged in 720 different ways; and the feven letters that compofe the word Romanis may be arranged in no lefs than 5040 different ways. We are now to confider the fecond cafe of permutations, in which fome of the things to be arranged are exactly like others of them, fo as not to be diftinguilhed from them.

The Second Caje of Permutations; in which fome of the things, the permuitations of which are required to be afligned, are like otbers of them, fo as not to be diftinguifsed from thein.
13. If fome of the things of which we a!e required to find the permutations, are exactly like others of them, fo as not to be diftinguifhed from them, the number of permutations, or changes of pofition, which they may be made to undergo, will be much fimaller than in the former cafe. Thus, for example, if there are fix different things, whereof we are required to affign the permutations, but three of them are exactly like each other, fo that it is impoffible to diftinguifh either of them from the other two; as is the cafe with the fix letters $a a a b c d$, in which the letter a occurs three times; the number of permutations which thefe fix things, or letters, can undergo, will be much lefs than the number of permutations they could undergo, if they were all diftinguihable from each other, as they were fuppofed to be in the former cafe. And the way of finding out how much lefs the number of permutations will be in this cafe sthan in the former cafe, will be to confider how many perG 2
mutations,
mutations, or changes of pofition, the three things which are exactly alike, and are denoted by the fame letter a, might undergo, if they were unlike each other, and diftinguifhable one from the other, and then to fubftitute ann unit, or one fingle pofition, in lieu of all thofe feveral permutations. Thus, for example, if, inftead of the three things exactly alike which are denoted by the fame letter a, we were to take three things that were unlike each other, and denote them by the three letters a, α, and a, that is, by an Italick a, a Greek α, and a Roman a, it is evident from what has been fhewn in art. 6 , that, without making any change in the pofition of the other letters, b, c, d, thefe three letters a, α, and a, might be placed in fix different pofitions, inftead of the one pofition $a \quad a a$ in which alone the three things perfectly alike, that were denoted by the fame letter a, could be arranged. The number of permutations therefore in the fix things denoted by the letters a, α, a, b, c, d, will be fix times as great as that of the fix things denoted by the letters a, a, a, b, c, d, in which three of the things are alike, and denoted by the fame letter a. And therefore, to find the number of permutations of the fix things denoted by the letters a, a, a, b, c, d, we muft firft find the whole number of permutations which they might undergo if they were all unlike each other, and denoted by the letters a, a, a, b, c, d, and then we muft divide the faid number by 6 , or the number of permutations which the three things denoted by the fame letter a might undergo if they were unlike each other, and denoted by the three different letters a, α, and a. Now the whole number of permutations of fix different things unlike each other, that are denoted by the letters a, α, a, b, c, d, has been hewn to be 720 . Therefore the number of permutations of fix different things, whereof three are perfectly like each other,
and denoted by the fame letter a, or of fix different things denoted by the letters a, a, a, b, c, d, will be $\frac{770}{6}$, or $120 *$.
14. Again, if the fix letters whereof we were required to find the permutations, were a a $a b c$, in which, befides the letter a, which is repeated three times, the letter b is alfo

* The truth of this article may be made vifible to the eye in the follow. ing manner :

Let us (to avoid a great number of permutations; which would take up a great deal of room, and tend to confound the fubject) fuppofe the three different letters a, a, and α, to be connected only with one more letter, to wit, b. Then, by art. 7 , the whole number of permutations of thefe letters will be 24 , to wit,

$$
\begin{array}{l|l|l|l}
a, a, \alpha, b, & a, a, b, \alpha, & a, b, a, \alpha, & b, a, a, \alpha, \\
a, \alpha, a, b, & a, \alpha, b, a, & a, b, a, a, & b, a, \alpha, a, \\
a, a, \alpha, b, & a, a, b, \alpha, & a, b, a, \alpha, & b, a, a, \alpha, \\
a, a, a, b, & a, a, b, a, & a, b, a, a, & b, a, \alpha, a, \\
a, a, a, b, & \alpha, a, b, a, & a, b, a, a, & b, \alpha, a, a, \\
a, a, a, b, & \alpha, a, b, a, & \alpha, b, a, a, & b, a, a, a,
\end{array}
$$

Now, let the Italick letter a, and the Greek letter α, be converted into the Roman letter a. And the foregoing permutations will thereby be converted into the following ones, to wit,

a	a	a	b,	a	a	b	a,	a	b	a	a,
a	a	a	b,	a	a	a	b	a,	a	a	b
a	a	a	b,	a,	b	a	a	a,			
a	a	a	b	a,	a	b	a	a,	b	a	a
a	a,										
a	a	a	b,	a	b	a,	a	b	a	a,	b
a	a	a	a,								
a	a	a	b,	a	a,	a	b	a	a,	b	a
a	a	b	a,	a	b	a	a,	b	a	a	$a ;$

of which the firt fix are all exactly alike, to wit, a a a b, and therefore mufe be reckoned as only one pofition, or permutation; and, in like manner, the next fix are alfo all alike, to wit, a a b a, and therefore muft be reckoned as only one pofition, or permutation; and the third fix are alfo all alike, to wit, $\mathrm{a} b \mathrm{a}$ a, and therefore muft be reckoned as only one pofition, or permutation; and laftly, the fourth fix are alfo all alike, to wit, $\bar{\square}$ aaa, and therefore muit be reckoned as only one pofition, or permutation. So that, by the coincidence of fix permutations into one in each of the four fets of fix permutations, the faid twenty-four different permutations will be reduced to only four, or ${ }^{2} 8_{8}^{4}$, different permutations, to wit, a a a b, aaba, $a b a$, Бааа.

And it is eafy to fee that the like reduction mult take in the whole number of permutations that may happen amongft any other given number of things that are all different and diftinguifhable from each other, when any other and leffer number of the faid things are rendered like to, and undiftinguifhable from, each other.
repeated twice, it is evident that the number of the permut tations which the faid letters could undergo, would be but half the number of the permutations of the fix letters $a \operatorname{ac}$ $b c d$; becaufe every two permutations of thefe letters which would be diftinguiihable from each orher when the two different letters b and d are made ufe of, will coincide, or become undiftinguifhable from each other, when b is inferted inftead of d. And therefore the number of the permutations of the fix letters $a a a b b c$ will be only $\frac{120}{2}$, or 60 .

I 5. And in the fame manner it may be fhewn that, when feveral of the letters, of which we are required to affign the number of permutations, are repeated, or taken more than once, we muft, for every fuch repetition of the fame letter, divide the number of permutations of the whole number of letters by the number of the permutations of fo many different letters as there are repetitions of the fame letter. And hence arifes the following

Rule for difcovering the number of permutations, or relative changes of pofition difinguifwable from each other, which any given number n, of things, whereof fome are exactly like others, and cannot be difinguibled from them, may be made to undergo.
16. Let the whole number of permutations, or changes of pofition, which the faid things might be made to undergo, if they were all unlike each other, and could be clearly. diftinguihed ore from the other, be divided by the number of permutations, or changes of pofition, which the two, or more, things which are like each other, and are denoted by the fame letter, might be made to undergo, if they were
unlike to each other, and clearly diftinguifhed from each other. And the quotient will be the number of permutations that is required. This is upon a fuppofition that, amongt the things that are given, and of which we are required to find the number of pernutations, there is only one fet of things that are exactly like each other, and therefore denoted by the fame letter.

But, if, amongtt the things of which we are required to find the number of permutations, there fhould be two, or more, fets of things that are exactly like each other, and therefore denoted by the repetition of the fame letters, we mult multiply the number of all the permutations which the firt fer of like things, denoted by the firft letter that occurs more than once in the notation, might be made to undergo if thcy were all unlike each other, into the number of all the permutations which the fecond fet of like things, denoted by the fecond letter that occurs more than once in the notation, might be made to undergo if they were all unlike each other, and further into the number of all the permutations which the third fet of like things, denoted by the third letter that occurs more than once in the notation, might be made to undergo, if they were all unlike each other, and into the numbers of all the permutations which the fourth fet, and the fifth fet, and all the following fets, of like things, denoted by the repetition of the fame letters, might be made to undergo, if the things in each fet were unlike each other: and the whole number of permutations, which all the n things that are given (and whereof we are required to find the number of permutations diftinguilhable from each other) might be made to undergo, if they were all unlike each other, muft be divided by the product of the faid multiplication. The quotient will be the number of permutations diftinguifhable from each other, of the given number n of things, which was required to be found.
17. This doctrine of permutations is of great ufe in determining the number of anagrams that may be made of any propofed word, or the number of different ways in which the letters that compofe it may be arranged. Thus, for cx , ample,
ample, the letters that form the word Roma may be arranged in $2.3 \cdot 4$, or 24 , different ways; and thofe of the word Romani (which are fix in number) may be arranged in 2.3 $\cdot 4 \cdot 5 \cdot 6$, or 720 , different ways; and thofe of the word Romanis (which are feven in number) may be arranged in $2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7$, or 5040 , different ways; as we have feen in art. 12. In like manner the letters of the word Trojanum (which are eight in number) may be arranged in $2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8$, or 40,320 , different ways; and thofe of the word Dodrinam (which are nine in number) may be arranged in $2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9$, or 362,880 , different ways. But the letters of the word Leopoldus, though they are alfo nine in number, cannot be arranged in fo many different ways, becaufe of the repetition of the letters l and 0 , each of which occurs twice. The number of different ways in which the letters of this word can be arranged is $=\frac{362,880}{2.2}$, or $\frac{362,880}{4}$, or 90,720 ; becaufe the two $l \mathrm{~s}$, if they were different letters, would admit of two permutations, and the two os, if they were different letters, would likewife admit of two permutations, and confequently thefe numbers of permutations, to wit, 2 and 2 , muif (according to the foregoing rule) be multiplied into each other, fo as to make the product 4 , and then the number 362,880 (which is the whole number of permutations which nine different letters may be made to undergo) mult be divided by it, which gives the quotient 90,720 . And the letters of the word Studiofus, though likewife nine in number, will admit of only 30,240 permutations, becaufe of the repetition of the letter u twice, and the letter s three times. For the permutations which the two us might be made to undergo, if they were different letters, are 2, and the permutations which the three ses might be made to undergo, if they were different letters, is 6 ; and the product that arifes by multiplying 2 into 6 is 12 . We muft therefore divide 362,880 (which is the whole number of permutations of nine different letters) by 12 ; and the quotient 30,240 will be the number of all the permutations of the nine letters of the word Studiofus that will be different, or diftinguifable from each other.
18. It is only by the affiftance of this doctrine of permutations that all thofe queftions can be determined, which fome learned and ingenious men have propofed concerning the number of the variations, or tranfpofitions of the words contained in certain verfes, which, on account of the great number of fuch tranfpofitions which may be made in them, have been called Proteus verfes, in allufion to the Egyptian fea-god of that name mentioned in Homer's Odyffey, who was fo famous for affuming many different fhapes. The moft celebrated of thefe verfes are thofe which have been given us by Thomas Lanfi.s, and the learned Jofeph Scaliger, and Bernard Bauhufius, a Jefuit of the college at Louvain, in the Auftrian Netherlands. The following two verfes we have from Thomas Lanfius:

> Lex, Rex, Grex, Res, Spes, Fus, Thus, Sal, Sol, (bona) Lux, Laus:
> Mars, Mors, Sors, Lis, Vis, Styx, Pus, Nox, Fax, (mala) Crux, Fraus.

In each of the fe terfes there are eleven words of one fyllable, and one word of two fyllables, to wit, bona in the firt, and mala in the fecond. Thefe two words of two fyllables muft always remain in the fame place, or within two words of the end of the lines, in order to preferve the meafure of the verfes, which requires that the fifth foot in each verfe fhould be a dactyl. But the other eleven words in each verle may be placed in any order, with refpect to each other, that we pleafe, without alcering the meafure of the verfes. Now the number of permutations, or changes of pofition, that eleven different things can undergo is $39,916,800$, as appears from the table in art. 11. It follows therefore that the words of each of the two foregoing verfes nay be tranfpofed in 39,916,800 different ways, without fpoiling the meafure of them.
19. In tome other inftances of thefe Proteus verfes that have been given by ingenious writers on this fubject, if happens that many of the tranfpofitions of the words contained

H
in them are incompatible with the meafure of the verfes, and fome of them, from the irregular and ungrammatical order in which the words follow each other, feem to convey no fenfe or meaning whatfoever, or, perhaps, in fome cafes, a different fenfe from that which the author intended. But in all thefe cafes a little attention and care will enable us to diftinguif the ufeful tranfpofitions from the abfurd ones, and to determine the numbers of tranfpofitions of each fort feparately, if we proceed by regular fteps according to fome order, or plan of admiffion or exclufion, in making the enquiry. An inftance of this kind occurs in the following Hexameter Latin verfe, which was made by the abovementioned Bernard Bauhufius, the Jefuit of Louvain, in honour of the bleffed Virgin Mary, the mother of our Saviour Jefus Chrift; to wit,

Tot tibi funt dotes, Virgo, quot fidera creio.
On this celebrated verfe feveral men of great learning and reputation have beftowed a great deal of attention. For, in the firt place, Ericius Puteanus, in a little book which he publifhed under the title of Tbaumata Pietatis, has employed no lefs than 48 pages in reckoning up the feveral ufeful, or rational, tranfpofitions that may be made of thie words contained in it, and makes them amount to as many ar leaft as there are ftars in the heavens, the number of which is ufually faid to be 1022; leaving our (through a religious reverence for the character of the Virgin Mary) all thofe tranfpofitions which feem to affirm that there are as many ftars in the heavens as there are virtues in the Virgin's character, becaufe he thinks the number of the latter to be much greater than that of the former. Aud, 2 dly, Gerard Voffius, in the yth chapter of his treatife intided, De Scientiis Matbematicis, has affirmed the number of the tranfpofitions which may be made in the words of this verfe without fpoiling the fenfe or the meafire, to be 1022, as Putcanus had made it before him. And, 3 dly, Monfieur Prefet, a French mathematician, in the firt edition of a book called ". The Elements of the Matbematicks, page 34β, has examired Ahis Proterts verfe, and declaied it to admit of 2196 tranfpofitions
pofitions of its words without fpoiling the fenfe or the meafure : and afterwards, in the fecond edition of his faid work, vol. i. page 133, having re-confidered the fubject, has increafed the number of thefe tranfpofitions to almoft half as many more, or 3276 . And, 4 thly, the induftrious compilers of the Leeipfic Aifa Eruditorum, in the month of June, 1686, in giving an account of Dr. Wallis's Treatife of Algebra, have fixed the number of thefe tranfpofitions (which Dr. Wallis himfelf had not in that treatife ventured to affign) at 2580. And, laftly, Dr. Wailis himfelf, in a Latin edition of his works which he publifhed afterwards in the year 1693 , page 494 , has carried the number of thefe tranfpofitions to 3096. But all thefe writers have been miftaken in their cal. culations, and have affigned wrong numbers for the folution of this queftion ; which cannot but feem rather furprifing, as fome of them had examined the fubject twice over, and corrected their firt conclufions. The true number of tranfpofitions of its words which this famous hexameter verfe will admit of without fpoiling either the fenfe or the meafure of it, that is, without admitting a fpondee in the fifth place, but admitting fuch tranfpofitions as only deftroy the cafura of the verfe, I have found, upon a careful examination, to be 3312 .
20. I here conclude the chapter on the doctrine of permutations, of which I hope the fundamental principles have been fufficiently explained; and I proceed to confider the doctrine of combinations, which is of no lefs ufe and importance than the former.

CHAPTERI.

CONCERNING COMBINATIONS.

Definition i.

21.Y the combinations of things, I mean the feveral different ways in which any given number of things may be joined, or connected with each other, without any regard to their relative pofitions, or the order in which they follow one another. So that, when a cerrain number n of things is given, and we are required to find in how many different ways thefe n things may be taken, by taking, firft, two of them at a time, then three of thein at a time, then four of them at a time, and fo on in all other poffible conjunctions, fo that no one heap, or parcel, of them thall be taken more than once, we are faid to be required to find all the poffible combinations of the faid given number of things.

Definition 2.

22. The number of the things given which is directed to be joined togerher in one heap, or parcel, is called the exponent of the combination : fo that if we are directed to combine them by pairs, or in parcels containing two a-piece, the exponent of the combination will be 2 ; if we are directed to combine them by triplets, or in parcels containing three a-piece, the exponent of the combination will be 3 ; and if we are directed to combine them by quadruplets, or in parcels containing four a-piece, the exponent of the combination will be 4 ; and, in general, if we are directed to combine them in parcels containing m a-piece, the exponent of the combination will be the number n.

Definition 3.

23 . And the feveral things combined in thefe different manners are called pairs, or couplets, and triplets, and quadruplets, \& c , or binaries, temaries, and quaternaries, \&c, or binions, ternions, and quaternions, \&re ; that is, all the different conjunctions, or combinations, of any given number of things in parcels confifting of two things each, are called all the pairs, or couplets, or binaries, or binions, in the faid number of things; and all the different conjunctions or combinations of them in parcels confifting of three things each, are called all the triplets, or ternaries, or ternions, in them; and all the different conjunctions or combinations of them in parcels confifting of four things each, are called all the quadruplets, or quaternaries, or quaternions, in them. And fimilar names may be found for thefe combinations, when the number of things contained in a fingle parcel is greater than 4 .
24. And when the things are taken fingly, or feparately, or one by one, it will be convenient to denominate them unaries, or unities, or to give them fome name that bears a refernblance to the names by which we diftinguif the feveral combinations of them with each other in parcels of two, or of three, or of four, or more together: becaufe, though, when they are taken fingly, they cannot, in a ftrict fenfe, be faid to be combined, or the taking them fingly cannot, in ftrictnefs, be called a combination of them, yet in this doctrine of combinations it is often neceffary to take into confideration the number of them when taken fingly, in order to determine all the variations that can be made upon them; and therefore, in a loofer and more extenfive fenfe of the word combinations, the things, when taken feparately, are confidered as undergoing one fpecies of combination, or forming one clafs of the feveral claffes of combinations which they may be made to undergo. This is a fmall inaccuracy of language, fimilar to that by which a unit is often called a number, though in ftrictnefs a number means two or more
units, or fingle quantities, joined together. But when due notice is given of what is meant by fuch inaccurate expreffions (which are often convenient for the purpofe of avoiding a multiplicity of words) no miftakes can arife from the ufe of them.
25. And for a like reafon it will be convenient to give a name to the act of omitting to take them at all, either fingly, or combined with each orher, or to confider fuch omiffion as one fpecies of their combinations. Such an omiffion of them may be called a nullienation (from the word nullies, which means no-times) ; and the notbings, or cyphers, fet down, inftead of the things themfelves, on thefe occafions may be called nullenaries (like binaries, ternaries, and quaternaries) or nullions. The ufe of this fort of odd language will appear in the courfe of the following pages.
26. Some writers have confined the word combination to the ftrict original fenfe of "taking things by binaries, or pairs, or couplets, only, or parcels confifting of two things:" and have called the taking them by terneries, or parcels confilting of three things, conternation; and the taking them by quaternaries, or parcels confifting of four things, conquaternation; and have denominated the parcels confilting of two things cach, that may be formed out of a given number of things, the combinations of the faid given things; and the parcels confilting of three things each, which may be formed out of the fame given number of things, the conternations of the faid given things; and the parcels confifting of four things each, which may be formed out of the fame given number of things, the conquaternations of the faid given things. But this degree of accuracy in our expreffions would evidently lead to the compofition of an immenfe number of new words, in order to express the variety of conjunctions that may be made of the things given in parcels of different forts, fuch as parcels confifting of two things, parcels confifting of three things, parcels confifting of four things, parcels confifting of five things, parcels confifting of fix things, and the like; the ufe of which multitude of new words might
might be found inconvenient. And therefore other perfons, who were apprehenfive of this inconvenience, and yet were defirous of avoiding the inaccuracy of employing the word combinations for parcels confifting of more than two things, have propofed to make ufe of the more general words complications or complexions (derived from the Latin verb complicare, which fignifies to fold up together) for parcels confifting of three things, or four things, or five, or more, things, each, made- out of a given number of things fucceffively fo united together: and fome authors, with great fagacity and judgment, have recommended the word elections to be ufed on this occafion, in order to comprehend thofe methods of reckoning and claffing the things under confideration by which the things when taken feparately, or one by one, are admitted as one fpecies of combinations of them ; and even, when nothings, or cyphers, are taken in their ttead, thofe nothings, or cyphers, are admitted as another fpecies of their combinations, or elections. But the generality of writers who have treated of this fubject, make ufe of the word combinations to denote all the different parcels of things, whether confifting of two things, or of three things, or of four things, or of any greater number of things, which can be formed out of a given parcel of things; and even to denote the given things, when taken fingly or feparately ; and alfo the nothings, or cyphers, which are fet down inftead of them, when they are not taken at all : nor does there feem to be any neceffity for inventing new words on the occafion.

Thefe definitions of the words that will occur moft frequently in this doctrine of combinations being premifed, I now proceed to confider the doctrine itfelf.
27. Now when we are enquiring into the number of combinations of a given number of things, the faid things may either be all unlike and clearly diftinguifhable from each orher, or fome of them may be exactly like others of them, fo as not to be diftinguifhable from them. And the faid things may either be fo combined together that no one thing fhall be contained oftener in any of the propofed combinations than it occurs in the original number of things which are propofed
propofed to be combined together; or they may be comtbined together without this reftriction, or fo that in fome of the propofed combinations the fame thing may occur oftener than it dous in the original number of things which are propofed to be combined together, to wit, by being combined with itfelf *. And different fuppofitions may be made, and different

* I am not quite certain that this laft fentence is a faithful tranfation of the original, which I fhall therefore here fubjoin for the reader's attentive confideration. Eaque vel ita combinari debent, ut in nulld combinatione res eadem fapiùs continealnr quàm ipfa reperitur in toto rerum aumero; vel fic, ut in cddent combinatione res eadem etiam fapiùs recurrere, hoc eft, ut fecrm ipfd quoque combinari, pofiti. The meaning of this obfcure fentence (as far as I can underftand it) may be illuftrated by the two following examples.

In the firft place, let us fuppofe that the things that are to be combined together are fix in number, all clearly diftinguifhable from each other, and denoted by the fix letters a, b, c, d, e, f. And let us fuppofe that thefe fix letters are to be combined together in quaternions, or quadruplets, or parcels confifting of four letters each. Then, fays the author, thefe quadruplets may be either reftrained to thofe only which confift of four different letters, or in which the fame letter does not occur oftener than once, or than it occurs in the original enumeration of the fix things, a, b, c, d, c, f, out of which thefe quadruplets are to be formed, fuch as the quadruplets $a b c d, a c d e$, adef, \&c; or thefe quadruplets may be formed without this reftriction, fo as to admit the fame letter to be contained in them, more than once, or to be, as it were, combined with itfelf, as happens in the quadruplets $a a b c$, aacd, aade, $a \operatorname{cff}$, $a \operatorname{lab}$, aabc, aabf, aace, aaab, aacc, aaad, \&c.

In the fecond place, let us fuppofe that the things that are to be combined together are, as before, fix in number, but that two of them are exactly like each other, and are therefore denoted by the fame letter a, and that three of them are alfo exactly like each other, and therefore denoted by the fame letter b, and the fixth is different both from thofe of the firft fet, and from thofe of the fecond fet, and is therefore denoted by the letter c; fo that the fix things that are to be combined together, are denoted by the letters a, a, b, b, b, c. And let it be required to combine thefe fix things, or letters, together in quaternions, or quadruplets, or parcels confifting of four letters each. Then, fays the author, thefe quadruplets may be either fo reftrained that they fhall not contain either of the three letters a, b, and c oftener than it is contained in the original enumeration of them, to wit, a, a, b, b, b, c, that is, that no quadruplet fhall contain the letter a oftener than twice, or the letter b oftener than three times, or the letter c oftener than once; as is the cafc with the quadruplets $a b b c, a a b c, a a b b, a b b b$, $b b b c$; or the faid quadruplets may be formed without this reftriction, fo as to admit the letter a to be repeated more than twice, and the letter \dot{b} to be repeated mure than three times, and the letter c to be repeated more
different queftions confequently may be propofed, concerning the manner in which the quantitics are combined together. For it may either be required to find the number of all the poffible combinations of a given number of things, by taking them firft fingly, then in couplets or parcels of two, and then in triplets or parcels of three, and then in quadruplets or parcels of four, and fo on according to all the exponents they will admit of; or it may be required only to find the number of all the combinations that may be made of the fame given number of things according to one, or more, of their exponents, feparately; as, for inftance, by difpofing them in parcels of two thinges, or in parcels of three things, or in parcels of four things, each. In each of thefe ways of combining the things under confideration, a great variety of queftions and problems may be propoled concerning them, the full difcuffion of which would lead us into a very ample field of fpeculation. But of thefe we fhatl only felect a few of the moft curious and important, which we conceive to be neceffary to the folution of the queftions concerning the doctrine of chances, or the art of forming reafonable conjectures concerning future events depending on chance, which will be confidered in the fubfequent part of this treatife.
28. Let it then be required, in the firft place, to find the number of all the poffible combinations that can be formed of a given number of things according to all the exponents they will admit of, upon a fuppofition that all the things that are to be combined together, are unlike to, and clearly diftinguifhable from, each other, and confequently are denoted by different leiters.

Let the things that are to be thus combined be denoted by the feveral fmall letters $a, b, c, d, e, \& c$. Let thefe
than once; as is the cafe in the quadruplets aaab, aaac, $a a a a, b b b b$, aacc, accc, \&ic.

This is the only meaning that I can find for the foregoing paffage; but I cannot help centertaining fome doubt whether it is the true ouc. Ideo y*arco
letters be fet down in feparate lines, or rows, one under ant other, in the manner following.

In the firft line we muft place the firft letter a, by itfelf.
In the fecond line we muft place the letter b; firft, by itfelf; and then in conjunction with a, fo as to form the combination, or couplet, $a b$, or $b a$. For $a b$ and $b a$ are, in this doctrine of combinations, to be confidered as only one combination, becaufe in this doctrine no regard is to he had to the order in which the letters are placed, as there was in the doctrine of permutations.

In the third line we muit place the third letter c; firf, by infelf; and then in conjunction with the preceeding letters a and b, fo as to form the binions, or couplets, $a c, b c$; and, lattly, with the preceeding couplet $a b$, fo as to form the triplet $a b c$.

$$
\frac{a \cdot}{b, a b}
$$

$c, a c, b c, a b c$.
$d, a d, b d, c d, a b d, a c d, b c d, a b c d$.
$e, a e, b e, c e, d e, a b e, a c e, b c e, a d e, b d e, c d e, a b c e, a b d e, a c d e, b c d e, a b c d e$.
In the fourth line we muft place the fourth letter d; firt, by itfelf; and, adly, in conjunction with each of the three preceeding letters c, b, and c, fo as to form the three pairs or couplets of letters, $a d, b d$, and $c d$; and, $3 d \mathrm{lly}$, in conjunction with each of the three foregoing couplets, $a b, a c$, $b c$, fo as to form the three triplets $a b d, a c d$, and $b c d$; and, 4 thly, in conjunction with the foregoing triplet, $a b c$ s fo as to form the quadruplet, $a b 6 d$.

And in like manner the fifth letter e mult be placed in the beginning of the fifth line; firt, by itfelf; and, 2 dly, in conjunction wich each of the four preceeding letters a, b, c, d, fo as to form the four pairs, or couplets, $a e, b e, c e$, and $d e$; and, 3 dly, in conjunction with each of the fix foregoing couplets,
couplets, $i b, a c, b c, a d, b d, c d$, fo as to form the fix triplets $a b e, a c e, b c e, a d e, b d e$, and $c d e$; and, athly, in conjunction with each of the foregoing triplets, $a b c$, $a b d, a c d, b c d$, fo as to form the four quadruplets $a b c e$, abde, $a c d e$, and $b c d e$; and, 5 thly, in conjunction with the foregoing quadruplet $a b c d$, fo as to form the quintuplet, $a b c d e$.

And in the fame manner muft every following letter, f, $g, b, \& x c$, be combined with each of the preceeding letters, and with every preceeding combination of them, if the number of things, or letters, to be combined together; was more than five.
29. And from this manner of combining any given numb ber of things, or letters, together, it is plain that we fhall thereby obtain all the poffible combinations of them, fo that no combination of them whatfoever can be formed, or conceived, that will not be contained in one or other of the fucceffive lines, or rows, of quantities fo generated from each other : and likevife it is plain that each of the combinations fo obtained will be different from every other, or that no combination will occur in the faid lines more than once. And confequently the fum-total of all the combinations fet down in the lines, or rows, of quantities fo formed out of any given number of quantities, will be the number of all the poffible combinations which the faid given number of quantities will admit of. We muft therefore endeavour to find the number of all the combinations of a given number of quantities that will be contained in an equal number of lines, or rows, of quantities formed, or generated, from each other in the manner above defrribed.
30. Now, in order to difcover the number of the combinations contained in a given number of the foregoing lines, or rows, of quantities, it will be proper to obferve, "s that every new line, or row, mult contain as many combinations as all the preceeding lines, or rows, added together, and one combination over;" and for this reafon, to wit, becaufe the letter which is at the beginning of every new line, is placed
there, firft, by itfelf, and afterwards in conjunction with all the letters and their feveral combinations in all the preceeding lines. Thus, for example, the letter e is placed in the beginning of the fifth line, firt by irfelf, and afterwards in conjunction with each of the foregoing letters a, b, c, d, and with every combination of them in couplets, triplets, and quadruplets, contained in all the four foregoing lines; and confequently the number of combinations contained in this fifth line (reckoning the letter e by itfelf for one of them) will be equal to the number of all the combinations contained in all the four preceeding lines, beginning with the letters a, b, c, and d, and one combination over. This obfervation is of great ufe. For from it we may deduce the whole number of combinations contained in any given number of thefe lines, or which may be made with any given number of letters, by reaioning in the manner following.

A Lemma.

3. If in the increafing geometrical progreffion $1+2+$ $4+8+16+32+64+128+8 \mathrm{cc}$, of which the firft term is 1 , and the common ratio is that of 1 to 2 , we take any number of terms whatever, as, for example, n terms, and call the fum of the faid n terms S, and afterwards add another term to the faid feries, the faid new term will be equal to $S+1$, or to the furn of all the former n terms together with an unit.

Demonstration.

Since the terms in the feries $1+2+4+8+16+$ $3^{2}+64 \div 128+8 c$, increafe continually in the proportion of 1 to 2 , it is evident that all the terms of it after the firft tern I will be the feveral powers of 2 in their natural

from 'Games Bernoulli's Treatije Dc Arte Conjectandi. 6r.

order, to wit, $\left.\left.27^{r}, 22^{3}, 22^{3}, 22^{4}, 2\right]^{5}, 2\right]^{5}, 27^{7}, \& c$, and confequently that the w th, or lant, tern of it will be 22^{n-1}. If therefore to thefe n terms we add another term, the faid new tern will be $=2 \times 2^{n-1}$, or 2^{n}. We are therefore to fheev that $\left.2\right|^{n}$ is $=\mathrm{S}+\mathrm{I}$.

Now, fince S is $=1+2+4+S+16+32+54+$ $12 S+8\left(\mathbb{C}+2^{2-1}, 2 S\right.$ will be $=2+4+8+16+32$ $+64+128+256+8 \mathrm{cc}+2^{n}$; which feries confifts of n terms as well as the feries $1+2+4+8+16+32+64$ $+\mathrm{r} 2 \mathrm{~S}+8 \mathrm{c}+2^{n-\mathrm{r}}$, or S . Therefore (adding \mathbf{I} to both Fides) $2 S+1$ will be equal to the feries $1+2+4+8+$ $16+32+64+128+256+8 \times c+27^{n}$, that is, to the ferics $1+2+4+3+16+32+64+128+256+$ $8 x+\left.2\right|^{n-1}$ together with the new term 2$)^{n}$, or to $S+27^{n}$. Therefore (fubtracting the feries S from both fides) the new term $]^{n}$ will be equal to $S+1$, or to the fum of all the a terms of the feries $\mathrm{I}+2+4+8+16+32+64+128$ $+\varepsilon \mathrm{c}+27^{n-1}$, together with I. Q. E. D.

Coroll. i. It follows therefore that the fecond and third and other following terms of the increating geometrical progreffion $1+2+4+8+16+32+64+128+8 \mathrm{c}$, may be generated, or derived, from the firt term I , not only by doubling it continually, but by the application of the property that has juft now been fhewn to belong to the terms of fuch a feries, to wit, by adding together all the preceeding terms, and increafing their fum by an unit. Thus, $1+1$ will be $=2$, which is the fecond term; and $1+2$ +r , will be $(=3+1)=4$, which is the third term; and $1+2+4+1$, will be $(=3+4+1=7+1)=8$, which is the fourth term; and $\mathrm{I}+2+4+8+1$ will be $(=7+8+1=15+1)=16$, which is the fifth term ; and $1+2+4+8+16+1$ will be $(=15+16$ $+1=31+1)=32$, which is the fixth term; and $1+$ $2+4$
$2+4+8+16+32+1$ will be $(=31+32+1=63$ $+1)=64$, which is the feventh term; and $\mathrm{I}+2+4+$ $8+16+32+64+1$ will be $(=63+64+1=127+$ $1)=128$, which is the eighth term. And in the fame manner may all the following terms of this progreffion, however numerous, be generated from thofe that preceed them by means of the aforefaid property.

Coroli.. 2. And hence it follows, è converfo, that, if there be a feries of terms beginning from I , the terms of which are generated one from the other by means of the foregoing property, or by adding together all the preceeding terms, and increafing their fum by an unit, the faid feries will be the geometrical progreffion $1+2+4+8+16+32+$ $64+128+8 c$.
32. Now it has been fhewn above in art. 28, that the numbers of quantities, or combinations, contained in the above-mentioned lines, or rows, beginning with the letters $a, b, c, d, e, \& c$, are generated from the firft quantity a, and from each other in the manner juft now defrribed, or that the number of quantities in every new line is equal to the fum of the numbers of all the quantities in all the preceeding lines, together with an unit. It follows therefore, from coroll. 2 , of the foregoing lemma, that the numbers of quantities contained in the faid feveral lines muft conftitute the geomerrical progreffion $1+2+4+8+16+32+$ $64+128+8 x c$, or $1+22^{2},+22^{2},+22^{3},+24^{4},+27 s,+$ $\left.27^{6},+27^{7},+8 c+2\right]^{n-1}$, fuppofing the number of lines to be n. Therefore the fum of the numbers of quantities contained in all the n lines beginning with the letters a, b, $c, d, e, \& c$, will be equal to the fum of the firf n terms of the increafing geometrical progreffion $1+2+4+8+16$ $+32+64+128+8 \mathrm{c}$, or to the feries $1+2+4+8$ $+16+3^{2}+64+128+8 \mathrm{c}+27^{n-1}$, or $\mathrm{I}+2 \mathrm{I}^{\mathrm{r}},+27^{2}$, $+2^{73},+27^{7},+\left.2\right|^{5},+27^{6},+27^{7},+8 c+27^{n-1}$. But, by the foregoing lemma, this feries together with an unit is equal
equal to $\overline{2})^{n}$. Therefore this feries alone is equal to $27^{2}-1$. And confequently the number of all the quantities contained in all the faid n lines, or the number of all the poffible combinations of the n letters a, b, c, d, e, \&cc, (reckoning the faid letters, when taken fingly, among the faid combinations) will be $=2)^{n}-\mathrm{I}$. And hence arifes the following

Rule for finding the number of all the polfible different combinations of a given number of things according to all their different exponents.
33. Raife the number 2 to the power of which x or the given number of things, that are to be combined together, is the index; and fubtract I from the faid power. The remainder 2$)^{n}$ - x will be the number of combinations that was required.
34. Coroll. i. From this rule it follows, in the firft place, that, if we confider the total omiffion of all the n letters as one way of combining them, the number of all the poffible combinations will be greater than it was before by an unit, and therefore will be $=2^{n}$; and it follows, in the fecond place, that, if we exclude this cafe of the omiffion of all the letters (which may be called the nullion, or the combination of them by nones), and likewife exclude the feveral letters when taken fingly, or feparately, (which are not in ftrictnefs combinations of them), the number of the remaining combinations of n different things, or letters, in binions and ternions and quaternions, or in couplets, and triplets, and quadruplets, and in parcels of more than four letters in each, will be 2$]^{n}-1-n$, or 2$]^{n}-n-1$.

Thus,

Thus, for example, the number of all the different conjunctions, or combinations, that may be made of the feven planets, to wit, Sacurn, Jupiter, Mars, Venus, Mercury, the Earth, and the Moon, (raking the word combinations in the extent given to it in the foregoing rule) will be $=27^{7-1}(=2 \times$ $2 \times 2 \times 2 \times 2 \times 2 \times 2-1=128-1)=127$; from which if we fubtract 7 , which is the number of the planets taken fingly, or feparately, (in which cafes there are not properly any conjunctions of them), the remaining number $2^{7}-1$ -7 , or $127-7$, or 120 , will be the number of all the pofible conjunctions, or combinations, of them by conjoining two together, or three together, or four together, or five together, or fix together, or all the feven together ; or, it will be the number of all the poffible conjunctions of them properly fo called. And the twelve regitters, as they are called, or rows of pipes in a mufical organ, by means of which the found of it is made to change fo remarkably from a foft and gentle found to a very loud and folemn one, may be made to undergo $27^{12}-1$, or $4096-1$, or 4095 combinations, or variations.
35. Corroll. 2. If we examine the number of combinations of the letters a, b, c, d, and e, in the feveral lines, or rows of quantities, fet down above in art. 28, we fhall find that the number of combinations that have even numbers for their exponents contained in each of the faid lines after the firft line (which contains only the fingle quantity a) is equal to the number of combinations that have odd numbers for their exponents contained in the fame line. Thus, in the fecond line, which begins with the letter b, there is one quantity, namely b, with an odd number, to wit, 1 , for its exponent, and one quantity, namely, $a b$, with an even number, to wit, 2 , for its exponent. And in the third line beginning with the letter c, there are two quantities, namely, c and $a b c$, with odd numbers, to wit, I and 3 , for their exponents, and two quantities, namely, $a c$ and $b c$, with an even number, to wit, 2 , for their exponent. And in the fourth line beginning with the letter d, chere are four quan. tițies, namely, $d, a b d_{2} a c d_{2}$ and $b c d_{2}$ which have the odd numbers,
numbers 1 and 3 for their exponents; and there are four other quantities, namely, $a d, b d, c d$, and $a b c d$, which have the even numbers 2 and 4 for their exponents. And in the fifth line, beginning with the letter e, there are eight quantities, namely, $e, a b e, a c e, b c e, a d e, b d e, c d e$, and abcde, which have the odd numbers 1,3 , and 5 for their exponents; and eight other quantities, namely, $a e, b e, c e_{3}$ $d e$, and $a b c e, a b d e, a c d e, b c d e$, which have the even numbers 2 and 4 for their exponents. And the fame thing muft happen in the fixth line of quantities beginning with the letter f, and in every following line, becaufe every new line is formed by fetting down the new letter firft by itfelf, and then combining it with the firft letter a, and afterwards with all the quantities contained in the fecond, third, and other following lines that preceed the new line. Now the combination of the new letter with each of the quantities in the fecond, third, and other following lines, will turn all the quantities that have odd numbers for their exponents into quantities that have even numbers for their exponents, and all the quantities that have even numbers for their exponents into quantities that have odd numbers for their exponents. And therefore, as the number of quantities with odd numbe:s for their exponents in each of the faid fecond, third, and other following lines, was equal to the number of quantities with even numbers for their exponents, it follows that of the new quantities in the new line arifing from the combination of the new letter with all the quantities contained in the fecond, third, and other following lines, there will be as many that have odd numbers for their exponents as there will be that have even numbers for their exponents. And; if we add to thefe quantities the new letter itfelf, which is to be placed in the beginning of the new line, and of which the exponent is I , and the combination of the new letter with the firft letter a, of which combination the exponent is the even number 2, whereby we thall obtain all the quantities fet down in the new line, it is evident that the addition of thefe two quantities (of which the firft has the odd number 1 , and the fecond has the even number 2, for its exponent) will not alter the equality of the numbers of com-
binations, or quantities, of each kind, but that the number of quantities in the new line that have odd numbers for their exponents will ftill be equal to the number of quantities in the fame line that have even numbers for their exponents.
36. Corola. 3. If therefore we add all the quantities contained in all the lines except the firl line (which contains only the fingle quantity a) tngether, it is evident that the number of quantities in fuch lum that will have odd numbers for their exponents will be equal to the number of quantities that will have even numbers for their exponents.
37. Corole. 4. And, if we add togcther all the quantities contained in all the lines, including the firft line, which contains the fingle quantity a (he exponent of which is the odd number 1), the number of quantities in fuch fum that will have odd numbers for their exponents will exceed by an unit the number of quantities that will have cven numbers for their exponents.
38. Corolu. 5. And, if to all the quantities contained in all the lines together we add, as another combination, the cafe denoted by a cypher 0 , or the cafe of the omiffion or all the letters, which we have above in art. 34 , called the combination by nones, or the mullion, and confider c, or the exponent of this combination as an even number, the number of quantitics in the faid furn that will have odd numbers for their exponents will be exactly equal to the number of quantities that will have even numbers for their exponents.
39. Coroll. 6. It has been hewn in Coroll. I, that the number of all the quantities in all the n lines taken together, and the cafe of the nullion is equal to 27^{n}. It follows therefore from Coroll. 5 , that the number of quantities in this fum that will have odd numbers for their exponents will be equal to half of 27^{n}, or to $\frac{2^{n}}{2}$, or 22^{n-1}, and the number of
from Games Bernoulli's Treatije De Arte Conjectandi. 67 quantities in the fame fum that will have even numbers for their exponents, including the nullion, will likewife be 22^{n-1}; and confequently the number of quantities in the faid fum that will have even numbers for their exponents, without including the nullion, will be $2^{n-1}-\mathrm{I}$. The fame thing will be demonftrated in another manner here below in the 6 th Corollary of Chapter 4.

CHAPTER III.

Of the numbers of combinations that may be made of a given number of things in parcels confifing of two things, or of three things, or of four thiugs, or of any other particular number of things, each; and of the numbers known by the name of the figurate numbers, and their properties, with which the inveftigation of the faid combinations is comnected.
40. IROM an attentive confideration of the five lines, or rows, of quantities in art. 28, of the foregoing chapter, beginning with the letters a, b, c, d, and e, and which exhibit all the differemt combinations that can be formed out of thofe five letters, it will be evident, that the binzons, or couplets, or parcels confifting of two letters, in every new line of quantities, are formed by combining the lingle letter which is placed in the beginning of fuch new line, with each of the fingle letters contained in all the foregoing lines of quantities; and that the ternions or triplets, or parcels confifting of three letters, in fuch new line, are formed by combining the fingle letter which is placed in the beginning of fuch new line, with each of the binions or couplets, contained in all the foregoing lines; and the quatcrions, or quadruplets, or parcels confifting of four letters,
in fuch new line, are formed by combining the fingle letter which is placed in the beginning of fuch new line, with each of the ternions, or triplets, contained in all the foregoing lines; and, in like manner, in all higher combinations than quaternions, the combinations denoted by anv exponent n in fuch new line, are formed by combining the faid fingle letter which is placed in the beginning of fuch new line, with all the combinations denoted by the next lower exponent m - I contained in all the foregoing lines. It fillows therefore that the number of binions, or couplets, of letters in every new line will be equal to the number of all the fingle letters in all the foregoing lines taken together; and that the number of ternions, or triplets, of letters in fuch new line, will be equal to the number of all the binions, or couplets, of letters in all the foregoing lines taken together; and the number of quaternions, or quadruplets, of letters in fuch ne:v line, will be equal to the number of all the ternions, or triplets, of letters in all the foregoing lines taken together; and in like manner, that the number of combinations of any higher order than quaternions, denoted by the exponent m, in fuch new line, will be equal to the number of combinations of the next lower order, which is denoted by the exponent $m-\mathrm{I}$, in all the foregoing lines taken together. From thefe obfervations we may derive the following conclufions:
41. Firf Conclufion. As there is only one fingle letter in each of the faid lines, or rows, of quantities, to wit, the letter in the beginning of the line, the fingle letters in all the lines fucceffively will exl:ibit a fet of units, to wit, I, I, I, I, I, I, I, I, \&C, which are the figurate numbers of the firt order:
42. Second Conclufion. As there is no binion, or couplet, of letters in the firt line (which contains only the letter a), and there is only one binion in the fecond line, to wit, $a b$; and two binions in the third line, to wit, $a c, b c$; and three binions in the fourth line, to wit, $a d, b d, c d$; and, in gencral, as the number of binions in every new line is
equal to the number of the fingle letters in all the preceeding lines taken together; it follows that the numbers of binions, or couplets, of letters in the firft, fecond, third, and fourth, and other following lines, will be $0,1,1+1,1+$ $\mathrm{I}+\mathrm{I}, \mathrm{r}+\mathrm{I}+\mathrm{I}+\mathrm{I}, \mathrm{I}+1+1+1+\mathrm{i}, \& \mathrm{c}$, or o, r, $2,3,4,5, \& c$, or the feries of numbers $1,2,3,4,5, \& c$, in their natural order, with a cypher, \circ, prefixed to them.

Thefe numbers form an arithmetical progreffion, in which the common difference of the terms is 1 ; and they are often called the natural numbers, or a feries of lateral numbers, or the figurate numbers of the fecond order.
43. Third Concluficn. As there are no ternions, or triplets, of letters in the two firft lines; and there is one ternion, or triplet, to wit, $a b c$, in the third line; and $1+2$, or 3 ternions, to wit, $a b d, a c d$, and $b c d$, in the fourth line; and $1+2+3$, or 6 ternions, to wit, $a b e, a c e, b c e, a d e, b d e$, cde, in the fifth line; and, in general, there are as many ternions in every new line as there are binions in all the foregoing lines together; it follows that the numbers of ternions, or triplets, of letters in the firf, fecond, third, fourth, fifth, and other following lines, of rows; of quantities, will be $0,0,1,3,6,10,15,21,28, \& \mathrm{c}$, which are formed by the continual addition of the numbers of the binions contained in the faid lines, or of the terms of the feries $0,1,2,3,4,5,6,7, \& c$, with a new cypher, 0 , prefixed to them.

Thefe numbers $0,0,1,3,6,10,15,21,28, \& \mathrm{c}$, are often called the trigonal, or triangular, numbers, or the figurate numbers of the third order.
44. Fourth Conclufion. As there are no quaternions, or quadruplets, in the three firt lines; and there is one quaternion, or quadrupler, to wit, $a b c d$, in the fourth line; and it 3 , or 4 , quaternions, to wit, $a b c e, a b d c, a c d e$, and $b c d e$, in the fifth line; and as, in general, there are as many quaternions in every new line as there are ternions in all the foregoing lines together; it follows that the number of quaternions, or quadruplets, of letters in the firt, fecond, third,
third, fourth, fifth, and other following lines, or rows, of quantities, will be $0,0,0,1,4,10,20,35,56,84,8 \mathrm{c}$, refpectively; which numbers are formed by the continual addition of the ternions, or triplets, contained in the faid lines, or of the terms of the laft preceeding feries $\mathrm{O}, \mathrm{O}, \mathrm{I}$, $3,6,10,15,21,28, \& c$, with a new cypher, 0 , prefixed to them.

Thefe numbers $0,0,0,1,4,10,20,35,56,84, \& c$, are often called the pyramidal numbers, or the figurate numbers of the fourth order.
45. Fifth Conclufion. In like manner the numbers of the quinions, or quintuplets, of letters contained in the feveral fucceffive lines, or tows, of quantities beginning with the letters $a, b, c, d, c, \&<c$, will be $0,0,0,0,1,5,15,35$, $70,126,210, \& \%$, refpectively; which are formed by the continual addition of the quaternions, or quadruplets, contained in the faid lines, or of the terms of the laft preceeding feries $0,0,0,1,4,10,20,35,56,84, \& c$, with a new cypher, o, prefixed to them.

Thefe numbers $0,0,0,0,1,5,15,35,70,126,210$, \&cc, are often called the triangulo-pyramidal, or trigono-pyramidal, numbers, or the figurate numbers of the fifth order. And they are alfo fometimes called the triangulo-triangular, or trigono-trigonal, numbers.
46. Sixth Conclufion. And, in like manner, the numbers of the Senions, or fextuplets, of letters contained in the faid feveral fucceffive lines, or rows, of quantities begimning with the letters $a, b, c, d, e, f, g, b, \& c$, will be $0,0,0,0,0$, I, $6,2 \mathrm{I}, 56,126,252,462, \& c$, refpectively; which are formed by the continual addition of the quinions, or quintuplets, contained in the faid lines, or of the terms of the laft preceeding feries $0,0,0,0,1,5,15,35,70,126,210, \&<\mathrm{c}$, with a new cypher, o, prefixed to them.

Thefe numbers $0,0,0,0,0,1,6,21,56,126,252$, 462 , \& c, are often called the pyramido-pyramidal numbers, and fometimes the triangulo-pyramidal, or trigono-pyramidal, numbers, or the figurate numbers of the fixth order.
47. And
47. And in the fame manner the numbers of the Jeptenaries, or Septuplets, and octonaries, or oetuplets, and other higher combinations of the letters $a, b, c, d, e, f, g, b, \& c$, contained in the faid feveral fucceffive lines, or rows, of quantities beginning with the faid letters refpectively, will form the feventh and eighth and other following higher orders of the figurate numbers refpectively.
48. And thus we have unexpectedly been led by the confideration of the nature of combinations to the contemplation of the figurate numbers, or of the numbers that are formed from a feries of equal numbers, or units, to wit, I, I, I, 1, I, I, I, I, I, I, \& ce, by the continual addition of all the terms, and by the like addition of all the terms of every following feries fo obtained.' For thefe are the numbers to which arithmeticians have given the name of the Jigurate numbers.
49. In order to reprefent the feveral orders, or feriefes, of thefe figurate numbers in one view, and thereby to render what I have further to obferve concerning them more eafy to be apprehended, I have fubjoined the following table of them, containing the firft twelve terms of the firtt twelve orders, or feriefes, of the faid numbers; which the reader, if he choofes it, may eafily continue to a greater extent, both downwards, or towards the bottom of the page, and fideways towards the right hand. In this table the Indian, or Arabian, figures $1,2,3,4,5,6,7,8,9,10,1$, 12 (that are placed on the left fide of the table in a direction parallel to the fide of the page, and feparated from the table by a double black line) exprefs the places, or numbers, of the feveral horizontal rows of numbers to which they are adjacent refpectively, and alfo the numbers of letters, or things that are to be combined together. And the capital Roman figures I, II, III, IV, V, VI, VII, VIII, IX, X, XI, and XII, (that are placed directly over the table, parallel to the top of the page) exprefs the places, or numbers, of the feveral vertical columns, and are likewife the exponents of the combinations of the letters $a, b, c, d, e, f, g, b, \& c$, which
which are reprefented by the faid vertical columns refpec. tively. And the faid vertical columns themfelves are the feveral orders, or feriefes, of figurate numbers, or of the feveral combinations of the firt, fecond, third, and other following orders, as far as the twelfth order, of which the Roman numerals I, II, III, IV, V, VI, VII, VIII, IX, X, XI, and XII, at the top of the table, are the exponents, with the proper number of cyphers, o, prefixed to them. Thus, the firtt vertical column on the left-hand fide of the table, under the Roman numeral I, is a feries of units, to wit, I, or the firt order of figurate numbers, which Dr. Wallis calls Monadicks, and reprefents the numbers of the letters $a, b, c, d, e, f, g, b, i, k, l$, and m, that occur fingly, or withour being joined with any other letter, in the feveral lines, or rows, of quantities that are fet down in chap. 2, art. 28, and which are fuppofed to be continued to the twelfth line; and the fecond vertical column on the left-hand fide of the table, under the Roman numeral II, is the feries $0,1,2,3,4,5,6,7,8,9,10$, II, or the fecond order of figurate numbers called the natural, or lateral, numbers *, with a cypher, o, prefixed to them, and reprefents the numbers of binions, or couplets, of the letters $a, b, c, d, e, f, g, b, i, k, l$, and m, or combinations of them by two in a parcel, that occur in the faid twelve fucceffive lines, or rows, of quantities; and the third vertical column, under the Roman numeral III, is the feries $0,0,1,3,6,10,15,21,28,36,45,55$, or the third order of figurate numbers, called the trigonal, or triangular, numbers, with two cyphers prefixed to them, and reprefents the numbers of ternions, or triplets, of the letters a, b, c, d, e, f, g, h, i, k, l, and n, or combinations of them by three in a parcel, that occur in the faid twelve fucceffive lines: and the fourth vertical column, under the Roman numeral IV, is the feries $0,0,0,1,4,10,20,35,56,84,120,165$, or the fourth order of figurate numbers (called the pyramidal numbers) with three cyphers prefixed to them, and repre-

[^1]fents the numbers of quaternions, or quadruplets, of the letters $a, b, c, d, e, f, g, b, i, k, l$, and m, or combinations of them by four in a parcel, that occur in the faid twelve fucceffive lines : and the fifth vertical column, under the Roman numeral V , is the feries $0,0,0,0,1.5,15,35,70$, 126, 252,462 , or the fifth order of figurate numbers (called the triangula-pyramidal, or trigono-pyramidal, numbers) with four cyphers prefixed to them, and reprefents the numbers of quintuplets, or quinions, of the letters a, b, c, d, e, f, g, b, i, k, l, and m, or conbinations of them by five in a parcel, that occur in the faid twelve fucceffive lines: and the fixth vertical column, under the Roman numeral VI, is the feries $0,0,0,0,0,1,6,21,5^{6}, 126,252,462$, or the fixth order of figurate numbers (called the pyramidopyramidal numbers) with five cyphers prefixed to them, and reprefents the numbers of fextuplets, or fenions, of the letters $a, b, c, d, e, f, g, b, i, k, l$, and m, or combinations of them by fix in a parcel, that occur in the faid twelve fucceffive linés *. And, in like manner, the fix following vertical columns, under the Roman numerals V II, VIII, IX, X, XI, and XII, contain the feventh, eighth, ninth, tenth, eleventh, and twelfth orders of figurate numbers, with fix, feren, eight, nine, ten, and cleven, cyphers prefixed to them refpectively, and reprefent the numbers of feptuplets,

* Dr. John Wallis, in his Difcourre of Combinations, Alternations, and Aliguot Parts, bound up with his Algebra, page 109, and Mr. Nicholas Mercator, in his Logarithmoteclonia, publifhed in the firf volume of this colbection of tracts, called Scriptores Logaritbmici, page 178, call the 5 th order of figurate numbers, to wit, $0,0,0,0,1,5,15,35,70,126,210,330$, \&cc, the triaugulo-triangular, or trigono-trigonal, numbers, and the Gth order of figurate numbers, to wir, $0,0,0,0,0,1,6,2 \mathrm{I}, 56,126,252,462, \& \mathrm{c}$, the triangulo-fyramidal, or trigono-pyramidal, numbers, intlead of calling the former the triangulo-pyramidal, or trigono-pyramidal, numbers, and the latter the pyramido pyramidal numbers, as our author calls them, So that there appears to be a variation amongft different writers on this fubject with refpect to the names to be given to the figurate numbers of the sth and 6 th, and other higher orders. And therefore, to avoid ambiguity, it feems to be moft convenient to denote the figurate numbers of the 5 th and 6 th, and all higher, orders, only by the numbers or exponents, of their orders, calling them the figurate numbers of the fifth, and the Gth, and the $7 / 1$, and the: sth, and other following higher orders.
octuplets, noncuplets, decuplets, undecuplets, and duodecuplets, or of feptenions, octonions, novenions, denions, undenions, and duodenions, of the letters a, b, c, d, e, f, g, b, i, k, l, and m, refpectively, or combinations of them by feven in a parcel, and by eight in a parcel, and by ninc in a parcel, and by ren in a parcel, and by eleven in a parcel, and by twelve in a parcel, that occur in the faid twelve fucceffive lines.

A Table of the firfo twelve orders, or feriefes, of figurate numbers, or of all the different combinations that may be made of twelve different letters $\mathrm{a}, \mathrm{b}, \mathrm{c}, \mathrm{d}, \mathrm{e}, \mathrm{f}, \mathrm{g}, \mathrm{h}, \mathrm{i}, \mathrm{k}, \mathrm{l}$, and m, by taking them, firt, fingly, and then combining them with each cther in parcels conjifing of two letters, of three letters, of four letters, of five letters, of fix letters, of Seven letters, of eight letters, of nine letters, of ten letters, of eleven letters, and of twelve letters.

The Roman numerals at the top of the table are the expcrents of the combinations of the letters a, b, c, d, e, f, g, h, i, k, l, m, exbibited by the feveral wertical columns in it.

The
from 'fanes Bernoulli's Treatije De Arte Conjectandi. 75
The firt vertical column on the left hand contains the letters that are to be combined together.

The fecond column expreffes the numbers of letters that are to be combined together.
50. The properties of the numbers exhibited in the foregoing table are truly curious and furprifing. For it not only contains in it (as we have feen in the foregoing pages) the clue to the myfterious doctrine of combinations, but it is alfo the ground, or foundatiot, of moft of the important and abftrule difcoveries that have been made in the other branches of the mathematicks, as is well known to thofe perfons who are fkilled in the higher parts of geomerry. We thall here give a flight fketch, and but a flight one, of fome of the faid properties, without a formal demonftration of any of them except the twelfth and laft, which is that which is moft immediately connected with the fubject of combinations which we are here inquiring into; the other eleven properties being either eafy confequences of the faid 12 th property, or being fufficiently evident from the manner in which the foregoing table was conftructed, or the feveral orders of figurate numbers were generated from each other.

Some wonderful properties of the foregoing table of combinations.
51. The firt property. The fecond of the vertical columns of numbers in the faid table, or that which is placed under the exponent II, begins with one cypher; the third olumn begins with two cyphers; the fourth column with ihree cyphers; and, in general, every column with as many cyphers, wanting one, as there are units in the exponent of the combinations reprefented by is, fo that, if the exponent

$$
L 2
$$

of the column is c, the number of cyphers in the beginning of the column will be $c-1$.

This property is too evident to need, or, perhaps, to admit of, any proof.
52. The fecond property. The firft fignificant terms of the feveral vertical columns, taken in their order in a flanting line downwards, from the top of the table on the left hand to the bottom' of it on the right hand, are the fame with the fignificant terms of the finf vertical column; and the fecond fignificant terms of the feveral vertical columns, taken in the fame manner, are the fame with the fignificant terms of the fecond vertical column ; and the third fignificant terms of the fereral vertical columns, taken in the fame manner, are the fame with the lignificant terms of the thied xertical column; and, in like manner, the fourth, fifth, fixth, and other following, fignificant terms of the feveral yertical columns are the fame with the fignificant terms of the fourth, fifth, fixth, and other following, vertical columns, sefectively: fo that the fint of thofe oblique lines of terms confticutes a feries of units, or $1,1,1,1,1,1,1,1,1,1,1$, I, or the finf order of figumte numbers; and the fecond of th re oblique lines of terms conftitutes a feries of the natural, or lateral, numbers, or $1,2,3,4,5,6,7,8,9,10,11$, or the fecond order of figurate numbers; and the third of thofe oblique lines of terms conftitutes a feries of the trigonal or triangular numbers, to wit, $1,3,6,10,15,21,25,36,45$, 55 , or the hird order of figurate numbers; and, in like manner, the fourth, fifth, fixth, and other following oblique lines of terms, conftitute the fourth, fifth, fixth, and other following onders of figurate numbers refpectively.
53. The thind property. The fecond term in every vertical column, beginning from I , is the fame number as the exponent of the combinations exhibited by the faid column, or as the number denoted by a Roman numeral at the top of the column, which denotes its place or order in the table. Thus, the fecond term of the fourth vertical column I, 4 , $10,20,35,56,84,120,165$, reckoning from 3 , is 4 ;
and the fecond term of the fifth vertical column is 5 , and the fecond term of the fixth vertical column is 6 ; and the fame thing may be obferved in all the following columns.

This property is too evident to need a proof.
54. The fourth property. Every term in the foregoing table is equal to the fum of all the terms that ftand above it in the next preceeding vertical column. Thus, for example, 56 (which is the fixth fignificant term in the fourth vertical column) is equal to the fum of $1,3,6,10,15$, and 21 , which are the firf fix fignificant terms of the next preceeding, or third, vertical column, and which all fand above the faid term 56 , or above the term 28 in the third vertical column, which ftands even with the faid term 56 in the fourth column.

This property is manifeet from art. 40, $41,42, \& c c$. - 48.
55. The fifth property. Every term in the table, after the firt terin 1 in each horizontal row of terms, is equal to the fium of the two terms that ftand immediately above it in the fame vertical column and in the next preceeding vertical column. Thus, for example, 56 (which is the $9^{\text {th }}$ term in the fourth vertical column, including the cyphers, or the fixth term exclufive of the cyphers) is equal to the fum of 35 , which is the term next above 56 in the fame vertical column, and 21 , which is the term next above 56 in the next preceeding or third vertical column. And, from the manner in which the table is formed, the fame thing is dent of every other term in the table.
56. The fixth property. The terms of cvery tranfverfe, or horizontal, column increafe gradually from 1 to a certain magnitude, and then decreafe again by the fame degrees to 1, fo as to make the terms that are equiditant from the beginning and the end of the column be equal to each ocher. Thus, for example, the terms of the 7 th tranfverfe, or horizontal column are $1,6,15,20,15,6$, 1 , in which the firft and the laft term are, both of them, 1 , the fecond
term and the laft term but one, are, both of them, 6 , the third term and the liat terns but two are, both of them, $\mathbf{1}_{5}$, and the middle term is 20 , which is greater than any of the others. And the fame thing may be obferved in all the other tranfverfe or horizontal columns.
57. This property may be flewn to be general or to extend to all the tranfverfe, or horizontal columns, how numerous foever, to which we may fuppofe the table to be continued, as well as to the twel:e columns fet down in the foregoing table, by proving that, if it is true in any one horizontal colmn, (as we have feen that it is in all the horizontal columns fet down in the foregoing table), it will alfo be true in the next following horizontal column. Now this may be proved in the tuanner following.

It appears from the fifih property already mentioned, that the fecond and other following terms of every new tranfverfe, or horizontal, column are equal to the fums of the two terms that ftand immediately above them in the fame vertical column, and in the next preceeding verical column, refpectively, or to the fucceffive fums of the terms of the next precceding horizontal columa, taken two by two. Thus, for cxample, the fecond, third, and other foliowing terms of the Sch horizontal column are 7, 21, 35, 35, 21, 7 , and I ; of which 7 is $=1+6$, or the fum of the firft wid fecond term of the next preceeding, or 7 th horizontal column $1,6,15,20,15,6,1$; and 21 is $=6+15$, or the fum of the lecond and third terms of the faid feventh horizontal column; and 35 is $=15+20$, or the fum of the third and fours terms of the laid feventh horizontal column; and the fecond 35 is $=20+15$, or the fum of the fourth and fifinterms of the faid feventh horizontal column; and the fecond 21 is $=15+6$, or the fum of the fifith and fixth terms of the faid feventh horizontal column; and the fecond 7 is $=6+1$, or the fum of the fixth and feventh terms of the faid feventh horizontal column; and the fecond 1 is $=1+0$, or the fum of the feventh and eighth terms of the faid 7 th horizontal column. So that the temen of the fuid Sth horizontal column, I, 7, 21, 35,
$35,21,7$, 1, may be derived from theterms of the next preceeding, or 7 th, horizontal column, $1,6,15,20,15$, 6 , I , by fetting down the latter terms rwice following in two parallel horizontal rows, with the cerms in the lower row advanced one ftep to the right hand beyond thofe in the upper row, fo that the firlt term of the fecond row thall be immediately under the fecond rerm of the firft row, and the fecond term of the fecond row under the third ternt of the firtt row, and the third term of the fecond row under the fourth term of the firtt row, and every following term of the fecond row under the nexs ligher term of the firt row, and then adding the correfpondent terms, or the terms which fand in the fame vertical lines, together, in the manner following.

$$
\begin{aligned}
& 1,6,15 ; 20,15,6,1 \\
& 1,6,15,20,15,6,1
\end{aligned}
$$

1, 7, 21, 35, 35, 21, 7, 1
Now from this manner of deriving the terms of the 8 th horizontal row of numbers from the ith horizontal row of numbers, it is manifelt that, fince the terms of the feventh row that are equidiftant from the cwo excreme terms I and 1 , are equal to each other, the terms of the 8th row which are equidiftant from the two extreme terms I and I, muft likewite be equal to cach other, being the fums of equal numbers that are added togecher in an oppofite order, to wit, $6+1$ and $1+6,15+6$ and $6+15$, and $20+15$ and $15+20$. And this mechod of reafoning will prove in like manner that, fince the terms of we 8th horizontal row of numbers that are equidiftant from the two extreme terms I and 1 are equal to each other, the terms of the gth horizontal row of numbers that are equidiftant from the two extreme terms i and i will alfo be equal to each other; and confequently that, to whatever extent the table be fuppofed to be colstinued, the terms of every following horizontal row of numbers that are equidifant from the two extreme terms I and I will be equal to each other.
Q. E. D.
58. The feventh property. If we take a certain number of vertical columns of numbers in the foregoing table, and continue the terms in each column till they are as many as there are columns, and then add up the feveral numbers in each column, and place the fums thereby obtained in a new horizontal line, or row, at the bottom of the faid columns, the firt of thefe fums will be equal to the laft but one, the fecond of them to the laft but two, the third of them to the laft but three, and in general, the wth torm to the laft but m. Thus, for example, if we take the firlt eight vertical columns, and continue them to eight terms each (including the cyphers in the beginning of all but the firft column), and then add the numbers in each feparate column into one fum, the fums thercby obtained will be $8,28,56,70,56$, 28,8 , and 1 ; of which the firt fum 8 is equal to the lalt but one, the fecond fum 28 is equal to the laft but two, and the third fum 56 is equal to the laft but three, and the fourth term 70 is itfelf the laft term but four.

1	\bigcirc						
I	1	\bigcirc	\bigcirc	\bigcirc	\bigcirc	0	\bigcirc
I	2	I	\bigcirc	\bigcirc	0	\bigcirc	\bigcirc
1	3	3	I	-	\bigcirc	\bigcirc	\bigcirc
1	4	6	4	1	O	\bigcirc	0
I	5	10	10	5	1	\bigcirc	\bigcirc
1	6	15	20	15	6	1	\bigcirc
1	7	21	35	3.5	21	7	I
8	28	56	70	56	28	8	1

59. This property follows from the fourth property, which is mentioned above in arr. 54. For, by that property, each of the faid fums is equal to the next following term of the next horizontal row of numbers, that is, in the example here given, of the rinth horizontal row of numbers in the foregoing table, which is $1,8,28,56,70,56,28,8$, and 1 ; to wit, the fum of the units in the firlt vertical column is equal to the fecond term 8 of the faid ninth horizontal row of numbers, and the fum of the numbers $1,2,3,4$, $5,6,7$, in the fecond vertical column is equal to the third
term 28 of the faid ninth horizontal row of numbers; and the fum of the numbers $1,3,6,10,15,21$, in the third vertical column is equal to the fourth term 56 of the faid ninth horizontal row of numbers; and in like manner, the furns of the numbers $1,4,10,20,35$, in the fourth vertical column, and of the numbers $1,5,15,35$, in the fifth vertical column, and of the numbers in the fixth, feventh, and eighth vertical columns, are refpectively equal to the numbers 70,56 , 28,8, and 1 , or the fifth, fixth, feventh, eighth, and ninth, terms of the faid ninth horizontal row of numbers. But, by the fixth property (which has been mentioned above in art. 56, and demonftrated in art. 57) the terms of the faid ninth horizontal row of numbers, $\mathrm{I}, 8,28,56,70,56,28,8$, and I , that are equidiftant from the two extreme terms I and 1 , are equal to each other, and muft be fo from the manner in which they are generated. Therefore the faid fums of the numbers contained in the faid eight vertical columns, being equal to the fecond, third, fourth, and other following terms of the faid ninth horizontal row of numbers, muft be fuch that, if an unit be prefixed to them (whereby their number will be increafed to nine terms), the terms that are equidiftant from the two extreme terms I and I will be equal to each other. And confequently, if an unit be not prefixed to them, the firlt of thofe fums will be equal to the laft of them but one, and the fecond of them will be equal to the laft but two, and the third of them will be equal to the lalt but three, and the nth of them will be equal to the laft but m. And this, it is evident, will be true, if inftead of eight vertical columns continued to eight terms each, we were to take any other number of vertical columns, how great foever, and continue them till the number of the terms in each column (including the cyphers) was equal to the number of the columns. And therefore it is true univerfally. C. E. D.
60. The eighth property. The horizontal rows of numbers in the foregoing table of combinations, beginning with the fecond row, exhibit the co-efficients of the feveral fucceffive powers of a binomial quantity, as $a+b$. Thus, the
numbers in the fecond horizontal row, to wit, 1 and x , are the co-efficients of the two members a and b of the faid binomial quantity $a+b$ itfelf, or (as it is fometimes called) of the firt, or fimple, power of the faid binomial quantity. The numbers in the third horizontal row, to wit, 1,2 , and 1 , are the co-efficients of the feveral terms $a a, 2 a b$, and $b b$, of the compound quantity $a a+2 a b+b b$, which is the fquare, or fecond power, of the faid binomial quantity. The numbers in the 4 th horizontal row, to wit, $1,3,3$, and I, are the co-efficients of the feveral terms of the compound quantity $a^{3}+3 a^{2} b+3 a b^{2}+63$, which is the cube, or third power, of the faid binomial quantity. The numbers in the 5 th horizontal row, to wit, $1,4,6,4$, and 1 , are the co-efficients of the feveral terms of the compound quantity $a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$, which is the 4 ch power of the faid binomial quantity. And, in like manner, the numbers in the 6th, 7 th, 8 th, 9 th, and every following horizontal row to the nth row (n being any whole number whatfoever) will be the co-efficients of the terms of the $5^{\text {th, }} 6$ th, 7 th, 8th, and every following power of the faid binomial quantity $a+b$, to the $n-1$ th power, refpectively; and the numbers in the $n+$ nh horizontal row of terms in the faid table will be the co-efficients of the terms of the nth power of the faid binomial quantity.
61. This property will appear from the manner in which the powers of the binomial quantity $a+b$ are generated from each other by multiplication, which is as follows:
M. Fames Bernoulli's Treatije De Arte Conjectandi. s_{3}

$$
\begin{aligned}
& a+b \\
& a+b \\
& a a+a b \\
& +a b+b b \\
& \begin{array}{c}
a a+2 a b+b b=\left.\overline{a+b}\right|^{2} \\
a+b
\end{array} \\
& a^{3}+2 a^{2} b+a b b \\
& +a^{2} b+2 a b b+b^{3} \\
& \begin{array}{c}
a^{3}+3 a^{2} b+3 a b^{2}+b^{3}=\left.\overline{a+b}\right|^{3} \\
a+b
\end{array} \\
& a^{4}+3 a^{3} b+3 a^{2} b^{2}+a b^{3} \\
& +a^{3} b+3 a^{2} b^{2}+3 a b^{3}+64 \\
& a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}=a+\left.b\right|^{4} .
\end{aligned}
$$

Or, if, for brevity's fake, we fubttitute $\mathrm{I}+\mathrm{I}$ inftead of $a+b$, the multiplication will be as follows :

$$
\begin{aligned}
& I+I \\
& 1+I \\
& I+1 \\
& +1+1 \\
& \overline{I+2+I}=\left.\overline{I+1}\right|^{2} \\
& 1+1 \\
& 1+2+1 \\
& +1+2+1 \\
& 1+3+3+1=1+11^{3} \\
& 1+1 \\
& 1+3+3+1 \\
& +1+3+3+1 \\
& \overline{I+4+6+4+1}=\overline{I+1}{ }^{4} \\
& \text { M } 2
\end{aligned}
$$

Herc

Here we fee that every new power of the binomial quantity $I+I$ is formed by adding together the terms of the next preceeding power of it by two at a time, or in fetting down the terms of the preceeding power twice following in two parallel horizontal rows, with the terms in the lower row advanced one ftep to the right hand beyond thofe in the upper row; which is the manner in which the feveral horizontal rows of numbers in the foregoing table of combinations are, or may be, derived from each other, as appears from the 5 th and 6th properties above-mentioned in art. 55 , 56, and 57. Therefore, fince thefe co-efficients of the terms of the powers of the binomial quantity $1+1$ are generated from $\mathrm{r}+1$, in the fame manner as the 3 d , 4 th , 5 th , and other following rows of numbers in the foregoing table of combinations are generated from the fame numbers 1 and 1 in the fecond horizontal row, it follows that the numbers contained in the 3 d , 4 th , 5 th, and other fubfequent horizontal rows muft coincide with, or be the fame with, the co-efficients of the terms of the fquaie, cube, fourth power, and other following correfpondent powers of the faid bino* mial quantity. ©, E. D.
62. The ninth property. The fums of the numbers contained in the feveral fucceffive horizontal rows in the foregoing table of combinations increafe continually in the proportion of 1 to 2 ; or the fum of the numbers in every new horizontal row is double of the fum of the numbers in the next preceeding horizontal row. Thefe fums are as follows:

In the if horizontal row $\mathrm{I}+\mathrm{O}+\mathrm{O}$ \&c are $=\mathrm{I}$.
In the 2 d horizontal row $\mathrm{I}+\mathrm{I}+\mathrm{o}+\mathrm{o}$ \& c are $=2$.
In the 3 d row $\mathrm{r}+2+1+0$ +o \&c are $=4$.
In the 4th row $1+3+3+1+0+0$ \& co are $=8$.
In the 5 th row $1+4+6+4+1+0+0$ \&c are $=16$.
In the 6th row $1+5+10+10+5+1 \& \mathrm{c}$ are $=32$.
In the 7 th row $1+6+15+20+15+6+\mathrm{r}$ are $=64$.
In the 8 th row $1+7+21+35+35+21+7+1$ are $=128$.

Each of thefe fums is double of the fum immediately preceeding it. And the fame thing is true of the fums of the terms of the four following horizontal rows in the foregoing table, and of the fums of the terms of all the following horizontal rows that would belong to it, if it were continued to any greater number of vertical columns and horizontal rows whatfoever.
63. This property follows from what has been fhewn above in art. 57, to wit, that every new horizontal row of numbers in the faid table may he derived from the next preceeding horizontal row of numbers by fetting down the numbers of the faid preceeding row twice following in two parallel horizontal rows, with the terms in the lower row advanced one ftep further to the right hand than the terms in the upper row, and then adding the terms of the two rows that ftand in the fame vertical lines together. For the fum of the numbers contained in the new horizontal line arifing from the addition of the faid two lines together, muft evidently be double of the fum of the numbers in only one of the lines fo added. Thus, if we fet down the numbers of the 7 th horizontal row of numbers, to wit, $1,6,15,20$, $15,5,1$, twice following in two parallel rows one under the other, as follows,

$$
\begin{aligned}
& 1,6,15,20,15,6,1 \\
& 1,6,15,20,15,6,1
\end{aligned}
$$

and then add the two rows together, fo as to make a new line of numbers, to wit,

$$
1,7,21,35,35,21,7,1
$$

it is evident that the fum of the numbers contained in this new line mult be double of the fum of the numbers contained in either of the two former lines. \&. E. D.
64. This property may alfo be derived from the laft or 8 th property, fet forth and proved in art. 60 and 61 . For, fince every new power of the binomial quantity $1+1$ muft be greater than the next preceeding power of it in the proportion of $x+1$, or 2 , to x; and it has been fhewn in art. 6I, that the feveral horizontal rows of numbers in the fore-
going table exhibit the members of the feveral fuccefive powers of the binomial quantity $1+1$; it follows that the faid horizontal rows of numbers muft be greater, one than the other, in the fame proportion of $1+1$, or 2 , to 1 .
Q. E. D.
65. The tenth property. If the fums of the numbers contained in the feveral horizontal rows of the foregoing table of combinations be continually added to each other, the new fums thence arifing, or the fums of the former fums, will form a feries of numbers, which will be equal to the feveral powers of 2 , with an unit fubtracted from them, or to $2-1,2^{2}-1, \overline{2} 7^{3}-1,27^{4}-1,27^{5}-1,22^{6}-1, \overline{2} 7^{7}-1$, 8 c , or to $2-\mathrm{I}, 4-\mathrm{I}, 8-\mathrm{I}, 16-\mathrm{I}, 32-\mathrm{I}, 64$ - I , 128 - $1, \& \mathrm{c}$, or $\mathrm{I}, 3,7,15,31,63,127, \& \mathrm{c}$.

Thus, for example, the fums of the eigltt firf horizontal rows of numbers are $5,2,4,8,16,3^{2}, 64$, and 128 , refpectively, as we have feen in art. 62. Now, if thefe fums are added together, we fhall have

1 二 $1=2$ — 1
$1+2=3=4-1=27^{2}-1$,
$1+2+4=7=8-1=\left.2\right|^{3}-1$,
$1+2+4+8=15=16-1=274-1$,
$1+2+4+8+16=31=32-1=22^{5}-1$,
$1+2+4+8+16+3^{2}=63=64-1=27^{6}-1$,
$1+2+4+8+16+32+64=127=128-1=27^{7}-1$, and
$1+2+4+8+16+32+64+128=255=256-1=27^{3}-1$.
And univerfally, if the number of the horizontal rows be n, the fum of the fums of all the numbers contained in them will be 2$)^{n}-1$.
66. This is evident from art. 33. For the fum of all thefe fums is the number of all the poffible combinations of n letters; which is fhewn in art. 33 to be $=27^{n}-1$. Therefore the fucceffive fums of the fums of all the numbers contained
tained in the faid horizontal rows will form the feries I, $2-1,27^{2}-1,27_{3}-1,27^{+}-1,27^{5}-1 ; 27^{6}-1,27^{7}-1$, $\left.2^{3}-1, \& c \ldots\right]^{n-1}$. \&. е. D.
67. The eleventh property. If we divide the terms of the fecond, or any other of the vertical columns of the foregoing table of combinations by the correfponding terms (or terms fituated in the fame horizontal line) of the next preceeding vertical column, the feveral quotients thence arifing will be equal to the terms of an arithmetical progreffion confifting of fractions, of which the common difference is a fraction of which an unit is the numerator, and the number which is the exponent of the firft of the faid vertical columns (by the terms of which the terms of the other vertical column are divided) is the denominator.

Thus, for example, if we divide each of the terms of the fecond vertical column $0,1,2,3,4,5,6,7,8,6,10$, II (omitting the firft term, which is a cypher, or 0), by the correfponding term of the firft vertical column $\mathbf{1}, \mathbf{I}, \mathbf{1}, \mathbf{1}$, $1, I, 1,1, I, I, I, I$, the quotients will be $\frac{1}{1}, \frac{2}{1}, \frac{3}{1}, \frac{4}{1}$, $\frac{5}{1}, \frac{6}{1}, \frac{7}{1}, \frac{8}{1}, \frac{9}{1}, \frac{10}{1}, \frac{11}{1}$, which differ from each other by the common difference $\frac{1}{1}$.

And, if we divide each of the terms of the third vertical columnios $0,1,3,6,10,15,21,28,36,45,55$ (omitting the two cyphers) by the correfponding term of the fecond vertical column, $0,1,2,3,4,5,6,7,8,9,10,1$, the quotients will be $\frac{1}{2}, \frac{3}{3}, \frac{6}{4}, \frac{10}{5}, \frac{15}{6}, \frac{25}{7}, \frac{28}{8}, \frac{36}{9}, \frac{45}{10}$, and $\frac{55}{11}$, which are refpectively equal to $\frac{1}{2}, \frac{2}{2}, \frac{3}{2}, \frac{4}{2}, \frac{5}{2}, \frac{6}{2}$, $\frac{7}{2}, \frac{8}{2}, \frac{9}{2}$, and $\frac{10}{2}$, which differ from each by the fraction $\frac{1}{2}$, of which 1 is the numerator, and 2 , or the exponent of the fecond vertical column $0,1,2,3,4,5,6,7,8,9$,
ro, IY , (by the terms of which the terms of the third vertical column are divided), is the denominator.

If we divide the terms of the fourth vertical column (omitting the cyphers at the beginning) by the correfponding terms of the third column, the quotients will be as follows; to wit,

$$
\begin{aligned}
\frac{1}{3} & =\frac{1}{3} \\
\frac{4}{6} & =\frac{2}{3} \\
\frac{10}{30} & =\frac{3}{3} \\
\frac{20}{15} & =\frac{4}{3} \\
\frac{35}{21} & =\frac{5}{3} \\
\frac{56}{28} & =\frac{6}{3} \\
\frac{84}{36} & =\frac{7}{3} \\
\frac{120}{45} & =\frac{8}{3} \\
\text { and } \frac{165}{55} & =\frac{9}{3}, \text { which differ from each other }
\end{aligned}
$$

by the fraction $\frac{1}{3}$, of which I is the numerator, and 3 , or the exponent of the third vertical column (by the terms of which the terms of the fourth vertical column are divided), is the denominator.

In like manner the quotients that arife by dividing the terms of the fifth vertical column by the correfponding terms of the fourth vertical column are the following, to wit, $\frac{1}{4}, \frac{5}{10}, \frac{15}{20}, \frac{35}{55}, \frac{70}{50}, \frac{126}{84}, \frac{210}{120}$, and $\frac{330}{105}$, which are refpectively equal to $\frac{1}{4}, \frac{2}{4}, \frac{3}{4}, \frac{4}{4}, \frac{5}{4}, \frac{6}{4}, \frac{7}{4}$, and $\frac{8}{4}$.

And the quotients that arife by dividing the terms of the fixth vertical column by the correfponding terms of the fifth

Mr. Fannes Bernoulli's Treatife De Arte Conjectandi. 89
fifth vertical column are $\frac{1}{5}, \frac{6}{15}, \frac{21}{35}, \frac{56}{70}, \frac{126}{126}, \frac{252}{210}$, and $\frac{462}{330}$, which are refpectively equal to $\frac{1}{5}, \frac{2}{5}, \frac{3}{5}, \frac{4}{5}, \frac{5}{5}, \frac{6}{5}$, and $\frac{7}{5}$.

The quotients that arife by dividing the terms of the feventh vertical column by the correfponding terms of the fixth column are $\frac{1}{6}, \frac{7}{21}, \frac{28}{56}, \frac{84}{126}, \frac{210}{252}$, and $\frac{462}{462}$, which are refpectively equal to $\frac{1}{6}, \frac{2}{6}, \frac{3}{6}, \frac{4}{6}, \frac{5}{6}$, and $\frac{6}{6}$.

The quotients that arife by dividing the terms of the eighth vertical column by the correfpondent terms of the feventh column are $\frac{1}{7}, \frac{8}{28}, \frac{36}{84}, \frac{120}{210}$, and $\frac{330}{462}$, which are refpectively equal to $\frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}$, and $\frac{5}{7}$.

The quotients that arife by dividing the terms of the ninth vertical column by the correfponding terms of the eighth column are $\frac{1}{8}, \frac{9}{36}, \frac{45}{120}$, and $\frac{165}{330}$, which are refpectively equal to $\frac{1}{8}, \frac{2}{8}, \frac{3}{8}$, and $\frac{4}{8}$.

The quotients that arife by dividing the terms of the tenth vertical column by the correfpondent terms of the nintli column are $\frac{1}{9}, \frac{10}{45}, \frac{55}{165}$, which are refpectively equal to $\frac{1}{9}$, $\frac{2}{9}$, and $\frac{3}{9}$.

And the quotients that arife by dividing the terms of the eleventh vertical column by the correfpondent terms of the tenth column are $\frac{1}{10}$ and $\frac{11}{55}$, which are refpectively equal to $\frac{1}{10}$ and $\frac{2}{10}$.
68. This property of thefe numbers might, if it were neceffary to the main object of this Treatife, be derived from
the
the following, or 12 th, property of the faid numbers, which we will now proceed to fet forth and to demonflate.
69. The twelfth property. The fum of all the numbers contained in any one of the vertical columns of the foregoing table of combinations, is to the fum of the like number of terms that floould be all equal to the latt term of the column, in the fame proportion as ito the exponent of the column, or the number which denores the place of the column, and which is matked by a Roman numeral figure at the top of it.

Thus, in col mman 1 , which confints entirely of units, the fum of all the twelve terms is 12 , which is to the fum of twelve terms all equal to the laft term as 1 to 1 , or the exponent of the firft column. This propofition is felf-evident.

In the 2 d column the twelve terms are $0,1,2,3,4$, $5,6,7,8,9,10$, and 11 ; the fum of which is 66 . And the fum of twelve terms equal to the laft, or greateft, term 11 , is 132 . Now 65 is to 132 as I is to 2 , or the exponent of this fecond column.

In the 3 d column the twelve terms are $0,0,1,3,6,10$, $15,21,28,36,45$, and 55 ; the fum of which is 220 . And the fum of twelve terms equal to the laft, or greateft, term 55 , is 660 . Now 220 is to 660 as I is to 3 , or the exponent of the third column.

In the 4 th column the twelve terms are $0,0,0, I, 4$, $10,20,35,56,84,120$, and 165 ; the fum of which is 495. And the fum of twelve terms equal to the lart, or greateft, term 165 , is 1980 . Now 495 is to 1980 as I is to 4 , or the exponent of the fourth column.

In the 5 th column the twelve terms are $0,0,0,0,1,5$, $15,35,70,126,210$, and 330 ; the fum of which is 792 . And the fum of twelve terms equal to the laft, or greateft, term 330 , is 3960 . Now 792 is to 3960 as I is to 5 , or the exponent of the fifth column.

In the 6th column the twelve terms are $0,0,0,0,0, I_{2}$ $6,21,56,126,252$, and 462 ; the fum of which is 924 . And

And the fum of twelve terms equal to the laft, or greateft, term 462 , is 5544 . Now 924 is to 5544 as 1 is to 6 , or the exponent of the fixth column.

In the η th column the twelve terms are $0,0,0,0,0,0$, 1, $7,28,84,210$, and 462 ; the fum of which is 792 . And the fum of twelve terms equal to the laft, or greateft, term 462 , is 5544 . Now 792 is to 5544 as I is to 7 , or the exponent of the feventh column.

In the Sth column the twelve terms are $0,0,0,0,0,0$, $0,1,8,36,120$, and 330 ; the fum of which is 495 . And the fum of twelve terms cqual to the laft, or greateft, term 330 , is 3960 . Now 495 is to 3960 as I is to 8 , or the exponent of the eighth column.

In the gth column the twelve terms are $0,0,0,0,0,0$, $0,0,1,9,45$, and 165 ; the fum of which is 220 . And the fum of twelve terms equal to the latt, or greateft, term 165 , is 1980 . Now 220 is to 1980 as 1 is to 9 , or the exponent of the faid ninch column.

In the roth column the twelve terms are $\mathrm{o}, \mathrm{o}, \mathrm{o}, \mathrm{o}, \mathrm{o}, \mathrm{o}$, $0,0,0,1,10$, and 55 ; the fum of which is 66 . And the fum of tivelve terms all equal to the laft, or greateft, term 55 , is 660 . Now 66 is to 660 as I is to 10 , or the exponent of the faid tenth column.

In the inth column the twelve terms are $0,0,0,0,0,0$, $0,0,0,0,1$, and 1 ; the fum of which is 12 . And the fum of tweive terms all equal to the laft, or greatef, term 1 I , is I_{2}. Now 12 is to 132 as I is to II , or the exponent of the faid eleventh column.

In the 12 ih column the twelve terms are $0,0,0,0,0,0$, $0,0,0,0,0$, and 1 ; the fum of which is 1 . And the fum of twelve terms all equal to the laft, or greateft, term 1 , is 12. Now 1 is to 12 as 1 is to the exponent of the faid twelfth column, that exponent being 12 .

And the fame thing will be found to be true, if, inftead of taking twelve terms in each of the faid vertical columns, we were to take any leffer number, as five, or fix, or feven, terms, or any greater number of terms whatfoever, as fif-
teen, or twenty, or a hundred terms, continuing the table both downwards and fideways for that purpofe, namely, that, if the exponent of any one of the vertical columms be called c, the fum of all the terms in the faid column, continued to any number of terms whatfoever, will be to the fum of as many terms all equal to the laft, or greatelt, term of the faid column, as $\mathbf{1}$ is to $c *$.

70. This

* The attentive reader may perhaps have obferved, in reading the foregoing tranfation of the twelve furprifing propetties of the numbers contained in the table of combinations, exhibited in page 74 , (which properties are fet forth in pages $75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90$, and 91) that the 7 th property (which is fet forth in art. 58 , page 80) is not the fame with the 7 th property in the author's original, (which is contained in page 19, but anfwers to the 8th-property fet forth in the faid original ; and that there is no property in the tranflation that exactly anfwers to the faid gth property in the original. The reafon of this omifion is, that the 7th property fet forth in the authen's original, feemed to me to be the fame with the next preceeding, or 6th, property, and therefore to be an unneeeffary repetition. But, whether it is fo, or not, mult be referred to the reader's judgment. And therefore I will here fet down both the 6th and the 7 th property, as they are expreffed in the original.

The fixth property is expreffed in thefe words. Columine cujufvis tranfs verfre termin: ab wnitate aliquoufque crefount, deinde por eofdem gridus rursüns decrefcunt. Idem int liige de fummis columnarum verticalium requè-altarum, cilu terminis fequentis cilumnce tranfuerfer, per quartail: proprictatem.

And the feventh property is expreffed in thefe words. Columnarum verticalium aquè-altarumb bafis, five termini ${ }^{\circ}$ colvnnue tranfverfa sujullibet, primus quidem et ultinnus Jignificatirus perprtuò inter fo cequanizur, ut et fecundus et penultimus, ter:!us at antepenultinnus, atque ita porrò, $\sqrt{\imath}$ culumna plaribus terminis fignifficativis conjlet.

Now this ${ }^{7}$ th property feems to me to be a mere repetition of the foregoing 6th property, and particularly of the firft fentence of it, to wit, Columne
 gradus tursian tiecrejcunt. Thefe words, " ab unitatc crefcunt, cleinde per cofdem gratus rurss̀m decrefcunt" feem only to be parapirafed, or more fully explained, by the words of the $7^{\text {th }}$ property, to wit, primus quidens et ultimas perpetuò inter fo aquantur, xt et Jciundus et peanlitinus, tertins et antepenuithonus, atque ita porro. Therefure, as I could find no new meaning to the wordis of the 7 th property, whareby it could be diftinguifhed from the Gth property, I thought it better to omit it.

Yet we may olferve that there are twelve properties of the figurate numbers, or numbers contained in the foregoing table of combinations, fet down in the tranflation as well as in the author's original. This is owing to my having divided the roth property of thefe numbers mentioned in the author's original
70. This is the moft important property belonging to the figurate numbers, and that which will be of molt ufe to us in treating of the dogrine of chances, or the art of forming probable conjectures concerning events that depend on chance, which is the fubject of this treatife. I fhall therefore now endeavour to demontrate this property of the faid numbers in a fcientific and fatisfactory manner, and fo as to convince my readers that it mutt be true in all cafes whatfoever (however great the number of vertical columns, and that of the terms in each vertical column, may be fuppofed to be taken) as well as in the finall number of cafes exhibited in the foregoing table of combinations. And in order to this I fhall proceed to lay down the four fullowing preliminary propolitions, or lemmas, as the ground-work of the following demonftration.

Lemma I.

71. The fum of any number of terms whatfoever in the firlt verícal column in the foregoing table of combinations, is equal to the fum of an equal number of terms that are all equal to the laft term.
original (which confifts of two branches) into two feparate properties, calling the firt branch of the faid 10 th property in the original (which is expreffed in thefe words, "Summace ferierum tranfecrfarum progrediuntur in continua ratione dupla") the gth property in the tranflation; and the fecond branch of it (which is expreffed in thefe words, "Summarum reero fumnier, $a b$ initio collcecre, terminos confituunt progrefionis duplae unitate multatos") the 1oth property in the tranflation.

The differences therefore between the properties of thefe numbers, as exprefled in the tranflation, and as expreffed in the original, are as follows. The fix firf properties of thefe numbers in the tranflation anfwer to the fix firlt properties of them in the original refpectively; the 7 th property in the tranflation anfiwers to the 8th property in the original: the 8th property in the tranflation anfwers to the gth property in the original: the gth and roth properties in the tranflation anfwer to the firft and fecond branches of the 10th property in the original: and the 11 th and 12 th properties in the tranfation anfwer to the 11th and 12 th properties in the original, re\{pectively.

Demonstration.

This is evident, becaufe all the terms in the firf column are units, or equal to the laft term. Therefore the fum of all the faid terms is the fum of the fame number of terms equal to the laft term. Q. E. D.

Lemma II.

72. If in any one of the vertical columns of numbers in the foregoing table of combinations, after the firt column, we take as many terms (including the cyphers in the beginning of the column) as there are units in the exponent of the column, the fum of all the faid terms will be to the fum of the fame number of terms that are all equal to the laft of them in the fame proportion as 1 is to the exponent of the faid column.

Demonstration.

By the firt property of thefe figurate numbers, fet forth in art. j^{1}, the number of cyphers at the beginning of each of the faid vertical columns is lefs by an unit than the exponent of the faid column. And, by the fecond property of thefe numbers, fet forth in art. 52 , the firf term in every column after the cyphers is an unit. Therefore the fum of all the terms of the vertical column that are fuppofed in this lemma to be taken (which are only as many as there are units in the exponent of the column) will be the fum of fome cyphers and an unit, and confeguently will be equal only to an unit. And the fum of the fame number of terms all equal to the laft will be equal to the fum of the fame number of terms all equal to an unit, or will be equal to the exponent of the column. Therefore the fum of all the terms in the faid vertical column will be to the fum of as many
terms all equal to the laft term (which is an unit) in the fame proportion as I is to the exponent of the column.
C. E. D.

Thus, for example, in the 4 th vertical column, if we take only the four firt terms $0,0,0,1$, the fum of thefe terms will be $=\mathrm{r}$, and the fum of four terms all equal to the laft term, which is I , will be $(=\mathrm{x}+1+\mathrm{I}+1)=4$. And therefore the former fum is to the latter as 1 is to 4 , which is the exponent of the faid column. And, in general, if the exponent of the column be c, and we take c terms in it, the c - I terms will be all cyphers, and the cth term will be 1 . Therefore the fum of the faid c terms will be 1 . And the fum of c terms all equal to the laft term (which is 1) will be c. Therefore the former fum will be to the latter fum as I is to c.

This lemma is the fame with the general propofition hereafter to be proved, or the 12 th property of the figurate numbers, in the cafe of taking only the firft fignificant term in each of the vertical columns, which firft term is always an unit.

Lemma III.

73. If the above defrribed 12 th property of the figurate numbers (which we are preparing to demontrate the truth of) Chould be found to be true in any one of the vertical columns of numbers contained in the foregoing table of combinations, or the fum of any number of terms taken in the faid column fhould be to the fum of the fame number of terms all equal to the laft, or greatef, term, always in the fame conftant proportion, whatever be the number of terms fo taken; and this proportion be that of ito a certain number denoted by r, fo that the fum of the terms fo taken fhall always be equal to the quotient that arifes by dividing the latter fum (or the fum of the fame number of terms all equal to the laft term) by the number r; the excefs
of the number of the terms fo taken above the number r will be to the excefs of the number of terms fo taken above x in the fame proportion as the laft term but one of the terms fo taken to the lait term of all.

Demonstration.

Let the terms fuppofed to be taken in the faid vertical column be $A, B, C, D, \& c \ldots K, L$, of which L is the laft, and K the laft but one. And let the number of the terms fo taken be n. We are then to prove that $n-r$ will be to $n-\mathrm{I}$ as K is to L .
Now, fince the fum of all the n terms A, B, C, D, \&c $\ldots . \mathrm{K}, \mathrm{L}$ is fuppofed to be to the fum of n terms all equal to the latt term L, or to $n \times L$, in the proportion of I to r; and the fum of all the terms $A, B, C, D, \& i c \ldots K, L$, except the laft term L , or the fum of all the $n-\mathrm{I}$ terms $A, B, C, D, \& c \ldots K$, is alfo fuppofed to be to the fum of $n-I$ terms all equal to the laft term K, or to $n-1 \times$ K , in the fame proportion of i to r; it follows that the fum of all the n terms $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \& \mathrm{c} \ldots \mathrm{K}$, L will be $=$ $\frac{n \times \mathrm{L}}{r}$, and the fum of all the $n-1$ terms $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \& \mathrm{c}$, K , will be $=\frac{\overline{n-\eta} \times \mathrm{K}}{r}$. But this latter fum, or $\mathrm{A}+\mathrm{B}+\mathrm{C}$ $+\mathrm{D}+\& \mathrm{c}+\mathrm{K}$, is lefs than the former fum, or $\mathrm{A}+\mathrm{B}+$ $\mathrm{C}+\mathrm{D}+\& \mathrm{c} \mathrm{K}+\mathrm{L}$, by L . Therefore $\frac{\overline{n-1} \times \mathrm{K}}{r}$ is $=\frac{n \times \mathrm{L}}{r}$ $-\mathrm{L}=\frac{n \times \mathrm{L}-r \times \mathrm{L}}{r}=\overline{\frac{n-r}{r}} \overline{\mathrm{~L}}$, and confequently $\overline{n-\mathrm{I}} \times \mathrm{K}$ is $=n-\eta \times \mathrm{L}$. Therefore $n-r$ is to $n-\mathrm{I}$ as K is to L . Q. E. D.

Lemma IV.

74. If in the foregoing table of combinations, or figurate numbers, we take two contiguous vertica! columns; and the numbers in the firft of the two columns are found to have the twelfth property above-defribed, or the fun of any number of terms of it is to the fum of as many terms all equal to the laft, or greateft, term, in the fame proportion as the fum of any other number of its terms is to the fum of as many terms all equal to the laft, or greateft, of this latter number of terms; and the faid proportion is that of I to the number r; and in the fecond of the faid two contiguous vertical columns it be found that for a certain number of terms the numbers in the faid column are likewife poffeffed of the fame 12 th property, and that the fum of the faid number of terms is to the fum of as many terms all equal to the laft, or greateft, term in the proportion of I to $r+1$, and that the fum of any leffer number of its terms is to the fum of as many terms all equal to the laft, or greateft, of the faid leffer number of terms, in the fame proportion of I to r + I ; I fay, then, that, if we take another term in the faid fecond vertical column above the number before taken, and in which the faid 12 th property has been found to take place, the faid i2th property will take place likewife with refpect to the numbers in the faid fecond column, when increafed by the faid new term, and the fum of all the terms in the faid column, including the faid new term, will be to the fum of as many terms all equal to the faid new term, in the fame proportion of 1 to $r+1$.

Demonstration.

Let n be the number of terms that are taken in the fecond of the two vertical columns; and let the fame number of terms be taken in the firlt of them. Let the terms in the faid firtt column be $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, 8 \mathrm{c} \ldots \ldots \mathrm{K}, \mathrm{L}$, and thofe in the fecond column be $a, b, c, d, \xi_{c} \ldots, k, l$. Then, by the fuppofition, the fum of the n terms A, B, C, D, ixc
.... K, L, will be to the fum of n terms, all equal to the laft term L , or to $n \times \mathrm{L}$, in the proportion of I to r; and the fum of all the n terms $a, b, c, d, \mathcal{E}_{c} \ldots \ldots, l$, will be to the fum of n terms all equal to l, or to $n \times l$, in the proportion of i to $r+1$. Now let another term m be added to the former terms $a, b, c, d, \varepsilon^{3} c \ldots k, l$, of the fecond of the faid two vertical columns. We are then to prove that the fum of all the terms $a, b, c, d, \mathcal{F}^{\prime} \ldots \ldots k, l$, and m_{2} (the number of which is $n+1$) will be to the fum of as many terms all equal to the laft term m, or to $\overline{n+1} \times m$, in the fame proportion of ito $r+1$.

Now, by the $4^{\text {th }}$ property of the figurate numbers above fet forth in art. 54 , it is manifeft that l, or the nth term of the fecond of the two vertical columns, will be equal to the fum of all the terms in the preceeding vertical column except the laft term. L, or to the fum of the n-I terms A, $B, C, D, \& c \ldots$ K. But, by the fuppofition, the fum of thefe terms is lefs than the fum of as many terms equal to the laft term K in the proportion of 1 to r, or is equal to $\frac{\overline{z-\eta} \times \mathrm{K}}{r}$. Therefore l is $=\frac{\overline{n-1} \times \mathrm{K}}{r}$.

But, becaufe the above-defcribed i2th property is fuppoled to belong to the numbers of the firt of the faid two vertical columns, to wit, $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \& \mathrm{c} \ldots \mathrm{K}, \mathrm{L}$, and the fum of any number of terms in the faid column is fuppofed to be to the fum of as many terms all equal to its laft. term in the conftant proportion of 1 to r, it follows from lemma 3^{d}, art. 73 , that $n-r$ will be to $n-1$ as K is to L . Therefore $n-1 \times$ ik will be $=\overline{n-n} \times \mathrm{L}$; and confequently $\frac{n-\pi \times \mathrm{x}}{r}$ will be $=\frac{n-7 \times \mathrm{I}}{r}$.

Therefore l (which has been thewn to be $=\frac{\overline{n-1} \times k}{r}$) will be $=\frac{n-r \times_{L}}{r}$; and confequently $n-r$ will be to l as r is to L.

But, by the fuppofition, the fum of the terms A, B, C, $\mathrm{D}, \& \mathrm{\&} \ldots \mathrm{K}, \mathrm{L}$, is to the fum of the fame number of terms
all equal to the laft term L , or to $n \times \mathrm{L}$, in the proportion of I to r. Therefore $r \times \overline{\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+8 \mathrm{c}+\mathrm{K}+\mathrm{L}}$ is $=n \times \mathrm{L}$; and confequently r is to L as n is to $\mathrm{A}+\mathrm{B}+$ $\mathrm{C}+\mathrm{D}+8 \mathrm{c}+\mathrm{K}+\mathrm{L}$.

Therefore $n-r$ will be to l as n is to $\mathrm{A}+\mathrm{B}+\mathrm{C}+\mathrm{D}+$ $\& \mathrm{c}+\mathrm{K}+\mathrm{L}$.

Bur, by the $4^{\text {th }}$ property of the figurate numbers above fet forth in art. 54, m (which is the $n+1$ th term of the fecond vertical column) is equal to the fum of $\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}$, $\& c, \mathrm{~K}, \mathrm{~L}$, or the n firf terms of the precceding column. Therefore $n-r$ will be to l as n is to m; and confequently $n-n \times m$ will be $=n \times l$.

But, by the fuppofition concerning the numbers in the fecond vertical column, the fum of the firft n terms of it, to wit, $a+b+c+d+\varepsilon^{2} c+k+l$, is to the fum of as many terms all equal to the laft. term l, or to n $\times \underline{l}$, in the proportion of r to $r+1$. Therefore $\overline{r+1}$ $\times a+b+c+d+8 c+k+l$ is $=n \times l$; and conrequently $n-r) \times m$ (which is equal to $n \times l$) will be $=$ $\overline{r+1} \times \overline{a+b+c+a+\infty+2} \quad$. Therefore $n-n$ $: r+1:: a+b+c+d+8 c+k+l: m$. Therefore, componendo, we fhall have $(n-r+r+1$, or) $n+\mathrm{I}: r+$ I $:: a+b+c+d+8 c+k+l+m: m$; and permutando, $n+1: a+b+c+d+8 c+k+l+m:: r+1$: m; and, invertendo, $a+b+c+d+2 c+k+l+m$: $n+1:: m: r+1$. But $n+1$ is to $n+1 \times m:: r+n$ $: r+1 \times m$. Therefore, ex equo, $a+b+c+d+8 \mathrm{c}$ $+k+l+m: n+1 \times m:: m: r+1 \times m:: 1: r+\mathrm{r} ;$ that is, the fum of the firlt $n+1$ terms of the fecond vertical column will be to $n+1$ times the laft, or $n+n$ ph, term, m, of the faid column in the fame proportion of I to $r+I$ in which the fum of the firt n terms of it was to n times the laft, or nth, term. : R. E. D.

Coroll. It follows from this lemma, that, if the number of terms in the fecond of the two vertical columns be
increafed from n terms to any other number of terms whatfoever denoted by $n+p$, it will be true with refpect to the column, when fo increafed, that the fum of all its terms will be to $n+p$ times the lat, or greateft, term of it in the fame proportion of 1 to $r+I$. For the lemma may be fucceffively extended from a column confifting. of $n+1$ terms, to a column confifting of $n+2$ terms, and to a column confifting of $n+3$ terms, and to a column confifting of $n+4$ terms, and fo on till we come to the column of $n+p$ terms; the reafonings being exactly the fame in this extention of it to thefe feveral columns of $n+2$ terms, $n+3$ terms, $n+4$ terms, \&c, as in the lemma itfelf, in which, upon a fuppofition that the fum of n terms of the column is to n times the laft, or greateft, or n th, term of it in the proportion of 1 to $r+1$, it is fhewn that the fum of $n+1$ terms of it will be to $n+1$ times the laft, or greateft, or $\pi+1$ th, term of it in the fame proportion of I to $r+\mathrm{I}$.

A demonftration of the $2 d_{2} 3 d$, and 4 th foregoing Lemmas, con tained in art. 72, 73, and 74, by Mr. Jobn Bernoulli, the autbor's brother.
75. Nany years ago, when I communicated the foregoing propofitions concerning the figurate numbers to my brother, Mr. John Bernoulli, he obferved to me that the demonftrations of them might be made fhorter and more elegant by uniting the three laft of the four preceeding lemmas into pne, in the manner following.

A Lemma.

If in a table of the figurate numbers (fuch as the foregoing table of combinations, in page 7 I , art. 49), it be the property of the terms of any one of the vertical columns that, if we take, ift, any number of fucceffive terms in it, and, 2 dly, the fame number of terms, all equal to the laft, or greateft, of the faid fucceffive terms, the fum of the faid fucceffive terms fhall be to the fum of the fame number of terms, all equal to their laft, or greateft, term, in the conftant proportion of I to a certain number denoted by the letter r; then it will follow that, if in the next higher vertical column of the faid table of figurate numbers we take a number of fucceflive terms greater by an unit than the number of fucceffive terms taken in the former vertical column, the fum of thefe fucceffive terms in this fecond column will be to the fum of the fame number of terms, all equal to the laft, or greatef, of the faid fucceffive terms, in the proportion of r to $r+1$.

Demonstration':

Let the terms of the former of the two vertical columns be a, b, c, d, c, and f, of which the number is 6 , or in general, n; and let the terms of the next higher vertical column be o, g, b, i, l, p, q, of which the number is $n+\mathrm{I}_{\text {. }}$

The upper term of this fecond column is a cypher, 0 , becaufe every new vertical column of terms muft have one more cypher preceeding its fignificant terms than the column immediately preceeding it.

Thefe two vertical columns of terms will be as follows:

$$
n \left\lvert\, \begin{array}{l|l|l}
a & o \\
b & g \\
c & b & \\
d & i & n+I_{q} \\
e & l & \\
f & p & \\
q &
\end{array}\right.
$$

If thefe columns are the ift and $2 d$ columns of the table, the terms a, b, c, d, e, and f will, each of them, be equal to 1 , and g, h, i, l, p, q, will be $1,2,3,4,5,6$. If thefe columns are the $2 d$ and $3 d$ columns, a will be o, and b, c, d, e, f will be $1,2,3,4,5$, and g, b, i, l, p, q will be $0,1,3,6,10,15$. If thefe columns are the 3 d and $4^{\text {th }}$ columns, a will be o, and b will alfo be 0 , and c, d, e, f will be $\mathrm{I}, 3,6, \mathrm{I}$, and g, h, i, k, p, q will be 0,0 , 1, 4, 10,20. And in like manner more of the upper terms of both thefe vertical columns will be cyphers, or o, the farther the columns are taken to the right hand in the table in page 7r. But, wherever the columns are taken, the number of terms in them muft be fo great as to reach below the cyphers, and take in fome of the fignificant terms. Thefe things being premifed, the demonftration of this lemma will be as follows.

By the 4 th property of the figurate numbers fet forth above in art. 54, we Ghall have $q=a+b+c+d+e+f$,

$$
\begin{aligned}
& \text { and } p=a+b+c+d+e, \\
& \text { and } l=a+b+c+d, \\
& \text { and } i=a+b+c, \\
& \text { and } b=a+b, \\
& \text { and } g=a \text {. }
\end{aligned}
$$

And, by the fuppofition, the fum of the n terms a, b, c, d, e, f will be to n times the laft, or greateft, $\operatorname{term} f$, as i is to r; and the fum of the n - I terms a, b, c, d, e will be to n-r times the laft, or greateft, term e, in the fame proportion of I to r; and the fum of the $n-2$ terms a, b, c, d will be to $n-2$ times the laft, or greateft, term d, in the fame proportion of 1 to r; and, in like manner, $a+b$ $+c$ will be to $n-3$ times c as I to r; and $a+b$ will be to $n-4$ times b as 1 to r; and a will be to $n-5$ times a^{n} as I to r.

Therefore $a+b+c+d+e+f$ will be $=\frac{n f}{r}$, and $a+b+c+d+c$ will be $=\frac{n-1 \times e}{r}$, and $a+b+c+$ d will be $=\frac{\overline{n-2} \times d}{r}$, and $a+b+c$ will be $=\frac{\overline{n-3} \times}{r} c$, and

Mr. Fames Bernoulli's Treatife De Arte Conjectandi. ros and $a+b$ will be $=\frac{\overline{n-4} \times b}{r}$, and a will be $=\frac{\overline{n-5} \times a}{r}$.

Therefore q (which is equal to $a+b+c+d+e+f$) will be $=\frac{n f}{r}$; and p (which is equal to $a+b+c+d+c$) will be $=\frac{\overline{n-1} \times e}{r}$; and ${ }^{\prime} l$ (which is equal to $a+b+c+d$) will be $=\frac{\overline{n-2} \times a}{r}$; and i (which is equal to $a+b+c$) will be $=\frac{\overline{n-3} \times c}{r}$; and b (which is equal to $a+b$) will be $=\frac{\overline{n-4} \times b}{r}$; and g (which is equal to a) will be $=$ $\frac{n-5 \times a}{r}$.

Therefore $q+p+l+i+b+g$ will be $=\frac{q f}{r}+\frac{\overline{n-1} \times e}{r}+$ $\frac{\overline{n-2} \times d}{r}+\frac{\overline{n-3} \times c}{r}+\frac{\overline{n-4} \times b}{r}+\frac{n-5 \times a}{r}=\frac{n f}{r}+\frac{\tilde{n e}-c}{r}+$ $\frac{n d-2 d}{r}+\frac{n c-3 c}{r}+\frac{n b-4^{b}}{r}+\frac{n a-5 a}{r}=\frac{n f+n e+n d+n c+n b+n a}{r}$
$-\frac{e}{r}-\frac{2 d}{r}-\frac{3 c}{r}-\frac{4 b}{r}-\frac{5 a}{r}=\frac{n \times \overline{f+e+d+e+b+a}}{r}$
$\frac{-c-2 d-3 c-4 b-5 a}{r}=\frac{n \times q}{r} \frac{-c-2 d-3 c}{r} \frac{-4 b-5 a}{r}=\frac{n \times q}{r}$
$\frac{-a-d-c-b-a}{r}-\frac{d-a-b-a}{r}-\frac{c-b-a}{r}-\frac{b-a}{r}-\frac{a}{r}=\frac{\pi \times a}{r}$
$-\frac{p}{r}-\frac{l}{r}-\frac{i}{r}-\frac{b}{r}-\frac{g}{r}=\frac{n \times q}{r}-\frac{p-l-i-b-g}{r}=$
$\frac{n q-p-l-i-h-g}{r}$.
Therefore (if we multiply both fides by r) we fhall have r $\times \overline{q+p+l+i+b+g}=n q-p-l-i-b-g$, or $r q+r \times$ $p+l+i+b+g=n q-p-l-i-b-g$. And confequently (adding $p+l+i+b+g$ to both fides) we fhall have $r q+$ $r \times p+l+i+b+g+p+l+i+b+g=n q$, or $r q+$ $\overline{r+1} \times \overline{p+1+i+b+g}=n q$; and (fubtracting $r q$ from both fides) $\overline{r+1} \times \overline{p+l+i+b+g}=n q-r q$.

Therefore

Therefore (dividing both fides by $r+1$) we fhall have $p+l+i+b+g=\frac{n q-r q}{r+1}$; and (adding q to both fides) $q+p+l+i+b+g=\frac{n_{q}-r q}{r+1}+q=\frac{n q-r q}{r+1}+\frac{r+1 \times q}{r+1}$ $=\frac{n q-r q}{r+1}+\frac{r q+q}{r+1}=\frac{n q+q}{r+1}=\frac{n \overline{+1} \times q}{r+1}$. And confequently $q+p+l+i+b+g$, or $g+b+i+l+p+q$, or o + $g+b+i+l+p+q$, will be to $\overline{n+1} \times q$ as 1 is to $r+1$, or the fum of the $n+1$ fucceffive terms $0, g, b, i, l, p, q$, of the fecond vertical column of terms will be to the fum of $n+1$ times the laft term q, or the fame number of terms, all equal to the laft, or greateft, term q, in the proportion of I to $r+\mathrm{I}^{*}$. C.E. D .

The principal Propofition, or the 12 th property above-defcribed of the fogurate numbers, or numbers contained in the foregoing table of combinations, is as follows.
76. The fum of any number of terms in any of the vertical columns contained in the foregoing table of combinations is to the fum of the fame number of terms all equal to the laft term of them, in the proportion of I to the exponent of the faid column, or to the number which denotes, or expreffes, its place in the faid table.

Thus, in the firft column, of which the exponent is I, the fum of any number of terms of it denoted by n will be to n times the laft term of it in the proportion of I to 1 , or a proportion of equality. In the fecond column, of which

[^2]the exponent is 2 , the fum of n terms of it will be to the fom of n terms all equal to the laft or greatelt term, in the proportion of 1 to 2 . In the third column, of which the exponent is 3 , the fum of n terms of it will be to the fum of n terms all equal to the laft, or greateft, term, in the proportion of 1 to 3 . In the fourth column, of which the exponent is 4 , the fum of n terms of it will be to the fum of n terms all equal to the laft, or greateft, term, in the proportion of 1 to 4 . And, in gencral, in the cth column, or that of which the exponent is c, the fum of n terms of it will be to the fum of n terms all equal to the laft, or greateft, or n th, term, in the proportion of 1 to c.

Demonstration。

77. The truth of this propofition with refpect to the ift vertical column (which confifts wholly of units) is Ghewn above in lemma 1, art. 71, and indecd is almoft felf-evident. And with refpect to the terms of the fecond vertical column, to wit, $0,1,2,3,4,5,6,7,8,9,10$, and 11 , $\& c$, it may be proved by means of the fecond and fourth of the foregoing lemmas in the manner following. Since in the firt vertical column the fum of any number of terms I, I, I, I, I, \&c. denoted by n, is to the fum of as many terms, all equal to the laft term 1 , as 1 is to I; and in the fecond vertical column the fum of the two firft terms o and i is to the fum of two terms, both equal to the laft term 1 , as I is to $\mathrm{I}+\mathrm{I}$, as is thewn in lemma 2, art. 7^{2}; it follows from lemma 4, art. 74 , that in the fame fecond vertical column the fum of the three firt terms 0,1 , and 2 , will be to the fum of three terms all equal to the laft term 2, in the fame proportion of 1 to $\mathbf{I}+1$, or 2 , and confequently that the fum of the four firl terms $0,1,2$, and 3 , will be to the fum of four terms all equal to the laft term 3 , and the fum of the five firft terms $0,1,2,3$, and 4 , will be to the fum of five terms all equal to the laft torm 4, and, in general, the fum of any number of its terms denoted
by n will be to the fum of n terms all equal to the laft of them, in the fame proportion of I to $\mathrm{I}+1$, or 2 .
Q.E. D.
78. This may likewife be proved of the numbers contained in the faid fecond vertical column, independently of the foregoing lemmas, in the manner following.

The numbers contained in the faid fecond vertical column are $0,1,2,3,4,5,6,7,8,9,10,11$, \&cc. Now, if we fet down thefe numbers twice over in two horizontal lines, one under the other, but in contrary orders, fo that in the fecond line the laft term of the firt line fhall be placed firf, and the laft term but one of the firft line fhall be placed fecond, and fo on, as in thefe two lines,

$$
\begin{array}{r}
0,1,2, \overparen{i}, 4,5,6,7,8,9,10,11, \\
11,10,9, S, 7,6,5,4,3,2,1,
\end{array},
$$

at is evident that the fum of cerery two numbers ftanding in the fame vertical line, will be equal to 11 , or, in general, to the laft, or greateft, term of the feries, or (if the feries confiti of n terns, and confequently the laft term be $n-1$) to $n-1$. Therefore the fum of both feriefes will be equal to a feries contifting of the fame number of terms, or n terms, all equal to the greateit term $n-:$; and confequently whe upper feries $0+1+2+3+4+5+6+7+8+$ $9+10+11+8-\ldots n-1$ alone will be equal to only half of the feries of n terms all equal to $n-\mathrm{I}$, or will be to it in the proportion of I to 2 . C. E. D.
79. To demonftrate the faid azth property with refpect to the numbers contained is the third and fourth and other following vertical columns of the foregoing table of combinations, we munt have recourfe to the fecond and fourth lemmas, as in the firft demonftration juft now given of the faid property with refipet to the numbers in the fecond vertical column. This may be done in the manner following.

By lemma ad it appears that this property takes place in all the rertical columns, if we continue the terms of each column only till their number is equal to the exponent of

Whe column, or fo as to take in only the firt fignificant term of the column, which is always in unit. Therefore in the third vertical column, continued only to the three terms \circ, o, 1 , the fum of the faid three terms is to the fum of three terms all equal to the laft term 1 , in the proportion of a to 3 , or 1 to $2+1$. But it has been fhewn that in the fecond vertical column $0,1,2,3,4,5,6,7,8 x c$. it is true univerfally that, whatever be the number we take of its terms, the fum of the faid cerms will be to the fum of as many terms all equal to the latt term in the proportion of 1 to 2. Here therefore we hare the cafe of lemma 4, to wit, that of two contiguous vertical columns, the fecond and the third, in the former of which the fum of any number of terms denoted by n is to the from of the fame number of terms all equal to the laft term in the proportion of 1 to a certain number, which we there denoted by r, and which here is 2 , and in the latter of which the fum of the three firft terms $0, O, I$, is to the fum of three terms all equal to the laft term I as I is to $r+\mathrm{I}$, or $2+\mathrm{I}$. It follows therefore from lemma 4 th, that, if we take the next term 3 of the faid latter vertical column, or continue the faid column to four terms, the fum of the faid four terms $0,0,1,3$, will alfo be to the fum of four terms all equal to the laft term 3 in the fame proportion of 1 to $2+1$. And, for the fame reafon, the fum of the five firtt terms of the faid third vertical column will be to the fum of five terms all equal to the fifth term of it, and the fum of the fux firt terms of it will be to the fum of fix terms all equal to the fixth term of it, and, in general, the fum of any greater number of its terms, denoted by n, will be to the fum of n terms all equal to the nth term of $i t$, in the fame propartion of 1 to $2+1$, or of 1 to 3 . Q. E. II.

In like manner we may prove that in the 4 th vertical co. lumn the fum of any number n of its terms is to the fum of π terms all cqual to its nth term in the proportion of 1 to $3+\mathrm{r}$, or 1 to 4 . For, fince we have proved that the proportion of thefe two fums in the third column is that of 1 to 3 ; and by lemma a it appears that, if we take only the
four firlt terms of the 4 th column, to wit, $0,0,0,1$, the proportion of thefe fums will be that of ito $3+1$, or 4 ; it follows from lemma 4 th and its corollary, that, if we take five terms of this fourth column, or fix terms of it, or feven terms of it, or, in general, n terms of it, the proportion of the fum of the terms fo taken to the fum of the fame number of terms all equal to the laft term will always be the fame proportion of 1 to $3+1$, or of 1 to 4 . . C. E. D.

And by proceeding to apply lemma 2 and lemma 4 in the fame manner to the fitth, and fixth, and feventh, and other following vertical columns, it may be fhewn that the proportion of the fum of any number of terms denoted by n to the fum of n terms all equal to the laft, or greateft term, will be in the fifth column that of 1 to $4+1$, or 5 , and in the fixth column that of 1 to $5+1$, or 6 , and, in the feventh column that of 1 to $6+1$, or 7 , and, in general, in the c th column that of 1 to f . \&. E. D.
80. Corof.r. I. In each of the aforefaid vertical columns of numbers the fum of any number of the terms beginning with I , or the firf fignificant term of the column, and not reckoning the cyphers that prececd it, as we have hitherto done, will be to the fum of the fame number of terms all equal to the next term in the faid column after the terms fo fummed, in the proportion of I to c, or the exponent of the column.

Let the terms in the propofed vertical column, whereof we are to fum up the fignificant terms be $a, b, c, d, \& c_{2}$ k, and l, including the cyphers, fo that fome of the firft letters $a, b, c, \& c c$, thatl fand for cyphers, agreeably to the notation in lemma 4; and let the whole number of thefe terms, including the cyphers, be n, agreeably to the fame notation. And let n be the term that comes immediately after l the laft term of the fee whofe fum we are to examine; or, in other words, let m he the $n+1$ th term of the propofed vertical column, including the cyphers. Allo let c be the exponent of the tiat column, and be $=c-1$. Then
by the firft property of the figurate numbers fet forth above in art. 5 I , r will be the number of cyphers in the beginning of the faid vertical column, and confequently $n-r$ will be the number of fignificant terms in the faid column, without the cyphers. We are therefore to prove that the fum of all the $n-r$ fignificant terms of the faid column $a, b, c, d, \& x, k$ and b is to the fum of $n-r$ terms all equal to the next term n in the proportion of 1 to c or of 1 to $r+1$.

Now the fum of all the $n-r$ fignificant terms of the faid vertical column is equal to the fum of all the n terms of the faid column, including the cyphers, becaufe the cyphers are all equal to nothing. And it is thewn in the latter part of the demonftration of lemma 4, that the fum of the n terms $a, b, c, d, \& c, k$ and l is to the next term m in the fame proportion as $n-r$ is to $r+\mathrm{I}$. Therefore the fum of all the $n-r$ fignificant terms of the faid column will be to the next term m in the fame proportion of $n-r$ to $r+1$. But m is to $n-1 \times m$ in the fame proportion as $r+1$ is to $\overline{n-r} \times \overline{r+1}$. Therefore, ex aquo, the fum of all the $n-r$ fignificant terms of the faid columon will be to $n-n$ $x m$, or to the fum of $n-r$ terms all equal to the next term m, as $n-r$ is to $\overline{n-r} \times \overline{r+1}$, and confequently as I is to $r+I$, or as I is to c. Q. E. D.

8r. Coroll. 2. By the help of the foregoing corollary we may find the fum of any given number of terms in any of the vertical columns of the foregoing table of combinations, without actually adding the terms together, by pro ceeding in the following manner.

Let the number of ferms to which the feveral vertical columns are continued, be n. Then, as there is one cypher prefixed to the fignificant terms in the fecond column, and two cyphers in the third column, and three cyphers in the fourth column, and, in general, c - 1 cyphers in the cth column; it is evident that the number of terms in the fecond column, without the cyphers, will be $n-1$; and that
of the terms in the third column, without the cyphers, will be $n-2$; and that of the terms in the fourth column, without the cyphers, will be $n-3$; and, in general, that of the terms in the cth column, without the cyphers, will be n -$\sqrt{c-1}$, or $n-c+1$. The fums of the terms in thefe $\mathrm{fe}-$ veral columns may therefore be thus determined.

In the firf place, the fum of the n figuificant terms in the firf column, which are all units, will be $n \times 1$, or n.

2dly, The fum of the $n-i$ fignificant terms in the fecond column will, by the foregoing corollary, be to $n-$ I times the next following, or $n+1$ hin, term of the fecond column as I is to 2 . But, by the $4^{\text {th }}$ property of the figurate numbers above fet forth in art. 54 , the $n+1$ th term of the fecond column is equal to the fum of the firft n terms of the firft column, that is, to $\%$. Therefore the fum of the $n-1$ fignificant terms of the fecond column will be to n - 1 times n, or to $n \times n-\mathrm{I}$, as I is to 2 , and confequently will be equal to $\frac{n \times \overline{n-r}}{2}$. \&.E. I.

3 dly, The fum of the $n-2$ fignificant terms in the third column will, by the foregoing corollary, be to $n-2$ times the next following, or $n+1$ th, term of the fame third column as I is to 3 . But, by the 4 th property of the figurate numbers above fet forth, the $\pi+1$ hin term of the third column is equal to the fum of the firft n terms of the fecond column, including the cyphers, or (which comes to the fame thing) to the fum of the firlt $n-1$ fignificant terms of the faid fecond column; which has juft now been thewn to be equal to $\frac{n \times \overline{n-1}}{2}$. Therefore the fum of the $n-2$ fignificant terms in the 3^{d} column will be to $n-2$ times $\frac{u \times \overline{n-1}}{2}$, or to $\frac{n \times \overline{n-1} \times \overline{n-2}}{2}$, as 1 is to 3 , and confequently Will be equal to $\frac{2 \times \overline{n-1} \times \overline{\pi-2}}{2 \times 3}$. C.E.I.

Mr. Fames Bernoulii's Treatije De Arte Conjectandi. IIt

4thly, The fum of the $n-3$ fignificant terms in the fourth column will, by the foregoing corollary, be to $n-3$ times the next following, or $\overline{n+\eta}$ th, term of the fame fourth column as x is to 4 . But, by the fourth property of the figurate numbers, the $n+1$ th term of the fourth column is equal to the fum of the firft n terms of the third column, including the cyphers, or of the firf $n-2$ fignificant terms of the faid third column : which has juft now been thewn to be equal to $\frac{n \times \overline{u-1} \times \overline{n-2}}{2 \times j}$. Therefore the fum of the $n-3$ fignificant terms in the $4^{\text {th }}$ column will be to $n-3$ times $\frac{n \times \overline{n-1} \times \overline{n-2}}{2 \times 3}$, or to
$\frac{n \times \overline{n-1} \times \overline{n-2} \times \overline{n-3}}{2 \times 3}$, as I is to 4 , and confequently will be $=\frac{n \times \overline{n-1} \times \overline{n-2} \times \overline{n-3}}{2 \times 3 \times 4}$. Q.E.I.

5 thly, In like manner the fum of the $n-2$ fignificant terms in the fifth column will, by the foregoing corollary, be to $n-4$ times the next following, or $n+x$ th, terṃ of the fame column as I is to 5. But, by the 4th property of the figurate numbers above fet forth, the $n+1$ th term of the fifth column is equal to the funn of the firft n terms of the fourth column, including the cyphers, or to the firft $n-3$ fignificant terms of it; which has juft now been fhewn ta be $=\frac{n \times \overline{n-1} \times n-2 \times \overline{n-3}}{2 \times 3 \times 4}$. Therefore the fum of the $n-4$ fignificant terms in the fifth column will be to $n-4$ times $\frac{n \times \overline{n-1} \times \overline{n-2}}{2 \times 3 \times 4} \times \overline{n-3}$, or to $\frac{n \times \overline{n-1} \times \overline{n-2} \times \overline{n-3} \times \overline{n-4}}{2 \times 3 \times 4}$
as I is to 5 , and confequently will be $=$
$\frac{n \times \overline{n-1} \times n-2 \times \overline{n-3} \times \overline{n-4}}{2 \times 3 \times 4 \times 5}$ Q.E. I.
And in like manner it is evident that the fum of the n firft terms of the c th column, including the c-I cyphers in the beginning of it, or the fom of the $n-\sqrt{6-1}$, or $n-c+1$,

$$
5 \quad \text { firt }
$$

firft fignificant terms of the faid c ctl column, will be equal to the fraction $\frac{n \times \overline{n-1} \times \overline{n-2} \times \overline{n-3} \times \overline{n-} 4 \times 8 \mathrm{cc} \times n-\overline{c+1}}{2 \times 3 \times 4 \times 5 \times 80 \times c}$, in the numerator of which the laft factor is $n-\sqrt{c-1}$, or $n-c$ +1 , and in the denominator of which the laft factor is c. Q. E. I.

S2. Coroll. 3. Since, by the $4^{\text {the }}$ property of the figurate numbers above fet forth in art. 54 , the $n+1$ th terms of the fecond, third, fourth, and orher following vertical columns of numbers in the foregoing table of combinations, are refpectively equal to the fums of the $n 2$ firft terms of the firt, fecond, third, and other following vertical columns, which fums have been fhewn to be, refpectively, equal to $n, \frac{n \times \overline{n-1}}{2}, \frac{n \times \overline{n-1} \times \overline{n-2}}{2 \times 3}, \&<c$, it follows that the $\overline{n+1}$ th terms of the fecond, third, fourth, fifth, fixth, and other following vertical columns will be $n, \frac{\pi \times \overline{n-1}}{2}$, $\frac{n \times \overline{n-1} \times \overline{n-2}}{2 \times 3}, \frac{n \times \overline{n-1} \times \overline{n-2} \times \overline{n-3}}{2 \times 3 \times 4}$, and
$\frac{n \times \overline{n-1} \times \overline{n-2} \times n-3 \times n-4}{2 \times 3 \times 4 \times 5}, \& \mathrm{c}$; and confequently, as every term in the firft vertical column is $=\mathbf{I}$, the $n+1$ thi terms of the firt, fecond, third, fourth, fifth, fixth, and other following vertical columns will be $\mathrm{I}, n, \frac{n \times \overline{n-1}}{2}, \frac{n \times \overline{n-1} \times \overline{n-z}}{2 \times 3}$,
 general, the $\pi \pm 1$ th term of the ath column will be $n \times \overline{n-1} \times \overline{n-2} \times n-3 \times \overline{n-4} \times \mathrm{Kc} \times \overline{n-c}+2$,
$2 \times 3 \times 4 \times 5 \operatorname{sic} \times 6-1$
83. Coroll. 4. Since the $n+1$ th terms of the firt, fecond, third, fourth, fifth, fixth, and other following vertical columns of the foregoing table of combinations are $I_{\text {, }}$

Mr. Fames Bernoulli's Treatife De Arte Conjectandi. I_{3}
$n, \frac{n \times \overline{n-1}}{2}, \frac{\overline{n \times n}-1 \times \overline{n-2}}{2 \times 3}, \frac{n \times n \overline{1} \times \overline{n-2} \times \overline{n-3}}{2 \times 3 \times 4}$,
$\frac{n \times \overline{n-1} \times \overline{n-2} \times \overline{n-3} \times \overline{n-4}}{2 \times 3 \times 4 \times 5}, \& \mathrm{c}$,
$\frac{\times \overline{n-1} \times \overline{n-2} \times \overline{n-3} \times \overline{n-4} \times 8 \times \overline{n-c+2}}{2 \times 3 \times 4 \times 5 \times 8 \mathrm{c} \times \overline{c-1}}$, it follows that the nth terms of the faid vertical columns will be fuch as arife by fubftituting $n-I$ inftead of n in the foregoing values of the $n+1$ th terms, and confequently will be as follows, to wit, I , $n-\mathrm{I}, \frac{\overline{n-1} \times \overline{n-2}}{2}, \frac{\overline{n-1} \times \overline{n-2} \times \overline{n-3}}{2 \times 3}, \frac{\overline{n-1} \times \overline{n-2} \times \overline{n-3} \times \overline{n-4}}{2 \times 3 \times 4}$, $\frac{\overline{n-1} \times \overline{n-2} \times \overline{n-3} \times \overline{n-4} \times \overline{n-i} ;}{2 \times 3 \times 4 \times 5}, \& c$,
$\frac{\overline{n-1} \times \overline{n-2} \times \overline{n-3} \times \overline{n-4} \times \overline{n-5} \times 8 \mathrm{cc} \overline{n-c+1} .}{2 \times 3 \times 4 \times 5 \times \& \mathrm{c} \times \overline{c-1}}$

An Example of the truth of Coroll. 4 .

S4. As an example of the truth of this corollary we will derive in this manner the numbers that form the loweft horizontal row of terms in the foregoing table of combinations, or the twelfth terms of the feveral vertical columns of the faid table.

Now in this cafe n, or the number of terms in the feveral vertical columns, is $=12$. Therefore $n-1, n-2, n-3$, $n-4, n-5, n-6, n-7, n-8, n-9, n-10$, and $n-11$, are refpectively equal to $1 \mathrm{I}, 10,9,8,7,6,5,4,3,2$, and 1 . Therefore $n-r$, or the twelfth term of the fecond vertical column will be $=11$; and $\overline{\frac{n-1}{x n-2}} 2$, or the 12 th Q terma
term of the third vertical column, will be $(=\overline{n-1} \times$ $\left.\frac{n-2}{2}=11 \times \frac{n-2}{2}=11 \times \frac{10}{2}\right)=11 \times 5=55$; and $\frac{n-1 \times n-2 \times n-3}{2 \times 3}$, or the 12 th term of the fourth vertical column, will be $\left(=\frac{\overline{n-1} \times \frac{n-2}{2}}{2} \times \frac{n-3}{3}=55 \times \frac{n-3}{3}=55 \times\right.$ $\left.\frac{9}{3}=55 \times 3\right)=165$; and $\frac{\overline{n-1} \times \overline{n-2} \times \overline{n-3} \times \overline{n-4}}{2 \times 3 \times 4}$, or the 32 th term of the 5 th vertical column, will be ($=$ $\frac{\overline{n-1} \times \overline{n-2}}{2 \times 3} \times \frac{n-3}{4} \times 16_{5} \times \frac{n-4}{4}=165 \times \frac{8}{4}=16_{5}$ $\times 2)=330$; and $\frac{\overline{n-1} \times \overline{n-2} \times \overline{n-3} \times \overline{n-4} \times \overline{n-5}}{2 \times 3 \times 4 \times 5}$, or the 12 th term of the 6 th vertical column, will be ($=$
$\frac{\overline{n-1} \times \overline{n-2} \times \overline{n-3} \times \overline{n-4}}{2 \times 3 \times 4} \times \frac{n-5}{5}=330 \times \frac{n-5}{5}=330 \times \frac{7}{5}=$ $66 \times 7)=462$; and, in like manner, the 12 th term of the feventh vertical column will be $\left(=462 \times \frac{n-6}{6}=462 \times \frac{6}{6}\right.$ $=462 \times 1)=462$; and the 12 th term of the eighth vertical column will be $\left(=462 \times \frac{n-7}{7}=462 \times \frac{5}{7}=66 \times 5\right)$) $=330$; and the 12 th term of the ninth vertical column will be $\left(=330 \times \frac{n-8}{8}=330 \times \frac{4}{8}=330 \times \frac{1}{2}\right)=165$; and the 12 th term of the tenth vertical column will be ($=$ $\left.165 \times \frac{n-9}{9}=165 \times \frac{3}{9}=165 \times \frac{1}{3}=\frac{165}{3}\right)=55$; and the iath term of the eleventh vertical column will be ($=$ $\left.55 \times \frac{n-10}{10}=55 \times \frac{2}{10}=55 \times \frac{1}{5}=\frac{55}{5}\right)=11$; and the isth term of the twelfth, or laft, vertical column will be $\left(=11 \times \frac{n-11}{11}=11 \times \frac{1}{11}\right)=1$. Therefore the 12 th terms of the faid twelve vertical columns will be as follows, to wit, $\mathrm{I}, 11,55,165,330,462,462,330,165,55,11$, and 1 ; which are the numbers fet down in the foregoing table.
85. Coroll.
85. Corole. 5. It has been fhewn above in art. 60 and 6_{1}, that the horizontal rows of numbers in the foregoing table of combinations, beginning with the fecond row, exhibit the co-efficients of the terms of the feveral fucceffive powers of a binomial quancity, fuch as $a+b$, every nth horizontal row of numbers being the co-efficients of the terms of the $n-1$ th power of the faid binomial quantity ; whence it follows that the numbers contained in every $n+1$ th horizontal row of numbers in the faid table will be the co-efficients of the terms of the nth power of the faid binomial quantity. But it is evident that the numbers contained in every $\overline{n+1}$ ch horizontal row of terms in the faid table are the $n+1$ th terms of the firlt, fecond, third, fourth, fifth, fixth, and other following vertical columns of terms in the faid table, reckoning the terms from the top of the faid table, and including the cyphers at the tops of ail the feveral vertical columns, except the firt. Therefore the $n+0$ th terms of the firt, fecond, third, fourth, fifth, fixth, and other following vertical columns of terms in the faid table will be the co-efficients of the terms of the nth power of the faid binomial quantity. But it has been fhewn above in art. 82, coroll. 3 , that the $n+1$ th terms of the firf, fecond, third, fourth, fifth, and fixth, and other following vertical columns of terms in the faid table are $1, n, n \times \frac{n-1}{2}, n \times$
$\frac{n-1}{2} \times \frac{n-2}{3}, n \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4}$, and $n \times \frac{n-1}{2} \times \frac{n-2}{3}$
$\times \frac{n-3}{4} \times \frac{n-4}{5}, \& c c$. Therefore the co-efficients of the terms of the nth power of the faid binomial quantity $a+b$ will alfo be $1, n, n \times \frac{n-1}{2}, n \times \frac{n-1}{2} \times \frac{n-2}{3}, n \times \frac{n-1}{2} \times$ $\frac{n-2}{3} \times \frac{n-3}{4}$, and $n \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4} \times \frac{n-4}{5}, 8 \mathrm{c}$; and confequently the quantity $\overline{a+\lambda^{2}}$, or the faid nth power itfelf of the faid binomial quantity $a+b$, will be equal to the Q 2
feries

Series $a^{n}+n a^{n-1} b+n \times \frac{n-1}{2} a^{n-2} b^{2}+n \times \frac{n-1}{2} \times \frac{n-2}{3}$
$a^{n-3} b^{3}+n \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4} a^{n-4} b_{4}+n \times \frac{n-1}{2} \times$
$\frac{n-2}{3} \times \frac{n-3}{4} \times \frac{n-4}{5} a^{n-5} b^{5}+8 c$, or (if we put A for 1 , and B for n and C for $n \times \frac{n-1}{2}$, and D for $n+\frac{n-1}{2} \times \frac{n-2}{3}$, and E for $n \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4}$, and F for $n \times \frac{x-1}{2}$ $\times \frac{n-2}{3} \times \frac{n-3}{4} \times \frac{n-4}{5}$, and $G, H, I, K, L, \& c$, for the numeral co-efficients of the feventh, eighth, ninth, tenth, eleventh, and other following terms of the feries refpectively)
to the feries $a^{n}+\frac{n}{1} \mathrm{~A} a^{n-1} b+\frac{n-1}{2} \mathrm{~B} a^{n-2} b^{2}+\frac{n-2}{3}$
$\mathrm{C} a^{n-3} b^{3}+\frac{n-3}{4} \mathrm{D} a^{n-4} b 4+\frac{n-4}{5} \mathrm{E} a^{n-5} b 5+\frac{n-5}{6} \mathrm{~F} a$ ${ }^{n-6} b^{6}+\frac{n-6}{7} \mathrm{G} a^{n-7} b^{7}+\frac{n-7}{8} \mathrm{H} a^{n-8} b^{8}+\frac{n-8}{9} \mathrm{I} a^{n-9}$
$b^{0}+\frac{n-9}{10} \mathrm{~K} a^{n-10} b^{10}+\frac{n-10}{11} L a^{n-11} b^{11}+\& \mathrm{c} . ;$ which feries will continue till the numerator of the generating fraction becomes $n-n$, or o, and confequently the faid fraction itfelf becomes equal to o likewife, and therefore the term in which the faid fraction enters as a factor, will alfo be equal 100 , as will alfo all the following terms of the feries, which would be derived from the faid term by continual multiplications. The feries therefore will break off, or end with the term next preceeding the faid term which is equal to 0%.

We will now proceed to illuitrate and confirm the truth of this corollary, by applying the foregoing feries to the

[^3]computation of the terms of fome of the loweft powers of the binomial quantity $a+b$, fo as to produce by means of ic all the numbers contained in the foregoing table of combinations, in page 74.

Examples of the application of the foregoing feries to the compu. tation of the terms of the powers of the binomial quantity $a+b$ 。
36. In the firft place let us fuppofe n to be $=1$. Then we fhall have the feries $a^{n}+\frac{n}{I} \mathrm{~A} a^{n-\mathrm{I}} b+\frac{n-1}{2} \mathrm{~B} a^{n-2} b^{2}$ $+\frac{n-2}{3} \mathrm{C} a^{n-3} b^{3}+\& \mathrm{c},\left(=a^{\mathrm{I}}+\frac{1}{1} \times \mathrm{I} \times a^{\mathrm{I}-\mathrm{I}} b+\frac{1-\mathrm{x}}{2}\right.$ $\mathrm{B} a^{1-2} b^{2}+\frac{1-2}{3} \times \mathrm{C}^{1-3} b^{3}+\& \mathrm{c},=a^{\mathrm{x}}+a^{0} \times b+\frac{0}{2}$ $\times \mathrm{B} a^{\mathrm{I}-2} b^{1}+\frac{\mathrm{r}-2}{3} \times \mathrm{C} \times a^{1-3} b^{3}+\& \mathrm{c},=a^{\mathrm{x}}+\mathrm{x} \times b$ $+0+o+\& c,)=a+b$; or the faid feries is in this cafe equal to the binomial quantity $a+b$ itfelf; as it ought to be.
87. Now let n be $=2$.

Then we fhall have the feries $a^{n}+\frac{n}{1} \mathrm{~A} a^{n-\mathrm{r}} b+\frac{n-1}{2}$ $\mathrm{B} a^{n-2} b^{2}+\frac{n-2}{3} \mathrm{C} a^{n-3} b^{3}+8 \mathrm{C},\left(=a^{2}+\frac{2}{1} \times 1 \times\right.$ $a^{2-1} b+\frac{2-1}{2} \mathrm{~B} a^{2-2} b^{2}+\frac{2-2}{3} \mathrm{C} a^{2-3} b^{3}+\& \mathrm{c},=a^{2}+$ $2 a^{1} b+\frac{1}{2} \times 2 \times a^{0} b^{2}+\frac{0}{3} \times \mathrm{Ca}^{2-3} b^{3}+8 c,=a^{2}+$ $\left.2 a b+\frac{2}{2} \times 1 \times b^{2}+0+8 c\right)=a^{2}+2 a b+b^{2}$; or the faid feries will in this cafe be equal to the trinomial quantity
tity $a^{2}+2 a b+b^{2}$; as it ought to be, becaufe that quantity is the fquare of the binomial quantity $a+b$.
88. If n is $=3$, we thall have the feries $a^{n}+\frac{n}{1} A a^{n-1} b$ $+\frac{n-1}{2} \mathrm{~B} a^{n-2} b^{2}+\frac{n-2}{3} \mathrm{C} a^{n-3} b^{3}+\frac{n-3}{4} \mathrm{D} a^{n-4} b^{4}+$ $8 \mathrm{Cc}=a^{3}+\frac{3}{1} \times 1 \times a^{3-1} b+\frac{3-1}{2} \times \frac{3}{1} \times 1 \times a^{3-2} b^{2}$ $+\frac{3-2}{3} \mathrm{C} a^{3-3} b^{3}+\frac{3-3}{4} \mathrm{D} a^{3-4} b^{4}+8 c \mathrm{c},=a^{3}+3 a^{2} b+$ $\frac{2}{2} \times 3 \times a^{2} b^{2}+\frac{1}{3} \mathrm{C} \times a^{0} b^{3}+\frac{0}{4} \mathrm{D} \times a^{3-4} b^{4}+8 \mathrm{c}=a^{3}$ $\left.+3 a^{2} b+3 a b^{2}+\frac{1}{3} \times 3 \times 1 \times b^{3}+0+8 c\right)=a^{3}+$ $3 a^{2} b+3 a b^{2}+b^{3}$. Therefore $\left.\overline{a+b}\right|^{n}$, or $\left.\overline{a+b}\right|^{3}$, or the cube of the binomial quantity $a+\bar{b}$, will be equal to the quadrinomial quantity $a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$; as it will be. found to be upon trial.
39. If n is $=4$, we thall have the feries $a^{n}+\frac{n}{1} A a^{n-1} b$ $+\frac{n-1}{2} \mathrm{~B} a^{n-2} b^{2}+\frac{n-2}{3} \mathrm{C} a^{n-3} b^{3}+\frac{n-3}{4} \mathrm{D} a^{n-4} b^{4}+\frac{n-4}{5}$ $\mathrm{E} a^{n-5} b^{5}+8 \mathrm{c}\left(=a^{4}+\frac{4}{1} \times 1 \times a^{4-1} b+\frac{4-1}{2} \mathrm{~B} a^{4-2} b^{i}\right.$

$$
+\frac{4-2}{3} \mathrm{C} a^{4-3} b^{3}+\frac{4-3}{4} \mathrm{D} a^{4-4} b^{4}+\frac{4-4}{5} \mathrm{E} a^{4-5} b^{5}+
$$

$\& c=a^{4}+4 a^{3} b+\frac{3}{2} \times 4 \times a^{2} b^{2}+\frac{2}{3} \times \mathrm{C} \times a^{2} b^{3}+\frac{1}{4}$ $\mathrm{D} \times a^{0} \times b 4+\frac{\circ}{5} \mathrm{E} \times a^{4-5} b 5+8 \mathrm{cc}=a^{4}+4 a^{3} b+6 a^{2} b^{2}$ $+\frac{2}{3} \times 6 \times a b^{3}+\frac{1}{4} \mathrm{D} \times 1 \times b^{4}+0+\& \mathrm{c}=\mathrm{a}^{4}+$ $\left.4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+\frac{1}{4} \times 4 \times b 4+0+8 c\right)=a^{4}+$ $4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}$. Therefore $\overline{a+b} 7^{n}$, or $\left.\overline{a+b}\right)^{4}$, or the fourth power of the binomial quantity $a+b$, will be

Mr. James Bernoulli's Treatise De Are Conjectandi. Ing equal to the quinquinomial quantity $a+4 a 3 b+6 a^{2} b^{2}+$ $4 a b^{3}+b^{4}$; as it will be found to be upon trial.
90. If n is $=5$, we fall have $a^{n}+\frac{n}{1} A a^{n-1} b+\frac{n-1}{2}$ $\mathrm{B} a^{n-2} b^{2}+\frac{n-2}{3} \mathrm{C} a^{n-3} b^{3}+\frac{n-3}{4} \mathrm{D} a^{n-4} b 4+\frac{n-4}{5} \mathrm{E}$ $a^{n-5} b^{5}+\frac{n-5}{6} \mathrm{~F} a^{n-6} b^{6}+8 \mathrm{c},\left(=a^{5}+\frac{5}{1} \times 1 \times a^{5-1} b\right.$ $+\frac{5-1}{2} \mathrm{~B} a^{5-2} b^{2}+\frac{5-2}{3} \mathrm{C} a^{5-3} b^{3}+\frac{5-3}{4} \mathrm{D} a^{5-4} b^{4}+\frac{5-4}{5}$ $\mathrm{E} a^{5-5} b^{5}+\frac{5-5}{6} \mathrm{~F} a^{5-6} b^{6}+\& \mathrm{c}=a^{5}+5^{4}{ }^{4 b}+\frac{4}{2} \mathrm{~B} a^{3} b^{8}$ $+\frac{3}{3} \mathrm{C} a^{2} b^{3}+\frac{2}{4} \mathrm{D} a^{2} b^{4}+\frac{1}{5} \mathrm{E} a^{0} b^{5}+\frac{0}{6} \times \mathrm{F} a^{5-6} b^{6}+\& \mathrm{c}$ $=a^{5}+5 a^{4} b+2 \mathrm{~B} a^{3} b^{2}+\mathrm{C} a^{2} b^{3}+\frac{1}{2} \mathrm{D} a^{\mathrm{r}} b 4+\frac{\mathrm{I}}{5} \mathrm{E} \times$ $\left.1 \times b^{5}+0+8 c\right)=a^{5}+5 a^{4} b+10 a 3 b^{2}+10 a^{2} b^{3}+$ $5^{a b 4}+b^{5}$. Therefore $\overline{a+b^{n}}$, or $\overline{a+b}$, or the fifth power of the binomial quantity $a+b$, will be equal to the fextinomial quantity $a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}$; as, upon trial, it will be found to be.
91. If n is $=6$, we foal have the faeries $a^{n}+\frac{n}{\mathrm{I}} \mathrm{A} a^{n-\mathrm{r}} b$ $+\frac{n-1}{2} \mathrm{~B} a^{n-2} b^{2}+\frac{n-2}{3} \mathrm{C} a^{n-3} b^{3}+\frac{n-3}{4} \mathrm{D} a^{n-4} b^{4}+\frac{n-4}{5}$ $\mathrm{E} a^{n-5} b^{5}+\frac{n-5}{6} \mathrm{~F} a^{n-6} b^{6}+\frac{n-6}{7} \mathrm{G} a^{n-7} b^{7}+8 \mathrm{c}\left(=a^{6}\right.$ $+\frac{6}{\mathrm{r}} \times \mathrm{I} \times a^{6-1} b+\frac{6-1}{2} \mathrm{~B} a^{6-2} b^{2}+\frac{6-2}{3} \mathrm{C} a^{6-3} b^{3}+$ $\frac{6-3}{4} \mathrm{D} a^{6-4} b^{4}+\frac{6-4}{5} \mathrm{E} a^{6-5} b^{5}+\frac{6-5}{6} \mathrm{~F} a^{6-6} b^{6}+\frac{6-6}{7}$ $\mathrm{G} a^{6-7} b^{7}+\& c=a^{6}+6 a^{5} b+\frac{5}{2} \mathrm{~B} a^{4} b^{2}+\frac{4}{3} \mathrm{C} a^{3} b^{3}+\frac{3}{4}$ $\left.\mathrm{D} a^{2} b^{4}+\frac{2}{5} \mathrm{E} a^{x} b^{5}+\frac{1}{6} \mathrm{~F} a^{0} b^{6}+\frac{0}{7} \mathrm{G} a^{5-7} b^{7}+\& \mathrm{c}\right)=a^{0}$ $+6 a 5 b+15 a 4 b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+b^{6}$. Therefore
fore $\overline{a+b}{ }^{n}$, or $\overline{a+b}^{6}$, or the fixth power of the binomial quantity $a+b$, will be equal to the feptinomial quantity a^{6} $+6 a 5 b+15 a 4 b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b 5+b^{6}$. And fo, upon trial, it will be found to be.
92. If n is $=7$, we foal have the fries $a^{n}+\frac{n}{1} \mathrm{~A} a^{n-\mathrm{r}} b$
$+\frac{n-1}{2} \mathrm{~B} a^{n-2} b^{2}+\frac{n-2}{3} \mathrm{C} a^{n-3} b^{3}+\frac{n-3}{4} \mathrm{D} a^{n-4} b^{4}+$
$\frac{n-4}{5} \mathrm{E} a^{n-5} b^{5}+\frac{n-5}{6} \mathrm{~F} a^{n-6} b^{6}+\frac{n-6}{7} \mathrm{G} a^{n-7} b^{7}+\frac{n-7}{8}$ $\mathrm{H} a^{n-8} b^{9}+8 c \mathrm{c}\left(=a^{7}+\frac{7}{1} \times 1 \times a^{6} b+\frac{6}{2} \mathrm{~B} a^{5} b^{2}+\frac{5}{3}\right.$
$\mathrm{C} a 4 b^{3}+\frac{4}{4} \mathrm{D} a^{3} b^{4}+\frac{3}{5} \mathrm{E} a^{2} b^{5}+\frac{2}{6} \mathrm{~F} a^{2} b^{6}+\frac{1}{7} \mathrm{G} a^{0} b 7+\frac{a}{8}$ $\mathrm{H} a^{7-8} b^{8}+\& \mathrm{c}=a^{7}+7 a^{6} b+21 a^{5} b^{2}+35 a^{4} b^{3}+35 a^{3} b^{4}$ $\left.+21 a^{2} b^{5}+7 a b^{6}+1 \times b^{7}+0+8 c\right)=a^{7}+7 a^{6} b+$ $21 a^{5} b^{2}+35 a 4 b^{3}+35 a 3 b 4+21 a^{2} b^{5}+7 a b^{6}+b^{7}$. Therefore $\overline{a+b^{n}}$, or $\overline{a+l^{2}}$, or the feventh power of the binomial quantity $a+b$, will be equal to the octinomial quantity a^{7} $+7 a^{6} b+21 a^{5} b^{2}+35 a^{4} b^{3}+35 a^{3} b 4+21 a^{2} b^{5}+7 a b^{6}+$ b^{7}. And fo, upon trial, it will be found to be.
93. If n is $=8$, we foal have the fries $a^{n}+\frac{n}{\mathrm{I}} \mathrm{A} a^{n-\mathrm{I}} b$ $+\frac{n-1}{2} \mathrm{~B} a^{n-2} b^{2}+\frac{n-2}{3} \mathrm{C} a^{n-3} b^{3}+\frac{n-3}{4} \mathrm{D} a^{n-4} b^{4}+\frac{n-4}{5}$ $\mathrm{E} a^{n-5} b^{5}+\frac{n-5}{6} \mathrm{~F} a^{n-6} b_{1}^{6}+\frac{n-6}{7} \mathrm{G} a^{n-7} b^{7}+\frac{n-7}{8} \mathrm{H}$ $a^{n-8} b^{8}+\frac{n-8}{9} \mathrm{I} a^{n-9} b^{9}+8 \mathrm{c}\left(=a^{3}+\frac{8}{1} \times 1 \times a^{2} b+\right.$
$\frac{7}{2} \mathrm{~B} a^{6} b^{2}+\frac{6}{3} \mathrm{C} a^{5} b^{3}+\frac{5}{4} \mathrm{D} a 4 b^{4}+\frac{4}{5} \mathrm{E} a^{3} b^{5}+\frac{3}{6} \mathrm{~F} a^{2} b^{6}+\frac{2}{7}$
$\mathrm{G} a^{7} b^{7}+\frac{1}{8} \mathrm{H} a^{0} b^{8}+\frac{0}{9} \mathrm{I} a^{8-9} b^{9}+\& c=a^{8}+8 a^{7} b+$ $28 a^{6} b^{2}+56 a^{5} b^{3}+70 a^{4} b^{4}+56 a^{3} b^{5}+28 a^{2} b^{6}+8 a b^{7}+1$ $\left.\times b^{2}+0+8 c\right)=a^{8}+8 a^{7} b+28 a^{6} b^{2}+56 a^{5} b^{3}+70 a^{4} b 4$
$5^{6} a^{3} b_{5}+28 a a^{2} b+8 a b^{7}+b^{3}$. Therefore $\overline{a+b^{n}}$, or $\left.\overline{a+2}\right]^{3}$, or the eighth power of the binomial quantity $a+b$, will be equal to the compound quantity $a^{8}+8 a^{7} b+28 a^{6} b^{2}+56 a^{5} b^{3}$ $+70 a^{4} b^{4}+56 a^{3} b^{5}+28 a^{2} b^{6}+8 a b^{7}+b^{8}$. And fo, upon trial, it will be found to be.
94. If n is $=9$, we hall have the feries $a^{n}+\frac{n}{1} \mathrm{~A} a^{n-1} b$
$+\frac{n-1}{2} \mathrm{~B} a^{n-2} b^{2}+\frac{n-2}{3} \mathrm{C} a^{n-3} b^{3}+\frac{n-3}{4} \mathrm{D} a^{n-4} b^{4}+$ $\frac{n-4}{5} \mathrm{E} a^{n-5} b^{5}+\frac{n-5}{6} \mathrm{~F} a^{n-6} b^{6}+\frac{n-6}{7} \mathrm{G} a^{n-7} b^{7}+\frac{n-7}{8}$ $\mathrm{H} a^{n-8} b^{8}+\frac{n-8}{9} \mathrm{I} a^{n-9} b^{9}+\frac{n-9}{10} \mathrm{~K} a^{n-10} b^{10}+\& \mathrm{c}\left(=a^{9}\right.$. $+\frac{9}{1} \times 1 \times a^{8} b+\frac{8}{2} \mathrm{~B} a^{7} b^{2}+\frac{7}{3} \mathrm{C} a^{6} b^{3}+\frac{6}{4} \mathrm{D} a^{5} b^{4}+\frac{5}{5}$ $\mathrm{E} a^{4} b^{5}+\frac{4}{6} \mathrm{~F} a^{3} b^{6}+\frac{3}{7} \mathrm{G} a^{2} b^{7}+\frac{2}{8} \mathrm{H} a^{8} b^{8}+\frac{1}{9} \mathrm{I} a^{0} b^{9}+\frac{0}{10}$ $\mathrm{K} a^{9-10} b^{10}+8 c=a^{9}+9 a^{8} b+36 a^{7} b^{2}+84 a^{6} b^{3}+$ $126 a^{5} b^{4}+126 a^{4} b^{5}+84 a^{3} b^{6}+36 a^{2} b^{7}+9 a b^{9}+\mathbf{1} \times b^{9}+$ $0+8 c)=a^{9}+9 a^{8} b+36 a^{7} b^{2}+84 a^{6} b^{3}+126 a^{5} b 4+$ ${ }^{1} 26 a^{4} b^{5}+84 a^{3} b^{6}+36 a^{2} b^{7}+9 a b^{8}+b^{9}$. Therefore ${\overline{a+b} b^{n}}^{n}$, or $\overline{a+b}$, or the ninth power of the binomial quadtity $a+b$, will be equal to the compound quantity $a^{9}+$ $9^{8} b+36 a^{7} b^{2}+84 a^{6} b^{3}+126 a^{5} b^{4}+126 a^{4} b^{5}+84 a^{3} b^{6}+$ $36 a^{2} b^{7}+9 a b^{8}+b^{9}$. And fo, upon trial, it will be found to be.
95. If n is $=10$, we hall have the fries $a^{n}+\frac{n}{1} \mathrm{~A} a^{n-1} b$ $+\frac{n-1}{2} \mathrm{~B} a^{n-2} b^{2}+\frac{n-2}{3} \mathrm{C} a^{n-3} b^{3}+\frac{n-3}{4} \mathrm{D} a^{n-4} b^{4}+$ $\frac{n-4}{5} \mathrm{E} a^{n-5} b^{5}+\frac{n-5}{6} \mathrm{~F} a^{n-6} b^{6}+\frac{n-6}{7} \mathrm{G} a^{n-7} b^{7}+\frac{n-7}{8}$ $\mathrm{H} a^{n-8} z^{8}+\frac{n-8}{9} \mathrm{I} a^{n-9} b^{9}+\frac{n-9}{10} \mathrm{~K} a^{n-10} b_{0}^{20}+\frac{n-10}{18}$ R

$$
L_{a}^{n-1 I}
$$

$L a^{x-11} b^{\mathrm{xt}}+8 c\left(=a^{10}+\frac{10}{1} \times 1 \times a^{9} b+\frac{9}{2} B a^{8} b^{2}+\frac{8}{3}\right.$
$\mathrm{C} a^{7} b^{3}+\frac{7}{4} \mathrm{D} a a^{4}+\frac{6}{5} \mathrm{E} a^{5} b^{5}+\frac{5}{6} \mathrm{~F} a^{4} b^{6}+\frac{4}{7} \mathrm{G} a^{3} b^{7}+\frac{3}{8}$
 $+10 a 9 b+45 a^{8} b^{2}+120 a^{7} b^{3}+210 a^{0} b^{4}+252 a 5 b 5+$ $210 a^{4} b^{6}+120 a^{3} b^{7}+45 a^{2} b^{8}+10 a^{1} b^{9}+1 \times b^{10}+0+$ $\& \mathrm{c})=a^{10}+10 a^{9} b+45 a^{8} b^{2}+120 a^{7} b^{3}+210 a^{6} b^{4}+$ $252 a^{3} b^{5}+210 a^{4} b^{6}+120 a^{3} b^{7}+45 a^{2} b^{5}+10 a b^{9}+b^{10}$. Therefore $\overline{a+b^{n}}$, or $\left.\overline{a+b}\right|^{10}$, or the tenth power of the binomial quantity $a+b$, will be equal to the compound quantity $a^{10}+10 a^{9} b+45 a^{8} b^{2}+120 a^{7} b^{3}+210 a^{6} b^{4}+$ $25^{2} a^{5} b^{5}+210 a^{4} b^{6}+120 a^{3} b^{7}+45 a^{2} b^{8}+10 a b^{9}+b^{10}$. And fo, upon trial, it will be found to be.
96. Jaftly, let n be $=1$ r. Then will the feries $a^{n}+\frac{n}{1}$ $\mathrm{A} a^{n-1} b+\frac{n-1}{2} \mathrm{~B} a^{n-2} b^{2}+\frac{n-2}{3} \mathrm{C} a^{n-3} b^{3}+\frac{n-3}{4} \mathrm{D}$ $a^{n-4} b^{4}+\frac{n-4}{5} \mathrm{E} a^{n-5} b^{5}+\frac{n-5}{6} \mathrm{~F} a^{n-6} b^{6}+\frac{n-6}{7} \mathrm{G} a^{n-7} b^{7}$ $+\frac{n-7}{8} \mathrm{H} a^{n-8} b^{\mathrm{s}}+\frac{n-8}{9} \mathrm{I} a^{n-9} b_{0}+\frac{n-9}{10} \mathrm{~K} a^{n-10} b^{10}$ $+\frac{n-10}{11} L a^{n-11} b^{11}+\frac{n-11}{12} M a^{n-12} b^{12}+\& c \operatorname{be}\left(=a^{11}+\right.$ $\frac{11}{1} \times 1 \times a^{10} b+\frac{10}{2} \mathrm{~B} a^{9} b^{2}+\frac{9}{3} \mathrm{C} a^{9} b^{3}+\frac{8}{4} \mathrm{D} a^{7} b^{4}+\frac{7}{5}$ $\mathrm{E} a^{6} b^{5}+\frac{6}{6} F a^{5} b^{6}+\frac{5}{7} \mathrm{G} a^{4} b^{7}+\frac{4}{8} \mathrm{H} a^{3} b^{8}+\frac{3}{9} \mathrm{I} a^{2} b^{9}+\frac{2}{10}$ $\mathrm{K} a^{1} b^{10}+\frac{1}{11} \mathrm{~L} a^{0} b^{11}+\frac{0}{12} \mathrm{MI} a^{11-12} b^{12}+\operatorname{sic}=a^{11}+11 a^{10} b$ $+55 a 9 b^{2}+165 a^{8} b^{3}+330 a^{7} b^{4}+462 a^{6} b^{5}+462 a^{5} b^{6}+330 a^{4} b^{7}$ $\left.+165 a 3 b^{8}+55^{2} a^{2} b^{9}+11 a b^{10}+1 \times b^{12}+0+\& \mathrm{c}\right)=a^{11}$ $+11 a^{10} b+55 a^{9} b^{2}+165 a^{9} b^{3}+330 a^{7} b^{4}+462 a^{6} b^{5}+462 a^{5} b^{6}$ $+330 a^{4} b^{7}+165 a^{3} b^{8}+55 a^{3} b^{0}+11 a b^{10}+b^{15}$. Therefore
fore $\overline{a+b} b^{n}$, or $\overline{a+b^{15}}$, or the eleventh power of the binomial quantity $a+b$, will be equal to the compound quantity $a^{11}+11 a^{10} b+55 a^{9} b^{2}+165 a^{9} b^{3}+330 a^{7} b^{4}+462 a^{6} b 5$ $462 a^{5} b^{0}+330 a^{4} \dot{v}^{7}+165 a^{3} b^{5}+55 a^{2} b^{9}+11 a b^{10}+b^{18}$. And fo, upon trial, it will be found to be.
97. It appears therefore that the feries $a^{n}+\frac{n}{1} \mathrm{~A} a^{n-1} b$ $+\frac{n-1}{2} \mathrm{~B} a^{n-2} \dot{b}^{2}+\frac{n-2}{3} \mathrm{C} a^{n-3} b^{3}+\frac{n-3}{4} \mathrm{D} a^{n-4} b^{4}+\frac{n-4}{5}$ $\mathrm{E} a^{n-5} b^{5}+\frac{n-5}{6} \mathrm{~F} a^{n-6} b^{6}+8 \mathrm{c}$, which has been obrained in the foregoing $5^{\text {th }}$ corollary for the value of the quantity $a+\lambda \lambda^{n}$, or the nth power of the binomial quantity $a+b$, does truly exhibit the value of the faid power when the index n is equal to either 1 , or 2 , or 3 , or 4 , or 5 ; or 6 , or 7 , or S, or 9 , or 10 , or 11 ; in which cafes the co-efficients of the terms of the faid feries are equal to the numbers contained in the feveral fucceffive horizontal rows of terms in the foregoing table of combinations, in page 74 , beginning with the fecond row.

Additicnal Corollaries, not contained in the original text of Mr. James Bernoulli.
98. To thefe five corollaries, which are contained in Mr . James Bernoulli's original text, it may not be amifs to add the following corollaries, which are eafily deducible from Mr. Bernoulli's propofitions, and which will enable us to find a general expreffion for the terms of any of the ventiR 2
cal columns in the foregoing table of combinations, or, in other words, for the figurate numbers of any propofed order.
99. Coroll. 6. It has been thewn in art. 82, corol. 3, page it 2 , that the $n+7$ th terms of the firtt, fecond, third, fourth, fifth, fixth, and ocher following vertical columns of terms in the foregoing table of combinations are $1, n, n \times$ $\frac{n-1}{2}, n \times \frac{n-1}{2} \times \frac{n-2}{3}, n \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4}, n \times \frac{n-1}{2}$ $\times \frac{n-2}{3} \times \frac{n-3}{4} \times \frac{n-4}{5}$, \&c. But the n+1ib terms of the firft, fecond, third, fourth, fifth, fixth, and other following vertical columns of terms in the faid table are the firt, fecond, third, fourth, fifh, fixth, and other following terms of the $n+$ thl horizontal row of terms in the faid table. Therefore the firt, fecond, third, fourth, fifth, fixth, and other following terms of the $n+1$ th horizontal row of terms in the faid table are $1, n, n \times \frac{n-1}{2}, n \times \frac{n-1}{2} \times \frac{n-2}{3}, n \times$ $\frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4}$, and $n \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4} \times \frac{n-4}{5}$, \&c.
100. Coroll. 7. Since the feveral terms of the $n+1$ th horizontal row are $1, n, n \times \frac{n-1}{2}, n \times \frac{n-1}{2} \times \frac{n-2}{3}, n \times$ $\frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4}$, and $n \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4} \times \frac{n-4}{5}$, $\& \dot{c}$, it follows that, if p be any whole number greater than n, as, for example, $n+1$, or $n+2$, or $n+3$, or $n+4$, \&c, the feveral terms of the $p+1$ h horizontal row will be $1, p$, $p \times \frac{p-1}{2}, p \times \frac{p-1}{2} \times \frac{p-2}{3}, p \times \frac{p-1}{2} \times \frac{p-2}{3} \times \frac{p-3}{4}$, and p $\times \frac{p-1}{2} \times \frac{p-2}{3} \times \frac{p-3}{4} \times \frac{p-4}{5}, \& c$. And confequently the third term of the $p+. \quad$ th horizontal row of terms, when p is equal to $n+1$, or the third term of the $n+2$ th horizontal

Mr. Fames Bernoulli's Treatije De Arte Conjectandi. 125 row of terms, will be the quantity which arifes by fubtituting $n+x$ inftead of p in the third term, $p \times \frac{p-1}{2}$, of the laft-mentioned feries, that is, $\overline{n+1} \times \frac{n+1-1}{2}$, or $\overline{n+1} \times$ $\frac{n}{2}$, or $n \times \frac{n+1}{2}$; and the fourth term of the $p+1$ th horizontal row of terms when p is $=n+2$, or the fourth term of the $n+3$ th horizontal row of terms will be that which arifes by fubftituting $n+2$ inftead of p in the fourth term, $p \times \frac{p-1}{2} \times \frac{p-2}{3}$, of the laft feries, that is, $\overline{n+2} \times \frac{n+2-1}{2}$ $\times \frac{n+2-2}{3}$, or $\overline{n+2} \times \frac{n+1}{2} \times \frac{n}{3}$, or $n \times \frac{n+1}{2} \times \frac{n+2}{3}$.

And, in like manner, if we fubftitute $n+3$ inftead of p in the 5 th term $p \times \frac{p-1}{2} \times \frac{p-2}{3} \times \frac{p-3}{4}$ of the laft feries, we Mall have $\overline{n+3} \times \frac{n+3-1}{2} \times \frac{n+3-2}{3} \times \frac{n+3-3}{4}$, or $\overline{n+3}$ $\times \frac{n+2}{2} \times \frac{n+1}{3} \times \frac{n}{4}$, or $n \times \frac{n+1}{2} \times \frac{n+2}{3} \times \frac{n+3}{4}$, for the $5^{\text {th }}$ term of the $n+4$ th horizontal row of terms; and, if we fubftitute $n+4$ inftead of p in the 6th term, $p \times$ $\frac{p-1}{2} \times \frac{p-2}{3} \times \frac{p-3}{4} \times \frac{p-4}{5}$, of the laft feries, we fhall have $\overline{n+4} \times \frac{n+4-1}{2} \times \frac{n+4-2}{3} \times \frac{n+4-3}{4} \times \frac{n+4-4}{5}$, or $\overline{n+4}$ $\times \frac{n+3}{2} \times \frac{n+2}{3} \times \frac{n+1}{4} \times \frac{n}{5}$, or $n \times \frac{n+1}{2} \times \frac{n+2}{3} \times \frac{n+3}{4} \times$ $\frac{n+4}{5}$, for the 6 th term of the $n+5$ th horizontal row of terms. So that the 3 d term of the $n+2$ th horizontal row of terms, and the 4 th term of the $n+3$ th horizontal row, and the 5 th term of the $n+4$ th horizontal row, and the 6 th term of the $n+5$ h horizontal row, will be $n \times \frac{n+1}{2}, n \times$

$$
\frac{n+1}{2}
$$

$\frac{n+1}{2} \times \frac{n+2}{3}, n \times \frac{n+1}{2} \times \frac{n+2}{3} \times \frac{n+3}{4}$, and $n \times \frac{n+1}{2} \times \frac{n+2}{3}$ $\times \frac{n+3}{4} \times \frac{n+4}{5}$, refpectively.
101. Coroll. 8. Thefe four terms $n \times \frac{n+1}{2}, n \times \frac{n+1}{2} \times$ $\frac{n+2}{3}, n \times \frac{n+1}{2} \times \frac{n+2}{3} \times \frac{n+3}{4}$, and $n \times \frac{n+1}{2} \times \frac{n+2}{3} \times \frac{n+3}{4}$ $\times \frac{n+4}{5}$, are derived from the number n by the continual multiplication of the fractions $\frac{n+1}{2}, \frac{n+2}{3}, \frac{n+3}{4}$, and $\frac{n+4}{5}$, the numerators and denominators of which both increafe continually by an unit. Therefore, it we put C for the firft, D for the fecond, E for the third, and F for the fourth of thefe terms, we fhall have $\mathrm{C}=\frac{n+1}{2} \times n$, and $\mathrm{D}=\frac{n+2}{3}$ $\times \mathrm{C}$, and $\mathrm{E}=\frac{n+3}{4} \times \mathrm{D}$, and $\mathrm{F}=\frac{n+4}{5} \times \mathrm{E}$.

And, from the manner in which thefe four terms were derived from the $3 \mathrm{~d}, 4^{\text {th }}, 5^{\text {th }}$, and 6 th terms of the feries $1, p, p \times \frac{p-1}{2}, p \times \frac{p-1}{2} \times \frac{p-2}{3}, p \times \frac{p-1}{2} \times \frac{p-2}{3} \times \frac{p-3}{4}$, $p \times \frac{p-1}{2} \times \frac{p-2}{3} \times \frac{p-3}{4} \times \frac{p-4}{5}, \& \mathrm{c}$, in the laft corollary, to wit, by fubftituting $n+1, n+2, n+3$, and $n+4$, inftead of p in the faid $3^{\mathrm{d}}, 4^{\text {th }}, 5$ th, and 6 th terms, refpectively, it is cafy to fee that the 7 th term of the $n+6$ th hosizontal row of terms, and the $\$$ th term of the $n+7$ th hosizontal row, and the gth tern of the $n+8$, th horizontal row, and the 1oth term of the $n+9$ th horizontal row, and the $1 \mathrm{t}^{\text {th }}, 12$ th, 13 th, $14^{\text {th }}, 15$ th, and other following terms of the $\overline{n+10} \mathrm{ch}, \overline{n+19}$ th, $\overline{n+12} \mathbf{t h}, \overline{n+13} \mathrm{th},\left.\overline{n+14}\right|_{\text {th }}$, and other following horizontal rows of terms in the faid table, refpectively, will be equal to $\frac{n+5}{6} \times F, \frac{n+6}{7} \times G, \frac{n+7}{8}$
$\times \mathrm{H}, \frac{n+8}{9} \times \mathrm{I}, \frac{n+9}{10} \times \mathrm{K}, \frac{n+10}{11} \times \mathrm{L}, \frac{n+11}{12} \times \mathrm{M}, \frac{n+12}{13} \times$
$\mathrm{N}, \frac{n+13}{1+} \times \mathrm{O}, \delta \mathrm{E}$, in which the capital letters $\mathrm{G}, \mathrm{H}, \mathrm{I}$, K, L, M, N, O, \&xc, denote the 7th, Sch, 9 th, roth, IIth, 12th, I 3 th, $14^{\text {th }}$, 15 th, and other next following terms, of the $n+60$ ch, $n+7$ th, $n+8$ ch, $n+9$ th, $n+10$ th, and other following horizontal rows of terms, refpectively, as they arife, and the generating fractions $\frac{n+5}{6}, \frac{n+6}{7}, \frac{n+7}{8}, \frac{n+8}{9}$, $\frac{n+9}{10}, \frac{n+10}{11}, \frac{n+11}{12}, \frac{n+12}{13}, \frac{n+13}{14}, \& c$, are a continuation of the forcgoing generating fractions $\frac{n+1}{2}, \frac{n+2}{3}, \frac{n+3}{4}, \frac{n+4}{5}$, and are derived from them by the continual addition of an unit to boch their numerators and denominators.
102. Coroll. 9. It is Mhewn above in the 6th property of the numbers contained in the foregoing table of combinations, art. 56 and 57 , pages 77 and 78 , that in every horizontal row of terms in the faid table of combinations, the firf and laft torm are, each of them, an unit, and the terms that are equidifant from the firt and laft terms are equal to each other. It follows therefore that the 3d term of the $n+2$ th horizontal row, reckoned from the end of it, or from the right hand to the lefr, will be equal to the 3 d term of it reckoned from the beginning, or from the left hand to the right; and that the $4^{\text {th }}$ term of the $n+$ th horizontal row, reckoned from the end of it, or from the right hand to the left, will be equal to the $4^{\text {th }}$ term of it reckoned from the beginning, or from the left hand to the rioht; and that the $5^{\text {th }}$ term of the $n+4$ lil horizontal row, reckoned from the end of it, or from the right hand to the left, will be equal to the $5^{\text {th }}$ term of it, reckoned from the beginning, or from the left hand to the right; and that the 6th term of the $n+5$ th horizontal row, reckoned from the end of it, or from the right hand to the left. will be equal to the bth term of it, reckoned from the beginning, or from the left hand to the right ; and, in like manner, that the

128 A Tranflation of the foregoing Extralt from

7 th, and S th, and 9 th, and Ioth, and other following terms of the $n+9$ ch, $n+7 \mathrm{th}, n+8 \mathrm{th}, \overline{n+9}$ ch, and other following hodizontal rows of terms, refpectively, reckoned from the ends of the faid rows, or from the right hand to the left, will be equal to the 7 th, and 8 th, and 9 th, and roth, and other following correfponding terms of the fame horizontal rows, refpectively, reckoned from the beginnings of the faid rows, or from the left hand to the right. But it was fhewn in corollary 7 th, that the 3 d term of the $n+2$ th horizontal row of terms, reckoned from the beginning of it, or from the left hand to the right, is $n \times \frac{n+1}{2}$; and that the 4 th term of the $n+3$ th horizontal row of terms, reckoned from the beginning of it, or from the left hand to the right, is $n \times \frac{n+1}{2} \times \frac{n+2}{3}$; and that the 5 th term of the $n+4$ th horizontal row of terms, reckoned from the beginning of it, or from the left hand to the right, is $n \times \frac{n+1}{2} \times \frac{n+2}{3} \times$ $\frac{n+3}{4}$; and that the fixth term of the $n+5$ th horizontal row of terms, reckoned from the beginning of it, or from the left hand to the right, is $n \times \frac{n+1}{2} \times \frac{n+2}{3} \times \frac{n+3}{4} \times$ $\frac{n+4}{5}$: or that, if the faid third term of the $\overline{n+2}$ th horizontal row of terms, reckoned from the beginning of it, be called C, and the faid 4 th term of the $n+3$ th horizontal row of terms, reckoned from the beginning of it, be called D, and the faid 5 th term of the $n+47^{\text {th }}$ horizontal row of terms, reckoned from the beginning of it, be called E, and the faid 6 th term of the $n+5$ th horizontal row of terms, reckoned from the beginning of it, be called F , we Thall have $\mathrm{C}=n \times \frac{n+1}{2}$, and $\mathrm{D}=\frac{n+2}{3} \times \mathrm{C}$, and $\mathrm{E}=\frac{n+3}{4}$
$\times \mathrm{D}$, and $\mathrm{F}=\frac{n+4}{5} \times \mathrm{E}$. And it is obferved in the laft, or 8 th, corollary, that, if the 7 th term of the $n+6$ h ho-
fizontal row of terms be called G, and the 8 th term of the $n+-i$ h horizontal row be called H, and the gth term of the $n+\overline{8}$ th horizontal row, and the roth term of the $n+9$ it horizontal row, and the 1 th term of the $n+10$ th horizontal row, and the 12 th term of the $n+1$ in horizontal row, and the next following terms of the next following horizontal rows, all reckoned from the beginnings of thofe feveral horizontal rows, or from the left hand to the right, be called I, K, L, and M, \&c, refpectively, we fhall have $\mathrm{G}=\frac{n+5}{6} \times \mathrm{F}$, and $\mathrm{H}=\frac{n+5}{7} \times \mathrm{G}$, and $\mathrm{I}=$ $\frac{n+7}{8} \times \mathrm{H}$, and $\mathrm{K}=\frac{n+8}{9} \times \mathrm{I}$, and $\mathrm{L}=\frac{n+9}{10} \times \mathrm{K}$, and M $=\frac{n+10}{11} \times \mathrm{L}$, and confequently that the 3^{d} term of the $n+2$ th horizontal row of terms, and the 4 th term of the $\overline{n+3}$:h horizontal row of terms, and the 5 th, $6 \mathrm{th}, 7 \mathrm{th}, 8 \mathrm{th}$, 9 th, 10 th, 1 ith, and 12 th, and other next following terms of the $n+4 \cdot h, \overline{n+3}$ th, $\overline{n+6}(\mathrm{~h}, \overline{n+7} \cdot \overline{n+8} \cdot \mathrm{~h}, n+\mathrm{c} \cdot \mathrm{h}$, $n+10$ ch, and $n+n$ th, and other next following horizontal rows of terms, reckoned from the beginnings of thofe feveral horizontal rows, or from the left hand to the right, will be equal to $n \times \frac{n+1}{2}$, or C , and $\frac{n+2}{3} \times \mathrm{C}, \frac{n+3}{4} \times \mathrm{D}$, $\frac{n+4}{5} \times \mathrm{E}, \frac{n+5}{6} \times \mathrm{F}, \frac{n+6}{7} \times \mathrm{G}, \frac{n+7}{8} \times \mathrm{H}, \frac{n+8}{9} \times \mathrm{I}, \frac{n+9}{10}$ $\times \mathrm{K}$, and $\frac{n+10}{11} \times \mathrm{L}, \& c$, refpectively. It follows therefore that the 3 d term of the $n+2 \cdot h$ horizontal row of terms, and the 4 th term of the $n+3$ th horizontal row of terms, and the 5 th, $6 \mathrm{th}, 7 \mathrm{th}, 8 \mathrm{th}$, 9 th, 10 th , 1 ith , and 12 th , and other next following terms of the $n+4 \mathrm{~h}, n+5 \mathrm{~h}$, $\overline{n+6}$ h, $n+7$ th, $\overline{n+8}:$ h, $n+9$ th,$n+10$ th, and $n+11^{\text {l th }}$, and other next following horizontal rows of terms, reckoned from the ends of thofe feveral horizontal rows, or from the

130 A Tranflation of the foregoing Extratt from
right hand to the left, will alfo be refpectively equal to $n x$ $\frac{n+1}{2}$, or C , and $\frac{n+2}{3} \times \mathrm{C}, \frac{n+3}{4} \times \mathrm{D}, \frac{n \times 4}{5} \times \mathrm{E}, \frac{n+5}{6} \times \mathrm{F}$, $\frac{n+6}{7} \times \mathrm{G}, \frac{n+7}{8} \times \mathrm{H}, \frac{n+8}{9} \times \mathrm{I}, \frac{n+9}{10} \times \mathrm{K}$, and $\frac{n+10}{11} \times \mathrm{L}$, \&c.

Of the figurate numbers, or the fignificant terms of the vertical columns of terms in the foregoing table of combinations, page 74.
103. Coroll. io. We come now to confider the vertical columns of terms in the foregoing table of combinations.

Now it is evident, in the firft place, that the firft fignificant term in every vertical column of terms in the faid table is an unit, and that the fecond fignificant term is the number which is the exponent of the column; as has been obferved above in art. 53 , page 76 . So that, if the whole number n be the exponent of the column, the two firft fignificant terms of the faid column, immediately following the cyphers at the top of it, will be 1 and n. It remains that we find the values of the following terms in the faid column, after the terms 1 and n. Now this may be done by means of the foregoing corollaries, in the manner following.

In the foregoing table of combinations the number of cyphers at the top of the vertical column of which the exponent is n, is $n-1$; as is obferved above in art. 5 I , page 75. And confequently the firlt fignificant term in the faid vertical column, to wit, 1 , will be the nth term of it, and confequently will be fituated in the nth horizontal row of terms in the faid table; and the fecond fignificant term in the faid vertical column of terms, to wit, n, will be fituated
in the $n+1$ th horizontal row of terms; and the 3 d fignifio cant term in the faid vertical column will be fituated in the $\overline{n+2}$ th horizontal row of terms; and the 4 th fignificant figure in the faid vertical column will be fituated in the $n+3$ th horizontal row of terms; and, in like manner, the 5 th, and 6 th , and 7 th, and 8 th , and 9 th, and roth, and other following fignificant terms in the faid nth vertical column will be fituated in the $n+4$ th, and $n+5$ th, and $n+6 \mathrm{ch}$, and $n+7 \cdot \mathrm{th}$, and $n+8 \mathrm{ch}$, and $n+9 \mathrm{th}$, and other following horizontal rows of terms refpectively.

And, further, the firff fignificant term, to wit, I , in the faid nth vertical column of terms, is likewife the firfterm, reckoned from the right hand to the left, of the horizontal row in which it is fituated; and the fecond fignificant term in the faid nth vertical column of terms, to wit, n, is likewife the fecond term, reckoned from the right hand to the leff, of the horizontal row in which it is fituated; and the 3d fignificant term in the faid nth vertical column is likewife the third term, reckoned from the right hand to the left, of the horizontal row in which it is fituated; and the $4^{\text {th }}$ fignificant term of the faid nth vertical column is likewife the 4th term, reckoned from the right hand to the left, of the horizontal row in which it is fituated; and, in like manner, the 5 th, 6 th, 7 th, 8 th , and other following fignificant terms of the faid nth vertical column of terms, are likewife the 5 th, 6 th, 7 th, 8 th, and other following terms, reckoned from the right hand to the left, of the feveral horizontal rows of terms in which they are fituated, refpectively.

But it has been fhewn that the ift, $2 \mathrm{~d}, 3 \mathrm{~d}, 4 \mathrm{th}, 5$ th, 6 th, and ocher following fignificant terms in the n h vertical column of terms are fituated in the $n \mathrm{~h}, n+1 \mathrm{~h}, n+2(\mathrm{~h}$, $n+3 \mathrm{th}, \overline{n+4} \mathrm{~h}, \bar{n}+5 \mathrm{th}$, and other next following horizontal rows of terms, relpectively.

Therefore the ift; $2 \mathrm{~d}, 3 \mathrm{~d}, 4 \mathrm{th}, 5 \mathrm{th}, 6 \mathrm{th}$, and other following lignificant terms of the nth vertical column of terms
are likewife the $1 \mathrm{ft}, 2 \mathrm{~d}, 3 \mathrm{~d}, 4^{\text {th }}, 5^{\text {th }}, 6$ th, and other next following terms, reckoned from the right hand to the left, of the n th, $n+1$ th, $n+2 \mathrm{ch}, n+3$ th, $n+4 \mathrm{hh}, \overline{n+5} \mathrm{th}$, and other next following horizontal rows of terms, refpectively.

But it has been fhewn in coroll. 9 , that the ${ }_{3} \mathrm{~d}$ term of the $\overline{n+2}$ th horizontal row of terms, reckoned from the right hand to the lefr, is equal to $n \times \frac{n+1}{2}$, or $\frac{n+1}{2} \times n$, or $\frac{n+1}{2} \times B$; and that the $4^{\text {th }}$ term of the $n+3$ h horizontal row of terms, reckoned from the right hand to the left, is $n \times \frac{n+1}{2} \times \frac{n+2}{3}$, or $\frac{n+2}{3} \times \mathrm{C}$; and that the 5 th term of the $n+4$ th horizontal row of terms, and the 6 th term of the $n+$ ih horizontal row of terms, and the 7 th, 8 th, 9 th, Icth, and other next following terms of the $n+6 / \mathrm{h}$, $\overline{n+-}: \bar{n}, \overline{n+8}$ ith, $\overline{n+3} \cdot h$, and other next following horizontal rows of terms, refpectively, all reckoned from the right hand to the left, are equal to $\frac{n+3}{4} \times \mathrm{D}, \frac{n+4}{5} \times \mathrm{E}$, $\frac{n+5}{6} \times F, \frac{n+6}{7} \times G, \& c$.

Therefore the 3 d fignificant term of the nth vertical coJumn of terms will be equal to $n \times \frac{n+1}{2}$, or $\frac{n+1}{2} \times n$, or $\frac{n+1}{2} \times B$; and the $4^{\text {th }}$ fignificant term of the fame vertical column will be equal to $n \times \frac{n+1}{2} \times \frac{n+2}{3}$, or $\frac{n+2}{3} \times \mathrm{C}$; and the 5 th, and 6 th, and 7 th , and 8 th, and 9 th, and 10 th, and other following fignificant terms of the lame vertical column will , be equal to $\frac{n+3}{4} \times \mathrm{D}, \frac{n+4}{5} \times \mathrm{F}, \frac{n+5}{6} \times \mathrm{F}, \frac{n+6}{7}$ $\times \mathrm{G}, \frac{n+7}{8} \times \mathrm{H}, \frac{n+8}{9} \times \mathrm{I}, \&<\mathrm{c}$. ; and confequently the whole
whole of the faid nth vertical column of terms, including the two firlt fignificanc terms 1 and n, or, in other words, the whole feries of figurate numbers of the nth order, will be $1, n$, or $\frac{n}{1} \mathrm{~A}, \frac{n+1}{2} \mathrm{~B}, \frac{n+2}{3} \mathrm{C}, \frac{n+3}{4} \mathrm{D}, \frac{n+4}{5} \mathrm{E}, \frac{n+5}{6} \mathrm{~F}, \frac{n+6}{7}$ $\mathrm{G}, \frac{n+7}{8} \mathrm{H}, \frac{n+8}{9} \mathrm{I}, \frac{n+9}{10} \mathrm{~K}, \frac{n+10}{1 \mathrm{~L}} \mathrm{~L}, \frac{n+1 \mathrm{I}}{12} \mathrm{M}, \frac{n+12}{13} \mathrm{~N}, \frac{n+13}{14}$ $\mathrm{O}, \frac{n+14}{15} \mathrm{P}, \& \mathrm{c}$, ad infinitum.
C. E. I.

Exarmples of the application of the foregoing feries to the computation of the figurate numbers of feveral fuccefive orders.
104.. In the firf place we will fuppofe the letter n to denote 1.

Then we thall have $n+1(=1+1)=2$, and $n+2$ $(=1+2)=3$, and $n+3(=1+3)=4$, and $n+4$ $(=1+4)=5$, and $n+5, n+6, n+7, n+8, n+9$, $n+10, \&<,=6,7,8,9,10,11, \& c$, refpectively. Therefore the feveral terms $\mathrm{I}, \frac{n}{1} \mathrm{~A}, \frac{n+1}{2} \mathrm{~B}, \frac{n+2}{3} \mathrm{C}, \frac{n+3}{4}$ D, $\frac{n+4}{5} \mathrm{E}, \frac{n+5}{6} \mathrm{~F}, \frac{n+6}{7} \mathrm{G}, \frac{n+7}{8} \mathrm{H}, \frac{n+8}{9} \mathrm{I}, \frac{n+9}{10} \mathrm{~K}, \frac{n+10}{11}$ L , $\& \mathrm{c}$, will, in this cafe, be equal to $\mathrm{I}, \frac{1}{1} \mathrm{~A}, \frac{2}{2} \mathrm{~B}, \frac{3}{3} \mathrm{C}$, $\frac{4}{4} \mathrm{D}, \frac{5}{5} \mathrm{E}, \frac{6}{6} \mathrm{~F}, \frac{7}{7} \mathrm{G}, \frac{8}{8} \mathrm{H}, \frac{9}{9} \mathrm{I}, \frac{10}{10} \mathrm{~K}, \frac{11}{11} \mathrm{~L}, \& \mathrm{\&} \mathrm{c}$, refpectively, or to 1, i $A, i B, i C, i D, i E, i F, I G, i H$, I I, I K, I L, \& C , or to $\mathrm{I}, \mathrm{I}, \mathrm{I}$, \&c ; and therefore the twelve firft terms in the firt vertical column in the foregoing table of combinations, or the tivelve firft figurate numbers of the 1 it order, obtained by
means of the foregoing feries, will be $1,1,1,1,1,1,1$, $1,1,1,1$, and 1 , or a fet of units; as they ought to be, and as they are in the foregoing table of combinations.
105. In the next place we will fuppofe the exponent n to be equal to 2 , in order to obtain, by means of the foregoing feries, the fignificant terms in the fecond vertical column in the foregoing table of combinations, or the figurate numbers of the fecond order.

Now, if n is $=2$, the terms of the feries $1, \frac{n}{1} A, \frac{n+1}{2} B$, $\frac{n+2}{3} \mathrm{C}, \frac{n+3}{4} \mathrm{D}, \frac{n+4}{5} \mathrm{E}, \frac{n+5}{6} \mathrm{~F}, \frac{n+6}{7} \mathrm{G}, \frac{n+7}{8} \mathrm{H}, \frac{n+8}{9} \mathrm{I}, \frac{n+9}{10}$ $\mathrm{K}, \& \mathrm{c}$, will be refpectively equal to $\mathrm{I}, \frac{2}{1} \mathrm{~A}, \frac{2+1}{2} \mathrm{~B}, \frac{2+2}{3}$ $\mathrm{C}, \frac{2+3}{4} \mathrm{D}, \frac{2+4}{5} \mathrm{E}, \frac{2+5}{6} \mathrm{~F}, \frac{2+6}{7} \mathrm{G}, \frac{2+7}{8} \mathrm{H}, \frac{2+8}{9} \mathrm{I}, \frac{2+9}{10}$ $K, \& C$, or $1, \frac{2}{1} A, \frac{3}{2} B, \frac{4}{3} C, \frac{5}{4} D, \frac{6}{5} E, \frac{7}{6} F, \frac{8}{7} G, \frac{9}{8}$ $\mathrm{H}, \frac{10}{9} \mathrm{I}, \frac{11}{10} \mathrm{~K}, 8 \mathrm{c}$, or $\mathrm{I}, 2,3,4,5,6,7,8,9,10,1 \mathrm{I}$, $\& c$. Therefore the firft eleven fignificant terms in the fecond vertical column of terms in the foregoing table of combinations, or the firlt eleven figurate numbers of the fecond order, obtained by means of the foregoing feries, will be the natural numbers $1,2,3,4,5,6,7,8,9,10$, and 11 ; as they ought to be.
106. In the 3 d place we will fuppofe the exponent n to be equal to 3 , in order to obtain, by means of the foregoing feries, the fignificant terms in the 3 d vertical column of terms in the foregoing table of combinations, or the figurate numbers of the third order, or (as they are often called) the triangular numbers.

Now, if n is $=3$, the terms of the feries $1, \frac{n}{1} A, \frac{n+1}{2} B$, $\frac{n+2}{3} \mathrm{C}, \frac{n+3}{4} \mathrm{D}, \frac{n+4}{5} \mathrm{E}, \frac{n+5}{6} \mathrm{~F}, \frac{n+6}{7} \mathrm{G}, \frac{n+7}{8} \mathrm{H}, \frac{n+8}{9} \mathrm{I}$, \& c,
$\& c$, will be refpectively equal to $\mathrm{I}, \frac{3}{2} \mathrm{~A}, \frac{3+\mathrm{r}}{2} \mathrm{~B}, \frac{3+2}{3} \mathrm{C}$, $\frac{3+3}{4} \mathrm{D}, \frac{3+4}{5} \mathrm{E}, \frac{3+5}{6} \mathrm{~F}, \frac{3+6}{7} \mathrm{G}, \frac{3+7}{8} \mathrm{H}, \frac{3+8}{9} \mathrm{I}, \& \mathrm{c}$, or $\mathrm{I}, \frac{3}{1}$ A, $\frac{4}{2} \mathrm{~B}, \frac{5}{3} \mathrm{C}, \frac{6}{4} \mathrm{D}, \frac{7}{5} \mathrm{E}, \frac{8}{6} \mathrm{~F}, \frac{9}{7} \mathrm{G}, \frac{10}{8} \mathrm{H}, \frac{1 \mathrm{I}}{9} \mathrm{I}, \& \mathrm{c}$, or I, $3,6,10,15,2 \mathrm{I}, 28,36,45,55, \& \mathrm{c}$. Therefore the firft ten fignificant terms in the third vertical column of terms in the foregoing table of combinations, or the firtt ten figurate numbers of the third order, or the firf ten triangular numbers, obtained by means of the foregoing feries, are $1,3,6,10,15,21,28,36,45$, and 55 ; which are the fame numbers with thofe fet down above in page 74 , in the third vertical column of the foregoing table of combinations.
107. In the 4 th place we will fuppofe the exponent n to be $=4$, in order to obtain, by means of the foregoing feries, the fignificant terms in the $4^{\text {th }}$ vertical column in the foregoing table of combinations, or the figurate numbers of the 4 th order, or (as they are often called) the pyramidal numbers.

Now, if n is $=4$, the terms of the feries $1, \frac{n}{1} A, \frac{n+1}{2}$ B, $\frac{n+2}{3} \mathrm{C}, \frac{n+3}{4} \mathrm{D}, \frac{n+4}{5} \mathrm{E}, \frac{n+5}{6} \mathrm{~F}, \frac{n+6}{7} \mathrm{G}, \frac{n+7}{8} \mathrm{H}, \& \mathrm{c}$, will be refpectively equal to $\mathrm{I}, \frac{4}{\mathrm{I}} \mathrm{A}, \frac{4+\mathrm{r}}{2} \mathrm{~B}, \frac{4+2}{3} \mathrm{C}, \frac{4+3}{4}$ D, $\frac{4+4}{5} \mathrm{E}, \frac{4+5}{6} \mathrm{~F}, \frac{4+6}{7} \mathrm{G}, \frac{4+7}{8} \mathrm{H}, \& \mathrm{c}$, or $\mathrm{I}, \frac{4}{1} \mathrm{~A}, \frac{5}{2} \mathrm{~B}, \frac{6}{3}$ C, $\frac{7}{4} \mathrm{D}, \frac{8}{5} \mathrm{E}, \frac{9}{6} \mathrm{~F}, \frac{10}{7} \mathrm{G}, \frac{11}{8} \mathrm{H}, 8 \mathrm{a}$, or $\mathrm{I}, 4,10,20,35$, $56,84,120,165, \& c$. Therefore the firft nine fignificant terms in the fourth vertical column of terms in the foregoing table of combinations, or the firt nine figurate numbers of the $4^{\text {th }}$ order, or the firt nine pyramidal numbers, obtained by means of the foregoing feries, are $1,4,10$, $20,35,56,84,120$, and 165 ; which are the fame num-
bers with thofe fet down above in page 74 , in the fourth vertical column of the foregoing table of combinations.
108. In the $5^{\text {th }}$ place we will fuppofe the exponent n to be $=5$, in order to obtain, by means of the foregoing. feries, the fignificant terms in the 5 th vertical column of terms in the foregoing table of combinations, or the figurate number of the 5 th order.
Now, if n is $=5$, the terms of the feries $\mathrm{I}, \frac{n}{1} \mathrm{~A}, \frac{n+1}{2} \mathrm{~B}$, $\frac{n+2}{3} \mathrm{C}, \frac{n+3}{4} \mathrm{D}, \frac{n+4}{5} \mathrm{E}, \frac{n+5}{6} \mathrm{~F}, \frac{n+6}{7} \mathrm{G}, \& \mathrm{c}$, will be refpectively equal to $\mathrm{I}, \frac{5}{1} \mathrm{~A}, \frac{5+\mathrm{r}}{2} \mathrm{~B}, \frac{5+2}{3} \mathrm{C}, \frac{5+3}{4} \mathrm{D}, \frac{5+4}{5} \mathrm{E}, \frac{5+5}{6}$ F, $\frac{5+6}{7} \mathrm{G}, \& \mathrm{c}$, or $\mathrm{I}, \frac{5}{1} \mathrm{~A}, \frac{6}{2} \mathrm{~B}, \frac{7}{3} \mathrm{C}, \frac{8}{4} \mathrm{D}, \frac{9}{5} \mathrm{E}, \frac{10}{6} \mathrm{~F}$, $\frac{11}{7} \mathrm{G}, \& \mathrm{c}$, or $\mathrm{I}, 5,15,35,70,126,210,330, \& c$. Therefore the firft eight fignificant terms in the 5 th vertical column of terms in the foregoing table of combinations, or the firt eight figurate numbers of the $5^{\text {th }}$ order, are 1,5 , $15,35,70,126,210$, and 330 ; which are the fame numbers with thofe fet down above in page 74 in the 5 th vertical column of the foregoing table of combinations.
109. In like manner, if the exponent n is $=6$, the terms of the feries $\mathrm{I}, \frac{n}{1} \mathrm{~A}, \frac{n+1}{2} \mathrm{~B}, \frac{n+2}{3} \mathrm{C}, \frac{n+3}{4} \mathrm{D}, \frac{n+4}{5} \mathrm{E}, \frac{n+5}{6}$ F, \&cc, will be refpectively equal to $\mathrm{I}, \frac{6}{x} \mathrm{~A}, \frac{7}{2} \mathrm{~B}, \frac{8}{3} \mathrm{C}, \frac{9}{4}$ D, $\frac{10}{5} \mathrm{E}, \frac{11}{6} \mathrm{~F}, \& \mathrm{cc}$, or $\mathrm{I}, 6,2 \mathrm{I}, 56,126,252,462, \& \mathrm{cc}$. and confequently the firft feven fignificant terms of the 6th verrical column of terms in the foregoing table, or the firft feven figurate numbers of the 6 th order, will be $1,6,21$, $56,126,252$, and 462 ; which are the fame numbers with thofe fet down above in page 74 in the 6 th vertical column of the foregoing table of combinations.

110. And,

110. And, if the exponent n is $=7$, the terms of the feries $\mathrm{I}, \frac{n}{2} \mathrm{~A}, \frac{n+\mathrm{I}}{2} \mathrm{~B}, \frac{n+2}{3} \mathrm{C}, \frac{n+3}{4} \mathrm{D}, \frac{n+4}{5} \mathrm{E}, 8 \mathrm{c}$, will be refpectively equal to $\mathrm{I}, \frac{7}{\mathrm{I}} \mathrm{A}, \frac{8}{2} \mathrm{~B}, \frac{9}{3} \mathrm{C}, \frac{10}{4} \mathrm{D}, \frac{\mathrm{rr}}{5} \mathrm{E}, \& \mathrm{c}$, or 1, $7,28,84,210,462,8 \mathrm{c}$; and confequently the firf fix fignificant terms of the η th vertical column of terms in the foregoing table of combinations, or the firft fix figurate numbers of the 7 th order, will be $x, 7,28,84,210$, and 462 ; which are the fame numbers with thofe fet down above in page 74 , in the 7 th vertical column of the foregoing table of combinations.

1if. And, if the exponent n is $=8$, the terms of the feries $\mathrm{r}, \frac{n}{2} \mathrm{~A}, \frac{n+1}{2} \mathrm{~B}, \frac{n+2}{3} \mathrm{C}, \frac{n+3}{4} \mathrm{D}, \& \mathrm{c}$, will be refpectively equal to $1, \frac{8}{1} \mathrm{~A}, \frac{9}{2} \mathrm{~B}, \frac{10}{3} \mathrm{C}, \frac{11}{4} \mathrm{D}, 8 \mathrm{c}$, or $\mathrm{I}, 8,36$, $120,330, \& \mathrm{c}$; and confequently the firft five fignificant terms of the 8th vertical column of terms in the foregoing table of combinations, or the firft five figurate numbers of the 8 th order, will be $1,8,36,120$, and 330 ; which are the fame numbers with thofe fet down above in. page 74 , in the 8th vertical column of the foregoing table of combinations.
112. And, if the exponent n is $=9$, the terms of the feries $\mathrm{I}, \frac{n}{1} \mathrm{~A}, \frac{n+1}{2} \mathrm{~B}, \frac{n+2}{3} \mathrm{C}, \& \mathrm{c}$, will be refpectively equal to $\mathrm{I}, \frac{9}{1} \mathrm{~A}, \frac{10}{2} \mathrm{~B}, \frac{1 \mathrm{Y}}{3} \mathrm{C}, \& \mathrm{c}$, or $\mathrm{I}, 9,45,165, \& \mathrm{c}$; and confequently the firft four fignificant terms in the $9^{\text {th }}$ vertical column of terms in the foregoing table of combinations, or the firft four figurate numbers of the 9th order, will be $1,9,45$, and 165 ; which are the fame numbers with thofe fet down above in page 74, in the 9 th vertical column of the foregoing table of combinations.
in $_{3}$. And, if the exponent n is $=10$, the terms $I_{2} \frac{n}{1} A$, $\frac{\pi+1}{2} B, \& c$, will be refpectively equal to $1, \frac{10}{1} A, \frac{11}{2} B, \& c$, or $1,10,55,8 x$; and confequently the three firft fignificant terms of the 10 th vertical column of terms in the foregoing table of combinations, or the three firft figurate numbers of the roth order, will be 1,10 , and 55 ; which are the fame numbers with thofe fet down above in page 74 , in the 10 th vertical column of the faid table of combinations.
114. It appears, therefore, that all the numbers fet down above in page 74 , in the ten firt vertical columns of the foregoing table of combinations, may be obtained by the application of the general feries $\mathrm{I}, \frac{n}{1} \mathrm{~A}, \frac{n+1}{2} \mathrm{~B}, \frac{n+2}{3} \mathrm{C}, \frac{n+3}{4}$ $\mathrm{D}, \frac{n+4}{5} \mathrm{E}, \frac{n+5}{6} \mathrm{~F}, \frac{n+6}{7} \mathrm{G}, \frac{n+7}{8} \mathrm{H}, \frac{n+8}{9} \mathrm{I}, \frac{n+9}{10} \mathrm{~K}, \frac{n+10}{11} \mathrm{~L}$, \& c ; which is a confirmation of the truth of the faid feries, and of the reafonings by which it was obtained.

A general exprefion of the value of the frastion $\frac{1}{a+b)^{n}}$, or the reciprocal of any integral power of the binomial quantity $\mathrm{a}+\mathrm{b}$, in an infinite feries.

11弓. Coroll. in. From the foregoing corollary we may derive a general expreffion for the value of the quantity $\overline{a+\left.b\right|^{-n}}$, or $\frac{1}{a+b b^{n}}$, in an infinite feries of terms, when the index n is any whole number whatfoever.

For the quantity $\frac{1}{a+b)^{n}}$ is equal to the feries which refults from the divifion of the numerator a by the binomial quanrity $a+b$ as many times as there are units in the index n. And the quotients that arife from thefe divifions are a fet of infinite feriefes confifting of terms marked alternately with the fign - and the fign + , and of which the numeral coefficients will be the figurate numbers of the feveral fucceffive orders. This will appear by making a few of thefe divifions; which I fhall therefore now proceed to make: but, in order to render the operations fomewhat fhorter and eafier than they otherwife would be, I fhall fubftitute the binomial quantity $\mathrm{I}+x$ inftead of the binomial quantity $a+b$, which will make no change whatever in the numeral coefficients of the terms of the feveral quotients that will refult from thefe divifions: and I hall fuppofe the quantity x to be lefs than I , to the end that the powers of x in the terms of the feveral quotients may be decreafing quantities.
116. The firt of thefe divifions will be as follows:
Divifor. Quotient.
$1+x)\left(x-x+x^{2}-x^{3}+x^{4}-x^{5}+x^{6}-x^{7}+x^{8}-x^{9}+x^{10}-x^{14}+\& c\right.$.

$$
\begin{aligned}
& \text { Dividend. } \\
& \frac{1+x}{x-x} \\
& \frac{-x-x^{2}}{*+x^{2}} \\
& \frac{+x^{2}+x^{3}}{*-x^{3}} \\
& \frac{-x^{3}-x^{4}}{x+x^{4}} \\
& \frac{+x^{4}+x^{5}}{*-x^{5}} \\
& \begin{array}{r}
\frac{-x^{5}-x^{6}}{x}+x^{6} \\
+x^{6}+x^{7}
\end{array} \\
& \begin{array}{l}
\frac{-x^{7}-x^{8}}{*}+\begin{array}{l}
+x^{8} \\
+x^{8}+x^{9} \\
*-x^{9}
\end{array}
\end{array} \\
& \frac{-x^{9}-x^{10}}{7+x^{10}} \\
& \frac{+x^{10}+x^{11}}{*-x^{12}} \\
& \frac{-x^{11}-x^{13}}{*+x^{12}}
\end{aligned}
$$

By this divifion it appears that the fraction $\frac{1}{1+x}$ is equal to the infinite feries $1-x+x^{2}-x^{3}+x^{4}-x^{5}+x^{6}-x^{7}+$ $x^{3}-x^{9}+x^{10}-x^{15}+\& x$, in which the fecond, fourth, fixth, cighth, tenth, and twelfch terms are marked with the fign -, or are to be fubtracted from the firft term 1 ; and the third, fifth, feventh, ninth, and eleventh terms are marked with the fign + , or are to be added to the firft term 1 . And it is eafy to fee, from the manner of making this divifion, that, if the operation was to be continued to any greater
greater number of terms whatfoever, the 14 th, and 16 th , and 18 th terms, and all the following even terms in the quotient would alfo be marked with the fign - ; and that the 13 th, and $15^{\text {th }}$, and $17^{\text {th }}$ terms, and all the following odd terms in the quotient would be marked with the fign + . And the numeral co-efficients of all the terms in this quotient are units, or are the terms of the firft vertical column of terms in the foregoing table of combinations, or the figurate numbers of the firft order; agreeably to what has been juft now afferted.
117. The next divifion will be as follows:

Divifor. Quotient.

$$
\begin{aligned}
& x+x)\left(:-2 x+3 x^{2}-4 x^{3}+5 x^{4}-6 x^{5}+7 x^{6}-8 x^{7}+9 x^{8}-10 x^{4}+11 x^{10}-20 .\right.
\end{aligned}
$$

Dividend.

```
\(3-x+x^{3}-x^{3}+x^{4}-x^{5}+x^{6}-x^{7}+x^{8}-x^{9}+x^{10}-x^{15}+8 c\).
\(\frac{1+x}{7-2 x+x^{2}}\)
    \(\frac{-2 x-2 x^{2}}{*+3 x^{2}-x^{3}}\)
        \(\frac{+3 x^{2}+3 x^{3}}{*-4 x^{3}}+x^{4}\)
            \(\frac{-4 x^{3}-4 x^{4}}{*+5 x^{4}-x^{5}}\)
            \(\frac{+5 x^{4}+5 x^{5}}{-6 x^{5}}+x^{6}\)
            \(\frac{-6 x^{5}-6 x^{6}}{*+7 x^{6}-x^{7}}\)
            \(\frac{+7 x^{6}+7 x^{7}}{*-8 x^{7}}+x^{8}\)
                \(\frac{-8 x^{7}-8 x^{8}}{*+9 x^{8}-x^{6}}\)
                    \(\frac{+9 x^{8}+9 x^{9}}{*-10 x^{9}}+x^{20}\)
                \(\frac{-10 x^{9}-10 x^{10}}{20+1 x^{14}-x^{12}}\)
                    \(+11 x^{10}+11 x^{15}\)
                \(-*-12 x^{11}+8 \mathrm{c}\).
            \(\frac{-12 x^{11}}{x}\) \&co

By this divifion it appears that the fraction \(\frac{1}{1+x^{2}}\) is equal to the infinite feries \(1-2 x+3 x^{2}-4 x^{3}+5 x^{4}-6 x^{5}+7 x^{6}\) \(-8 x^{7}+9 x^{8}-10 x^{9}+11 x^{10}-12 x^{1 x^{1}}+8 \mathrm{c}\), in which, as in the former quotient, the fecond, fourth, fixth, eighth, tenth, twelfeth, and other following even terms have the fign - prefixed to them, or are to be fubtracted from the firft term I; and the third, fifth, feventh, ninth, eleventh, and other following odd terms are marked wish the fign + , or are to be added to the faid firt term. And the numeral coefficients of the feveral terms of this quotient are the natural numbers : \(2,3,4,5,6,7,8,9,10,11,12, \& \mathrm{c}\), or the terms of the fecond vertical column of terms in the foregoing table of combinations, or the figurate numbers of the fecond order.
118. The third divifion will be as follows:

Divifor. Quotient.
\[
\begin{aligned}
& 1+x)\left(1-3 x+6 x^{2}-10 x^{3}+15 x^{4}-21 x^{5}+28 x^{6}-36 x^{7}+45 x^{3}-55 x^{9}+\right. \\
& 66 x^{10}-7 x^{15}+8 \mathrm{sc} .
\end{aligned}
\]

Dividend.
\(1-2 x+3 x^{2}-4 x^{3}+5 x^{4}-6 x^{5}+7 x^{6}-8 x^{7}+9 x^{8}-10 x^{9}+11 x^{10}-12 x^{2 x}+\) dc.
\(\frac{1+x}{*-3 x+3 x^{2}}\)
\(\frac{-x-3 x^{2}}{+6 x^{2}-4 x^{3}}\)
\[
\frac{+6 x^{2}+6 x^{3}}{*-10 x^{3}+5 x^{4}}
\]
\[
\frac{-10 x^{3}-10 x^{4}}{*}+15 x^{4}-6 x^{3}
\]
\[
\frac{+15 x^{4}+15 x^{5}}{4}-21 x^{5}+7 x^{6}
\]
\[
\frac{-21 x^{5}-21 x^{6}}{*+28 x^{6}-8 x^{7}}
\]
\[
\frac{+28 x^{6}+28 x^{7}}{*-36 x^{7}}+0 x^{3}
\]
\[
\frac{-3^{6 x^{7}-3^{6} x^{8}}}{*}+45 x^{8}-10 x^{9}
\]
\[
\frac{+45 x^{8}+45 x^{9}}{6}-55 x^{9}+11 x^{19}
\]
\[
\frac{-55 x^{9}-55 x^{10}}{*+66 x^{10}-12 x^{17}}
\]
\[
\frac{+66 x^{10}+66 x^{11}}{*}-78 x^{11}+8 c
\]
\[
\frac{-78 x^{11}}{*} \frac{-\& c_{0}}{+}
\]

By this divifion it appears that the fraction \(\frac{1}{1+x i^{3}}\) is equal to the infinite feries \(1-3 x+6 x^{2}-10 x^{3}+15 x^{4}-21 x^{5}+\) \(28 x^{6}-36 x^{7}+45 x^{8}-55 x^{9}+66 x^{\mathrm{ro}}-78 x^{\mathrm{TI}}+8 \mathrm{c}\), in which, as in the two former quotients, the fecond, fourth, fixth, eighth, tenth, twelfth, and other following even terms have the fign - prefixed to them, or are to be fubtracted from the firft tern r ; and the third, fifth, feventh, ninth, eleventh, and other following odd terms have the fign + prefixed to them,
them, or are to be added to the faid firt term. And the numeral co-efficients of the feveral terms of this quotient are the terms of the third vertical column in the aforefaid table of combinations, or the figurate numbers of the third order, or the triangular numbers.
119. The fourth divifion will be as follows :

Divifor. Quotient.
\(1+x)\left(1-4 x+10 x^{2}-20 x^{3}+35 x^{4}-56 x^{5}+84 x^{6}-120 x^{7}+165 x^{3}-8 \mathrm{C}\right.\).
Dividend.
\[
\begin{aligned}
& 1-3 x+6 x^{2}-10 x^{3}+15 x^{4}-21 x^{5}+28 x^{6}-36 x^{7}+45 x^{8}-8 c . \\
& \frac{1+x}{4-4 x+6 i^{2}} \\
& \frac{-4 x-4 x^{2}}{x+10 x^{2}-10 x^{3}} \\
& \frac{+10 x^{2}+10 x^{3}}{x-20 x^{3}+15 x^{4}} \\
& \frac{-20 x^{3}-20 x^{4}}{*+35 x^{4}-21 x^{5}} \\
& \frac{+35 x^{4}+35 x^{5}}{-56 x^{5}+28 x} \\
& \begin{array}{r}
\frac{-56 x^{5}-56 x^{6}}{}+84 x^{6}-35 x^{4} \\
\frac{+84 x^{6}+84 x^{7}}{x-120 x^{7}+45 x^{3}} \\
\frac{-120 x^{7}-120 x^{8}}{*}+165 x^{8}-\& c . \\
\\
\frac{+165 x^{8}+\& c .}{*}-\& c .
\end{array}
\end{aligned}
\]

By this divition it appears that the fraction \(\frac{1}{1+x)^{+}}\)is equal to the infinite feries \(1-4 x+10 x^{2}-20 x^{3}+35 x^{4}-56 x\) \(+84 x^{6}-120 x^{7}+165 x^{8}-8 \mathrm{c}\), ad infnitum, in which, as in the three former quotients, the fecond, fourth, fixth, and cighth, and other following even terms have the fign - prefixed to them, or are to be fudtracted from the firlt terni 1 ; and the third, fifth, feventh, ninth, and other following odd terms have the fign + prefixed to them, or are to be added
added to the faid firf term. And the numeral co-efficients of the feveral terms of this quotient are the terms of the fourth vertical column in the aforefaid table of combinations, or the figurate numbers of the fourth order, or the pyramidal numbers.
120. The fifth divifion will be as follows:
Divifor. \begin{tabular}{l} 
Quotient. \\
\(1+x)\left(1-5 x+15 x^{3}-35 x^{3}+70 x^{4}-126 x^{5}+210 x^{6}-8 c\right.\).
\end{tabular}.

Dividend.
\(1-4 x+10 x^{2}-20 x^{3}+35 x^{4}-56 x^{5}+84 x^{6}-120 x^{7}+\& c\).
\(\frac{1+x}{*-5 x+10 x^{2}}\)
\(\frac{-5 x-5 x^{2}}{*+15 x^{2}}-20 x^{3}\)
\(\frac{+15 x^{2}+15 x^{3}}{{ }^{*}-35 x^{3}+35 x^{4}}\)
\(\frac{-35 x^{3}-35 x^{4}}{*+70 x^{4}-56 x^{5}}\)
\(+70 x^{4}+70 x^{5}\)
* \(-126 x^{5}+84 x^{6}\)
\(-126 x^{5}-126 x\)
\({ }^{*}+210 x^{6}-\& c\).
\(\frac{+210 x^{6}}{*}+\frac{\& c}{8 c}\).
By this divifion it appears that the fraction \(\frac{1}{1+x^{5}}\) is equal to the infinite feries \(1-5 x+15 x^{2}-35 x^{3}+70 x^{4}-126 x^{5}\) \(+210 x^{6}\) - \&c, ad infinitum, in which, as in the four preceeding quotients, the fecond, fourth, fixth, and other following even terms have the fign - prefixed to them, or are to be fubtracted from the firft term \(\mathbf{r}\); and the third, fifth, feventh, and other following odd terms have the fign + prefixed to them, or are to be added to the faid firit term. And the numeral co-efficients of the feveral terms of this quotient are the terms of the fifth vertical column in the foregoing table of combinations, or the figurate numbers of the fifth order.
121. The fixth divifion will be as follows:
\[
\begin{aligned}
& \text { Divifor. Quotient. } \\
& 1+x)\left(1-6 x+21 x^{2}-56 x^{3}+126 x^{4}-252 x^{5}+8 C\right. \text {. } \\
& \text { Dividend. } \\
& 1-5 x+15 x^{2}-35 x^{3}+70 x^{4}-126 x^{5}+8 c . \\
& \frac{1+x}{*-6 x+15 x^{2}} \\
& \frac{-6 x-6 x^{2}}{*+21 x^{2}-35 x^{3}} \\
& \frac{+21 x^{2}+21 x^{3}}{*-56 x^{3}}+70 x^{4} \\
& \frac{-56 x^{3}-56 x^{4}}{+126 x^{4}-126 x^{5}} \\
& \frac{+126 x^{4}+126 x^{5}}{*-252 x^{5}}+8 \mathrm{cc} . \\
& \frac{-252 x^{5}-\& c}{*} \frac{1}{+8 c}
\end{aligned}
\]

By this divifion it appears that the fraction \(\frac{1}{1+x 1^{\circ}}\) is equal to the infinite feries \(1-6 x+21 x^{2}-56 x^{3}+126 x^{4}-\) \(252 x^{5}+8 x\); in which, as in the five former quotients, the fecond, fourth, fixth, and other following even terms have the fign - prefixed to them, or are to be fubtracted from the firft term I; and the third, and fifth, and other following odd terms have the fign + prefixed to them, or are to be added to the faid firft term. And the numeral co-efficients of the feveral terms of this quotient are the terms of the fixth vertical column in the foregoing table of combinations, or the figurate numbers of the fixth order.

Conclufions from the foregoing Operaitions of Divifion.
122. From the operations of the foregoing fix divifions with the fame divifor \(I+x\), I prefume that it will be evident to the reader, that, if we were to continue each of the foregoing quotients to any number of terms, how great foever, the faid terms would continue to be marked with the figns + and - alternately, and that the co-efficients of the following terms after thofe that have been above computed, would be the following numbers of the fame order of figurate numbers to which the co-efficients of the terms above computed in the faid quotients, belonged, refpectively. And I likewife prefume that it will be evident to him, that, if we were to divide the laft, or fixth, quotient by \(1+x\), and the next, or feventh, quotient, by the fame quantity \(1+x\), and the feveral next following, or the eighth, ninth, tenth, and eleventh, \&c, quotients, continued to any number whatfoever, by the fame quantity \(1+x\) (whereby we fhould obtain feveral infinite feriefes that would be equal to the fractions \(\frac{1}{1+x)^{7}}, \frac{1}{1+x)^{32}} \frac{1}{1+x)^{9}}, \frac{1}{1+x)^{10}}, \frac{1}{1+\left.x\right|^{1}}, \& c\) ), and were to continue each of the faid divifions till we had obtained any number of terms in the quotient, how great foever, the feveral even terms in every quotient would be marked with the fign -, or fubtracted from the firft term I ; and the third, fifth, feventh, and other following odd terms in every quotient would be marked with the fign + , or added to the faid firft term; and alfo, that the co-efficients of the terms of the faid \(7^{\text {th }}\) quotient (that would be equal to the fraction \(\frac{1}{1+x x^{7}}\) ) would be the figurate numbers of the 7 th order, and the co-efficients of the terms of the faid Sth \(\mathrm{U}_{2}\) quoticnt
quotient (that would be equal to the fraction \(\frac{1}{1+x^{\circ}}\) ) would be the figurate numbers of the 8 th order, and that the coefficients of the terms of the 9 th, roth, 1 th, and other following quotients (which would be equal to the fractions \(\frac{1}{1+x 0^{9}}, \frac{1}{1+\left.x\right|^{10}}, \frac{1}{1+x x^{11}}, \& c\) ) would be the figurate numbers of the 9 th, 1 th, 1 th, and other following orders, refpectively.

Obfervations on the foregoing Operations of Divifon, tending to eftablibs the foregoing Conclufions.
123. The foregoing conclufions may be derived from the following obfervations, which cannot but occur to every perfon who hall go through the foregoing operations of algebraïck divifion with attention, namely,

Ift, That in every feparate operation of divifion, by which a new term in the quotient is to be obtained, the dividend will alvays confilt of two terms which will have different figns + and - prefixed to them; fo that, when the firt of the two has the fign + prefixed to it, the fecond will be marked with the fign - ; and when the firt has the fign - prefixed to ir, the fecond will be marked with the fign + .

2dly, That the fubtrahend, or quantity which is to be fubrracted from the faid dividend, will always confift of two terms, which will be both marked with the fame fign + or -, which fign will alfo be the fame with that of the firf of the two ternis of the dividend from which the faid fubtrahend is to be fubtracted; and therefore the fign which is
prefixed to the fecond term of the faid fubtrahend will be contrary to that which is prefixed to the fecond term of the faid dividend, from which it is to be fubtracted; whence it follows that when, in order to fubtract the faid fecond ternm of the fubtrahend from the fecond term of the dividend, which is placed juft above it, we fhall (according to the rules of algebraick fubtraction) have changed its fign into the contrary fign, and have added it, with its fign fo changed, to the fecond term of the dividend, the refidue thence refulting (which will be the firft term of the next dividend) will have the fame fign prefixed to it as is prefixed to the fecond term of the former dividend, or the contrary fign to that which is prefixed to the firft term of the former dividend ; fo that the firt terms of every two contiguous dividends throughout the whole divifion will be marked with contrary figns, and confequently every two contiguous terms in the quotient (which have always the fame figns with the firft terms of the two dividends from which they are derived) will alfo be marked with contrary figns.
3dly, Since the two terms of the divifor \(\mathrm{I}+x\), to wit, 1 and \(x\), have the fame numeral co-efficient 1 , and every new fubtrahend is produced by multiplying the divifor \(1+r\) into the laft-found term of the quotient, it follows that the numeral co-efficient of the fecond term of every new fubtrahend muft be the fame with the numeral co-efficient of the firtt term of the fame fubtrahend. And confequently, when the fign of the fecond term of the fibtrahend is clanged, and thereby become the fame with the fign of the fecond term of the dividend, which is juft above it, and it is added, with its fign fo changed, to the faid fecond term of the dividend, the co-efficient of the quantity refulting from this addition, or algebraical fubtraction (which is evidently the fum of the co-efficient of the fecond term of the fubtrahend and of the co-efficient of the fecond term of the dividend) will alfo be the fum of the co-efficient of the firt term of the fubtrahend and of the co-efficient of the fecond term of the dividend, and confequently (becaufe the firft term of the fubtraliend is always equal to, or the fame
fame with, the firt term of the dividend) will alfo be the fum of the co-efficient of the firft term of the dividend and the co-efficient of the fecond term of the dividend ; that is, the co-efficient of the firft term of every new dividend will be the fum of the co-efficients of the firft and fecond terms of the next preceeding dividend. And confequently the coefficient of every new term in the quotient (which is the farne with the co-efficient of the firt term of the dividend from which it is derived) will be the fum of the two coefficients of the two terms of the next preceeding dividend. But the fecond term of the next preceeding dividend is a term of the laft preceeding feries, or quotient obtained by the divifion by \(\mathrm{I}+x\); and the co-efficient of the firft term of the faid next preceeding dividend is equal to the fum of the co-efficients of all the preceeding terms of the faid laft preceeding feries, or quotient obtained by the divifion by \(1+x\). Therefore the co efficient of every new term in the quotient arifing from the prefent divifion by \(\mathrm{I}+x\) will be equal to the fum of all the co-efficients of the terms in the foregoing feries, or quotient, as far as the correfponding term, or term involving the fame power of \(x\), and including the faid term. Thus, if the former feries, or quotient, be called A , and the prefent quotient, now arifing from the divifion of the feries A by \(1+x\), be called B , and \(m\) be a whole number denoting the place of any term in the quotient B , the co-efficient of the \(m\) th term of the feries, or quotient, B , will be equal to the fum of the co-efficients of all the terms of the preceeding feries, or quotient, A, as far as the \(m\) th term of the faid feries, and including the faid \({ }^{m} \mathrm{th}\) term.

And therefore, 4 thly, that the co-efficients of the terms of the feveral feriefes, or quotients, arifing by the continual divifion of 1 by the binomial quantity \(1+x\) will be the feveral orders of figurate numbers, or the terms of the feveral vertical columns of terms in the foregoing table of combinations; fince both the faid co-efficients of the terms of the faid feriefes, or quotients, and the faid figurate numbers, or terms of the feveral vertical columns of terms in the

Mr. James Bernoulli's Treatife De Arte Conjectandi. 15 I
faid table of combinations, arife in the fame manner from a feries of units, I, \& C , to wit, by the continual addition of them to each other, and by the like continual addition of the terms of every feries generated from them to each other.

Application of the foregoing reajonings to the finding of a general expreffion of the value of the fraction \(\frac{1}{a+b)^{n}}\) in an infinite \(\int\) eries of fimple terms.
124. It having been now proved that the terms of the feveral feriefes, or quotients, that are equal to the fractions
\(\frac{1}{1+x^{2}}, \frac{1}{1+x)^{2}}, \frac{1}{1+x^{3}}, \frac{1}{1+x)^{4}}, \frac{1}{1+x^{3}}, \frac{1}{1+x)^{6}}, \& c\), ad infinitum, (beginning with the fecond term in each feries), are to be marked with the fign - and the fign + alternately, and that the co-efficients of the terms of the faid feriefes will be the figurate numbers of the correfponding orders; and it having been proved above in coroll. 10, that the figurate numbers of the \(n\)th order, or the fignificant terms of the \(n\)th vertical column of terms in the foregoing table of combinations ( \(n\) being put for any whole number whatfoever) are equal to the terms of the following feries, to wit, I , \(\frac{n}{1} \mathrm{~A}, \frac{n+1}{2} \mathrm{~B}, \frac{n+2}{3} \mathrm{C}, \frac{n+3}{4} \mathrm{D}, \frac{n+4}{5} \mathrm{E}, \frac{n+5}{6} \mathrm{~F}, \frac{n+6}{7} \mathrm{G}, \frac{n+7}{8} \mathrm{H}\), \(\frac{n+8}{9} \mathrm{I}, \frac{n+9}{10} \mathrm{~K}, \frac{n+10}{1 \mathrm{I}} \mathrm{L}, \&-\mathrm{c}\), ad infinitum; it follows that the fraction \(\frac{1}{1+x)^{n}}\) will be equal to the infinite feries \(I-\frac{n}{-} \mathrm{A} x\)

152 A Tranflation of the foregoing ExtraEt from
\(+\frac{n+1}{2} \mathrm{~B} x^{2}-\sqrt{\frac{n+2}{3}} \mathrm{C} x^{3}+\frac{n+3}{4} \mathrm{D} x^{4}-\sqrt{\frac{n+4}{5}} \mathrm{E} x^{5}+\frac{n+5}{6}\)
\(\mathrm{F} x^{6}-\sqrt{\frac{n+6}{7}} \mathrm{G} x^{7}+\frac{n+7}{8} \mathrm{H} x^{8}-\sqrt{\frac{n+8}{9}} \mathrm{I} x^{9}+\frac{n+9}{10} \mathrm{~K} x^{\mathrm{x}}-\)
\(\sqrt{\frac{n+10}{11}} \mathrm{~L} x^{1 \mathrm{I}}+\& \mathrm{c}\), ad infinitum.
125. Now let \(\frac{b}{a}\) be fubftituted initead of \(x\). And the fraction \(\frac{1}{1+x}\) will then be \(=\frac{1}{1+\frac{b}{a}}\), and the feries \(1-\frac{n}{1} A x\)
\(+\frac{n+1}{2} \mathrm{~B} x^{2}-\sqrt{\frac{n+2}{3}} \mathrm{C} x^{3}+\frac{n+3}{4} \mathrm{D} x^{4}-\sqrt{\frac{n+4}{5}} \mathrm{E} x^{5}+\frac{n+5}{6}\)
\(F x^{6}-\sqrt{\frac{n+6}{7}} G x^{7}+\frac{n+7}{8} H x^{8}-\sqrt{\frac{n+8}{9}} \mathrm{I} x^{9}+\frac{n+9}{10}\)
\(\mathrm{K} x^{10}-\sqrt{\frac{n+10}{11}} \mathrm{~L} x^{11} \& \mathrm{c}\), ad infinitum, will be \(=\mathbf{I}-\frac{n}{1} \mathbf{A}\) \(\frac{b}{a}+\frac{n+1}{2} \mathrm{~B} \frac{b^{2}}{a^{2}}-\sqrt{\frac{n+2}{3}} \mathrm{C} \frac{b^{3}}{a^{3}}+\frac{n+3}{4} \mathrm{D} \frac{b^{4}}{a^{4}}-\sqrt{\frac{n+4}{5}} \mathrm{E} \frac{b^{5}}{a^{5}}+\) \(\frac{n+5}{6} \mathrm{~F} \frac{b^{6}}{a^{6}}-\frac{n+6}{7} \mathrm{G} \frac{b^{7}}{a^{7}}+\frac{n+7}{8} \mathrm{H} \frac{b^{8}}{a^{8}}-\sqrt{\frac{n+8}{9}} \mathrm{I} \frac{b^{9}}{a^{9}}+\frac{n+9}{10}\) \(\mathrm{K} \frac{b^{10}}{a^{10}}-\sqrt{\frac{n+10}{11}} \mathrm{~L} \frac{b^{11}}{a^{1 \mathrm{I}}}+\& c\), ad infinitum. Therefore the fraction \(\frac{1}{1+\left.\frac{b}{a}\right|^{n}}\) will be equal to the feries \(1-\frac{n}{1} A \frac{b}{a}+\)
\(\frac{n+1}{2} \mathrm{~B} \frac{b^{3}}{a^{2}}-\sqrt{\frac{n+2}{3}} \mathrm{C} \frac{b^{3}}{a^{3}}+\frac{n+3}{4} \mathrm{D} \frac{b^{4}}{a^{4}}-\sqrt{\frac{n+4}{5}} \mathrm{E} \frac{b^{5}}{a^{5}}+\frac{n+5}{6}\) \(\mathrm{F} \frac{b^{6}}{a^{6}}-\sqrt{\frac{n+6}{7}} \mathrm{G} \frac{b^{7}}{a^{7}}+\frac{n+7}{8} \mathrm{H} \frac{b^{8}}{a^{8}}-\sqrt{\frac{n+8}{9}} \mathrm{I} \frac{b^{9}}{a^{9}}+\frac{n+9}{10} \mathrm{~K} \frac{b^{\circ 0}}{a^{80}}\) \(-\sqrt{\frac{n+10}{1 I}} \mathrm{~L} \frac{b^{11}}{a^{11}}+\& c\); and confequently (dividing both fides of this equation by \(a^{n}\) ) we thall have


Mr. Yanres Bernoulli's Treatije De Arte Conjectandi. \({ }_{53}\)
or \(\frac{1}{1+\left.\frac{b}{a}\right|^{n} \times a^{n}}\), or \(\frac{1}{\overline{1+\frac{b}{a}} \times a^{n}}\), or \(\frac{1}{a+b)^{n}},=\frac{1}{a^{n}}-\frac{n}{1} \mathbf{A}\)
\(\frac{b}{a^{n+1}}+\frac{n+1}{2} \mathrm{~B} \frac{b^{2}}{a^{n+2}}-\sqrt{\frac{n+2}{3}} \mathrm{C} \frac{b^{3}}{a^{n+3}}+\frac{n+3}{4} \mathrm{D} \frac{b^{4}}{a^{n+4}}-\)
\(\sqrt{\frac{n+4}{5}} \mathrm{E} \frac{b^{5}}{a^{n+5}}+\frac{n+5}{6} \dot{\mathrm{~F}} \frac{b^{6}}{a^{n+6}}-\sqrt{\frac{n+6}{7}} \mathrm{G} \frac{b^{7}}{a^{n+7}}+\frac{n+7}{8} \mathrm{H}\)
\(\frac{b^{8}}{a^{n+8}}-\sqrt{\frac{n+8}{9}} \mathrm{I} \frac{b^{9}}{a^{n+9}}+\frac{n+9}{10} \mathrm{~K} \frac{b^{20}}{a^{n+10}}-\sqrt{\frac{n+10}{1 I}} \mathrm{~L} \frac{b^{\mathrm{ri}}}{a^{n+15}}\)
\(+\& \mathrm{c}\), ad infinitum; or, according to Sir Ifaac Newton's notation with negative indexes of powers; we fhall have \(\left.\overline{a+b}\right|^{-n}=\) the feries \(a^{-n}-\frac{n}{1} \mathrm{~A} a^{-n-1} b+\frac{n+1}{2}\) \(\mathrm{B} a^{-n-2} b^{2}-\sqrt{\frac{n+2}{3}} \mathrm{C} a^{-n-3} b^{3}+\frac{n+3}{4} \mathrm{D} a^{-n-4} b^{4}-\sqrt{\frac{n+4}{5}}\)
\(\mathrm{E} a^{-n-5} b^{5}+\frac{n+5}{6} \mathrm{~F} a^{-n-6} b^{6}-\sqrt{\frac{n+6}{7}} \mathrm{G} a^{-n-7} b^{2}+\frac{n+7}{8}\)
\(\mathrm{H} a^{-n-8} b^{3}-\sqrt{\frac{n+8}{9}} \mathrm{I} a^{-n-9} b^{9}+\frac{n+9}{10} \mathrm{~K} a^{-n-10} b^{20}-\) \(\sqrt{\frac{n+10}{11}} \mathrm{~L} a^{-n-1 I} b^{1 \mathrm{I}}+8+\mathrm{c}\), ad infinituin. \& E. i.
126. This laft feries is the farne with that which would refult from Sir Ifaac Newton's original feries for expreffing the value of the quantity \(\overline{a+b} b^{n}\), or the \(n\)th power of the binomial quantity \(a+b\), to wir, the feries \(a^{n}+\frac{n}{1} a^{n-1} b+\)
\(\frac{n}{1} \times \frac{n-1}{2} a^{n-2} b^{2}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} a^{n-3} b^{3}+\frac{\pi}{1} \times\)
\(\frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4} a^{n-4} b^{4}+\frac{n}{2} \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4} \times\) \(\frac{n-4}{5} a^{n-5} b^{5}+\& c\), by fuppofing the index \(n\) of the faid power to be negative, or by fubftituting \(-n\) inftead of \(n\) in the terms of the faid feries.

\section*{154 A Tranlation of the foregoing Extract from}

For, if this fubfitution be made in the terms of the fail ferries, it will become equal to \(a^{-n-\frac{n}{1}} a^{-n-1} b^{x}-\frac{n}{1} \times\) \(\frac{-n-1}{2} a^{-n-2} b^{2} \frac{n}{1} \times \frac{-n-1}{2} \times \frac{-n-2}{3} a^{-n-3} b^{3} \frac{n}{1}+\) \(\frac{-n-1}{2} \times \frac{-n-2}{3} \times \frac{-n-3}{4} \times a^{-n-4} b_{4}-\frac{n}{1} \times \frac{-n-1}{2} \times \frac{-n-2}{3}\) \(\times \frac{-n-3}{4} \times \frac{-n-4}{5} \times a^{-n-5}\) bs \(-8 c\); and consequently, (because \(\frac{-n}{1} \times \frac{-n-1}{2}\) is \(=\frac{+n}{1} \times \frac{+n+1}{2}\), and \(\frac{-n-2}{3} \times\) \(\frac{-n-3}{4}\) is \(\left.=\frac{+n+-2}{3} \times \frac{n+3}{4}\right)\), equal to \(a^{-n-\frac{n}{1}} a^{-n-1} b^{n}\) \(+\frac{n}{1} \times \frac{+n+1}{2} a^{-n-2} b^{2}+\frac{n}{1} \times \frac{+n+1}{2} \times \frac{-n-2}{3} a^{-n-3} b^{3}\) \(\frac{+n}{1} \times \frac{+n+1}{2} \times \frac{+n+2}{3} \times \frac{n+3}{4} a^{-n-4} b^{4}+\frac{n}{1} \times \frac{+n+1}{2} \times\) \(\frac{+n+2}{3} \times \frac{+n+3}{4} \times \frac{-n-4}{5} a^{-n-5} b^{5}-8 \mathrm{cc},=a^{-n}-\frac{n}{1}\) \(a^{-n-1} b^{2}+\frac{n}{1} \times \frac{n+1}{2} a^{-n-2} b^{2}+\frac{n}{1} \times \frac{n+1}{2} \times-\sqrt{\frac{n+2}{3}}\) \(a^{-n-3} b^{3}+\frac{n}{1} \times \frac{n+1}{2} \times \frac{n+2}{3} \times \frac{n+3}{4} a^{-n-4} b 4+\frac{n}{1} \times \frac{n+1}{2}\) \(\times \frac{n+2}{3} \times \frac{n+3}{4} \times-\sqrt{\frac{n+4}{5}} a^{-n-5} b 5+8 c \mathrm{c},=a^{-n-\frac{n}{1}}\)
\(\mathrm{A} a^{-n-1} b^{1}+\frac{n+1}{2} \mathrm{~B} a^{-n-2} b^{2}-\sqrt{\frac{n+2}{3}} \mathrm{C} a^{-n-3} b^{3}+\frac{n+3}{4}\)
\(\mathrm{D} a^{-n-4} b^{4}-\sqrt{\frac{n+4}{5}} \mathrm{E} a^{-n-5} b^{5}+\& \mathrm{c}\); which is the feries we jut now derived from Mr. James Bernoulli's doctrine of combinations for the value of the quantity \(\left.\overline{a+b}\right|^{-n}\), or \(\frac{1}{++_{1}^{6}}\). RE. D.

A general expretion of the value of the fraition \(\frac{1}{a-1)^{n}}\), or of the reciprocal of any integral power of the refidual quantity \(a-b\), in an infinite feries.
127. \({ }^{\circ}\) Coroll. 12. The fraction \(\frac{1}{a-0,2}\) will be equal to the feries \(\frac{1}{a^{n}}+\frac{n}{1} \mathrm{~A} \frac{b}{a^{n+1}}+\frac{n+1}{2} \mathrm{~B} \frac{b^{2}}{a^{n+2}}+\frac{n+2}{3} \mathrm{C} \frac{b^{3}}{a^{n+3}}+\) \(\frac{n+3}{4} \mathrm{D} \frac{b^{4}}{a^{n+4}}+\frac{n+4}{5} \mathrm{E} \frac{b^{5}}{a^{n+5}}+\frac{n+5}{6} \mathrm{~F} \frac{b^{6}}{a^{n+5}}+\frac{n+6}{7}\) \(\mathrm{G} \frac{b^{7}}{a^{n+7}}+\frac{n+7}{8} \mathrm{H} \frac{b^{9}}{a^{n+8}}+\frac{n+8}{9} \mathrm{I} \frac{b^{9}}{a^{n+9}}+\frac{n+9}{10} \mathrm{~K} \frac{b^{10}}{a^{n+10}}+\) \(\frac{n+10}{11} \mathrm{~L} \frac{b^{15}}{a^{n+11}}+\& \mathrm{C}\), ad infinitum, which confifts of the very fame terms as the feries obtained in the foregoing coro!lary for the value of the fraction \(\frac{1}{a+b n^{2}}\), but with the fign + prefixed to all the terms after the firlt term \(\cdot \frac{J}{a^{n}}\), inftead of being prefixed only to the 3 d , \(5^{\text {th }}, 7^{\text {th }}\), 9 th, and other following oud terms of it, as in the former feries.
128. This will appear by dividing I two or three times following by the refidual quantity \(1-x\) inttead of the binomial quantity \(\mathrm{t}+x\). For we fhall eafly perceive thit all the terms, after the firft terms, in the quotients arring from thofe divifions will be marked with the fign + , or muit be added to the firt terms. The three firlt of thefe divifions will be as follows :

I56 A Tranflation of the foregoing Extratt from

\section*{The firf Divifion.}

Divifor.
Quotient.
\(1-x)\left(1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}+x^{9}+8 c\right.\).
Dividend.
\[
\begin{aligned}
& \begin{array}{l}
I * \\
\frac{I-x}{f-x}
\end{array} \quad * \\
& \frac{+x-x^{2}}{x+x^{2}} * \\
& \frac{+x^{2}-x^{3}}{\frac{1}{0}+x^{3}} \\
& \frac{+x^{3}-x^{4}}{*+x^{4}} \\
& \frac{+x^{4}-x^{5}}{*+x^{5}} \\
& \frac{+x^{5}-x^{6}}{\pi+x^{6}} \\
& \frac{ \pm x^{6}-x^{7}}{*+x^{7}} * \\
& \frac{+x^{7}-x^{8}}{*+x^{9}} \quad * \\
& \frac{+x^{8}-x^{2}}{4+x^{9}} \\
& \frac{+\lambda^{9}-x^{10}}{+\frac{10}{10}}
\end{aligned}
\]

The Jecond Divifion.
Divifor.
Quotient.
\[
\text { x-x) }\left(1+2 x+3 x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+7 x^{6}+8 x^{7}+9 x^{8}+10 x^{9}+\right.\text { \&e. }
\]

Dividend.
\[
\begin{aligned}
& 1+x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}+x^{7}+x^{8}+x^{9}+8 c^{2} \\
& 1-x \\
& +2 x+x^{2} \\
& \frac{+2 x-2 x^{2}}{x+3 x^{2}}+x^{3} \\
& =\frac{+3 x^{2}-3 x^{3}}{*+4 x^{3}+x^{4}} \\
& \frac{+4 x^{3}-4 x^{4}}{2+5 x^{4}+x^{5}} \\
& \frac{+5 x^{4}-5 x^{5}}{*+6 x^{5}+x^{6}} \\
& \frac{+6 x^{5}-6 x^{6}}{x+7 x^{6}+x^{7}} \\
& \frac{+7 x^{6}-7 x^{7}}{*+8 x^{7}}+x^{3} \\
& \frac{+8 x^{7}-8 x^{8}}{*+9 x^{8}} \\
& \begin{array}{r}
+9 x^{8} \\
*
\end{array}
\end{aligned}
\]

\section*{158} A Tranflation of the foregoing Extrate from

\section*{The third Divifion.}

Divifor.
Quotient.
\[
1-x)\left(1+3 x+6 x^{2}+10 x^{3}+15 x^{4} 21 x^{5}+36 x^{6}+8 c\right.
\]

Dividend.
\[
\begin{aligned}
& 1+2 x+{ }_{3} x^{2}+4 x^{3}+5 x^{4}+6 x^{5}+7 x^{6}+8 x^{7}+9 x^{3}+\delta . \\
& \frac{1-x}{+3 x+3 x^{2}} \\
& \frac{+3 x-3 x^{2}}{*+6 x^{2}+4 x^{3}} \\
& \frac{+6 x^{2}-6 x^{3}}{*+10 x^{3}+5 x^{4}} \\
& \frac{+10 x^{3}-10 x^{4}}{*+15 x^{4}+6 x^{5}} \\
& \frac{+15 x^{4}-15 x^{5}}{* 212^{5}+7 x^{6}} \\
& \frac{+21 x^{5}-21 x^{6}}{*+28 x^{6}+8 x^{7}} \\
& \frac{+28 x^{6}-28 x^{7}}{x+36 x^{7}}
\end{aligned}
\]
129. It is eafy to fee that, both in thefe three divifions, and in all the following divifions that may be made of the laft quotient hereby obtained, hy the fame divifor \(1-x\), all the terms of the feveral quotients, after the firft terms, will be marked with the fign + , or be added to the firlt terms, and that the co-efficients of the feveral terms will be the very fame numbers as the co-efficiens of the comefponding terms in the former quotients which refulted from the divifions by the binomial quantity \(1+x\). If follows therefore that the fraction \(\frac{1}{1-x / 2}\) will be equal to the infinite feries \(1+\frac{n}{1}\) \(\mathrm{A} x+\frac{n+1}{2} \mathrm{~B} x^{2}+\frac{n+2}{3} \mathrm{C} x^{3}+\frac{n+3}{4} \mathrm{D} x^{4}+\frac{n+4}{5} \mathrm{E} \cdot x^{5}\) \(+\frac{n+5}{6} \mathrm{~F} x^{6}+\frac{n+6}{7} \mathrm{G} x^{7}+\frac{n+7}{8} \mathrm{H} x^{8}+\frac{n+8}{9} \mathrm{I} x^{9}+\) \(\frac{n+9}{10} \mathrm{~K} x^{10}+\frac{n+10}{11} \mathrm{~L} x^{1 \mathrm{I}}+8 \mathrm{c}\), ad infinitum, and confe-

Mr. James Bernoulli's Treatije De Are Conjectandi. I 59 quently (fubftituting \(\frac{b}{a}\) inftead of \(x\) in this equation) that the fraction \(\left.\frac{1}{1-\frac{b}{a}}\right|^{n}\) will be equal to the infinite fries \(I+\frac{n}{1}\) \(\mathrm{A} \frac{b}{a}+\frac{n+\mathrm{r}}{2} \mathrm{~B} \frac{b^{2}}{a^{2}}+\frac{n+2}{3} \mathrm{C} \frac{b^{3}}{a^{3}}+\frac{n+3}{4} \mathrm{D} \frac{b^{4}}{a^{4}}+\frac{n+4}{5} \mathrm{E} \frac{b^{5}}{a^{5}}\) \(+\frac{n+5}{6} \mathrm{~F} \frac{b^{6}}{a^{5}}+\frac{n+6}{7} \mathrm{G} \frac{b 7}{a^{7}}+\frac{n+7}{8} \mathrm{H} \frac{b^{9}}{a^{9}}+\frac{n+8}{9} \mathrm{I} \frac{b^{9}}{a^{9}}+\) \(\frac{n+9}{10} \mathrm{~K} \frac{b^{10}}{a^{10}}+\frac{n+10}{11} \mathrm{~L} \frac{b^{1 \mathrm{r}}}{a^{1 \mathrm{I}}}+8 \mathrm{c}\), ad infinitum, and confequently (dividing both fides of the lat equation by \(a^{n}\) ) that the fraction \(\left(\frac{1}{\frac{\left.1-\frac{b}{a}\right]^{n}}{a^{n}}}\right.\), or \(\frac{1}{\left.a^{n} \times 1-\frac{b}{a}\right]^{n}}\), or \(\frac{1}{\left.a \times 1-\frac{b}{a}\right]^{n}}\), or)
\(\frac{1}{a-b n^{n}}\) will be equal to the infinite fries \(\frac{\mathrm{I}}{a^{n}}+\frac{n}{\mathrm{I}} \mathrm{A} \frac{b}{a^{n+1}}+\) \(\frac{n+1}{2} \mathrm{~B} \frac{b^{2}}{a^{n+2}}+\frac{n+2}{3} \mathrm{C} \frac{b^{3}}{a^{n+3}}+\frac{n+3}{4} \mathrm{D} \frac{b^{4}}{a^{n+4}}+\frac{n+4}{5} \mathrm{E} \frac{b^{5}}{a^{n+5}}\) \(+\frac{n+5}{6} \mathrm{~F} \frac{b^{6}}{a^{n+6}}+\frac{n+6}{7} \mathrm{G} \frac{b^{7}}{a^{n+7}}+\frac{n+7}{8} \mathrm{H} \frac{b^{8}}{a^{n+8}}+\frac{n+8}{9}\)
\(\mathrm{I} \frac{b^{9}}{a^{n+9}}+\frac{n+9}{10} \mathrm{~K} \frac{b^{10}}{a^{n+10}}+\frac{n+10}{11} \mathrm{~L} \frac{b^{11}}{a^{n+11}}+8 \mathrm{c}\), ad infinitum. \&. E. D.
130. If we make ufe of Sir If ace Newton's notation with negative indexes of powers, the la ft equation will be as follows, to wit, \(\overline{a-b}=\) the infinite faeries \(a^{-n}+\frac{n}{x}\) \(\mathrm{A} a^{-n-1} b+\frac{n+1}{2} \mathrm{~B} a^{-n-2} b^{2}+\frac{n+2}{3} \mathrm{C} a^{-n-3} b^{3}+\frac{n+3}{4}\) \(\mathrm{D} a^{-n-4} b 4+\frac{n+4}{5} \mathrm{E} a^{-n-5} b^{5}+\frac{n+5}{6} \mathrm{~F} a^{-n-6} b^{6}+\frac{n+6}{7}\)

160 A Tranflation of the foregoing Extrait from:
\(\mathrm{G} a^{-n-7} b^{7}+\frac{n+7}{8} \mathrm{H} a^{-n-8} b^{8}+\frac{n+8}{9} \mathrm{I} a^{-n-9} b^{9}+\frac{n+q}{10}\)
\(\mathrm{K} a^{-n-10} b^{10}+\frac{n+10}{11} \mathrm{~L} a^{-n-11} b^{12}+\& c, a d\) infinitum.
But the other way of expreffing this equation feems to be clearer and more natural than this way, and, for ordinary purpofes, preferable to it.

I 31. This laft feries is the fame with that which would refult from Sir Iface Newton's original feries for expreffing the value of the quantity \(a-\left.b\right|^{n}\), or the \(n\)th power of the refidual quantity \(a-b\), to wit, the feries \(a^{n}-\frac{n}{1} a^{n-1} b^{x}+\) \(\frac{n}{1} \times \frac{n-1}{2} a^{n-2} b^{2}-\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} a^{n-3} b^{3}+\frac{n}{1} \times \frac{n-1}{2}\) \(\times \frac{n-2}{3} \times \frac{n-3}{4} a^{n-4} b^{4}-\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4} \times \frac{n-4}{5}\) \(a^{n-5} z^{s}+8 c\), by fuppofing the indcx \(n\) of the faid power to be negative, or by fubftituting - \(n\) inftead of \(n\) in the terms of the faid feries.

For, if this fubftitution be made in the terms of the faid feries, it will become equal to \(a^{-n+\frac{n}{1}} a^{-n-1} b^{x}-\frac{n}{1} \times\) \(\frac{-n-1}{2} a^{-n-2} b^{2}+\frac{n}{1} \times \frac{-n-1}{2} \times \frac{-n-2}{3} a^{-n-3} b^{3} \frac{-n}{1} \times\) \(\frac{-n-1}{2} \times \frac{-n-2}{3} \times \frac{-n-3}{4} a^{-n-4} 64+\frac{n}{1} \times \frac{-n-1}{2} \times \frac{-n-2}{3} \times\)
\(\frac{-n-3}{4} \times \frac{-n-4}{5} a^{-n-5} b^{5}+\& x c,=a^{-n+\frac{n}{1}} a^{-n-1} z^{1}+\frac{n}{1}\)
\(x^{+\frac{n+1}{2}} a^{-n-2} b^{2}+\frac{n}{1} \times \frac{+n+1}{2} \times \frac{+n+2}{3} a^{-n-3} b^{3}+\frac{n}{1}\)
\(x^{+\frac{n+1}{2}} \times \frac{+n+2}{3} \times \frac{+n+3}{4} a^{-n-4} b^{4}+\frac{n}{1} \times \frac{n+1}{2} \times\)
\(\frac{+n+2}{3} \times \frac{+n+3}{4} \times \frac{+n+4}{5} a^{-n-5} b^{5}+\& x, 3=a^{-n}+\frac{n}{1}\)
\[
a^{-n-1}
\]

Mr. Fames Bernoulli's Treatije De Arte Conjectandi. 161
\(a^{-n-1} b^{2}+\frac{n}{1} \times \frac{n+1}{2} a^{-n-2} b^{2}+\frac{n}{1} \times \frac{n+1}{2} \times \frac{n+2}{3}\)
\(a^{-n-3} b^{3}+\frac{n}{1} \times \frac{n+1}{2} \times \frac{n+2}{3} \times \frac{n+3}{4} a^{-n-4} b 4+\frac{n}{1}\)
\(\times \frac{n+1}{2} \times \frac{n+2}{3} \times \frac{n+3}{4} \times \frac{n+4}{5} a^{-n-5} b^{5}+8 \mathrm{c},=a^{-n}\)
\(+\frac{n}{\mathrm{I}} \mathrm{A} a^{-n-\mathrm{I}} b^{\mathrm{x}}+\frac{n+\mathrm{I}}{2} \mathrm{~B} a^{-n-2} b^{2}+\frac{n+2}{3} \mathrm{C} a^{-n-3} b^{3}\)
\(+\frac{n+3}{4} \mathrm{D} a^{-n-4} b_{4}+\frac{n+4}{5} \mathrm{E} a^{-n-5} b^{5}+\& \mathrm{c}\); which is the feries we juft now derived in art. 130 , from Mr. James Bernoulli's doctrine of combinations for the value of the quantity
\(\left.\overline{a-b}\right|^{-n}\), or \(\frac{1}{\overline{a-b} b^{a}}\) Q. E. D.
132. We have now feen how from Mr. James Bernoulli's doctrine of combinations, and his explanation of the properties of the figurate numbers derived from it, may be deduced juft and regular demonftrations of Sir lfaac Newton's famous binomial and refidual theorems in the cafe of the integral and negative powers of a binomial and a refidual quantity, or of the reciprocals of their integral and affirmative powers, as well as in the cafe of their integral and affirmative powers themfelves, in which Mr. Bernoulli himfelf has demonftrated them above in coroll. 5. And I doubt whether any other method of demonftrating thefe two famous theorems in the cafe of the integral and negative powers of a binomial and a refidual quantity has yet been found out, that is equally clear and fatisfactory.

A Difficulty that may occur concerning the foregoing Thbeorein relaing to the integral and negative Powers of a refidual Quantity, as \(\mathrm{a}-\mathrm{b}\), or \(\mathrm{I}-\mathrm{x}\).
133. Before we conclude this fubject of the binomial and refidual theorems in the cafe of integral and negative powers, I will endeavour to clear up a difficulty which may, perhaps, occur to the reader's mind concerning the latter of the faid theorems.

It has been thewn in art. 129, that \(\overline{1-n}{ }^{-n}\), or \(\frac{1}{1-x)^{n}}\), is equal to the infinite feries \(\mathrm{I}+\frac{n}{1} \mathrm{~A} x+\frac{n+1}{2} \mathrm{~B} x^{2}+\frac{n+2}{3}\) \(\mathrm{C} x^{3}+\frac{n+3}{4} \mathrm{D} x^{4}+\frac{n+4}{5} \mathrm{E} x^{5}+\frac{n+5}{6} \mathrm{~F} x^{6}+\frac{n+6}{7} \mathrm{G} x^{7}+\) \&c, ad infinitum, in which all the terms following the firft terin 1 are marked with the lign + , or are to be added to the faid firft term. And the co-efficients of the terms in tlii's feries continually increafe, when \(n\) is of any magnitude greater than 1. Thus, if \(n\) is \(=2\), we hall have \(\frac{n}{x}\left(=\frac{2}{1}\right)\) \(=2\), and \(\frac{n+1}{2}\left(=\frac{2+1}{2}\right)=\frac{3}{2}\), and \(\frac{n+2}{3}\left(=\frac{2+2}{3}\right)=\frac{4}{3}\), nnd \(\frac{n+3}{4}, \frac{n+4}{5}, \frac{n+5}{6}, \frac{n+6}{7}, \& c\), equal to \(\frac{5}{4}, \frac{6}{5}, \frac{7}{6}, \frac{8}{7}, \& x c\), refpedively ; in all which fractions the numerators exceed the denominators by an unit; and, if \(n\) is \(=3\), we fhall have \(\frac{n}{1}, \frac{n+1}{2}, \frac{n+2}{3}, \frac{n+3}{4}, \frac{n+4}{5}, \frac{n+5}{6}, \frac{n+6}{7}, \& \mathrm{c}\), equal to \(\frac{3}{1}, \frac{4}{2}, \frac{5}{3}, \frac{6}{4}, \frac{7}{5}, \frac{8}{6}, \frac{9}{7}, \& c\), refpectively; in all which fractions the numerators exceed the denominators by 2 . And the like excefs of the numerators above the denomi-
nators will take place in a ftill higher degree in the faid generating fractions \(\frac{n}{1}, \frac{n+1}{2}, \frac{n+2}{3}, \frac{n+3}{4}, \frac{n+4}{5}, \frac{n+5}{6}, \frac{n+6}{7}, 8 \mathrm{c}\), when the index \(n\) is equal to 4 , or 5 , or 6 , or any higher number. And confequently the co-efficients \(\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\), \(F, G, \& c\), which are derived from the firlt term 1 , or \(A\), by the continual multiplication of the faid generating fractions \(\frac{n}{1}, \frac{n+1}{2}, \frac{n+2}{3}, \frac{n+3}{4}, \frac{n+4}{5}, \frac{n+5}{6}, \frac{n+6}{7}, \& c\), muft continually increafe in all thefe feriefes. And accordingly we find that the figurate numbers of every order, or the feveral fignificant terns in every vertical column of terms in the foregoing table of combinations, page 74 , (which are equal to the co-efficients of the terms of the foregoing feries \(1+\frac{n}{1} \mathrm{~A} x+\frac{n+1}{2} \mathrm{~B} x^{2}+\frac{n+2}{3} \mathrm{C} x^{3}+\frac{n+3}{4} \mathrm{D} x^{4}+\frac{n+4}{5}\) \(\mathrm{E} x^{5}+\frac{n+5}{6} \mathrm{~F} x^{6}+8 \mathrm{c}\), ad infinitum), increafe continually. And hence it may happen that, if \(x\) is but little lefs than I , the whole terms at the beginning of the feries \(I+\frac{n}{\mathrm{I}} \mathrm{A} x+\) \(\frac{n+\mathrm{I}}{2} \mathrm{~B} x^{2}+\frac{n+2}{3} \mathrm{C} x^{3}+\frac{n+3}{4} \mathrm{D} x^{4}+\frac{n+4}{5} \mathrm{E} x^{5}+\frac{n+5}{6} \mathrm{~F} x^{6}\) \(+\& c\), ad infonitum, may (by means of this increafe of their co-efficients) be increafing quantities.

Now, from this circumftance it may, perhaps, be apprehended, that all the terms of this feries will in fome cafes diverge, or increafe, continually, to what number of terms foever the faid feries may be continued, and confequently that the faid feries (confifting of an infinite number of terms that are every one greater than that next before it) will be infinite in magnitude as well as in the number of its terms, and therefore cannot be equal to the finite quantity \(\frac{1}{1-x]^{n}}\). This is a difficulty that feems naturally to arife upon this fubject. But it may be removed by the following confiderations.

\section*{An Explanation of the foregoing Difficulty.}

I34. The proportion of the numerators of the feveral generating fractions \(\frac{n}{1}, \frac{n+1}{2}, \frac{n+2}{3}, \frac{n+3}{4}, \frac{n+4}{5}, \frac{n+5}{6}, \frac{n+6}{7}, \& \mathrm{c}\), to their denominators (though it is always a proportion of majority, when \(n\) is greater than 1) approaches continually nearer and nearer to a ratio of equality, as its limit ; fo that, if \(n\) be ever fo great a number, we may, by continuing the feries of thefe generating fractions to a great number of terms, come to one in which the ratio of the numerator to the denominator hiall be lefs than any propofed ratio of majority. Thus, for example, if \(n\) is \(=1000\), and the ratio of majority that is propofed, or given, and with which the ratios of the numerators of thefe generating fractions to their denominators is to be compared, is that of 1 to 0.99999 , or of 100,000 to 99,999 , it will be poffible, by continuing the feries of the faid generating fractions, to affign one in which the ratio of the numerator to the denominator fhall be lefs than the ratio of 1 to 0.99999 , or of 100,000 to 99,999 . This may be fhewn in the manner following. Let \(z\) be the general reprefentative of the feveral numbers added to the index \(n\) in the numerators of thefe fucceffive generating fractions; fo that the faid numerators thall be equal to the feveral fucceffive values of \(n+z\), or, on the prefent fuppofition that \(n\) is \(=1000\), to the feveral fucceffive values of \(1000+z\). Then will the denominators of the faid fucceffive generating fractions be denoted by the fucceffive values of \(z+1\), and the faid generating fractions themfelves will be equal to the feveral fucceffive values of the fraction \(\frac{1000+z}{z+1}\), or \(\frac{z+1000}{z+1}\). Now it is evident that, by continually increafing the number \(z\), the proportion of the numerator \(z+1000\) to the denominator \(z+1\) may be made to ap-
proach as near as we pleafe to the proportion of \(z\) to \(z\), or the proportion of equality. The number \(z\) may therefore be increafed till the faid proportion of \(z+1000\) to \(z+1\) fhall be nearer to a proportion of equality, or thall be a lefs ratio of majority, than the propofed ratio of 1 to 0.99999 , or of 100,000 to 990999 . And the fame thing might be done if the propofed ratio, inftead of being that of 1 to 0.99999, or of 100,000 to 99,999, had been that of 1 to 0.999,999, or of 1000,000 to 999,999 , or that of I to \(0.999,999,9\), or of \(10,000,000\) to \(9,999,999\), or any other ratio of majority, how fimall foever. 'I herefore, however nearly the quantity \(x\) may approach to an equality with I (than which it is always fuppofed to be fomewhat lefs) it will always be poffible to increafe the number \(z\) till the proportion of \(z+z\) to \(z+1\), or of \(n+z\) to \(z+1\), becomes lefs than the proportion of I to \(x\), or till the fraction \(\frac{n+z}{z+1}\) becomes lefs than the fraction \(\frac{1}{x}\). And, as the number \(z\) increafes with the number of terms of the feries \(1+\frac{n}{1} \mathrm{~A} x+\frac{n+1}{2} \mathrm{~B} x^{2}+\frac{n+2}{3}\)
\(\mathrm{C} x^{3}+\frac{n+3}{4} \mathrm{D} x^{4}+\frac{n+4}{5} \mathrm{E} x^{5}+\frac{n+5}{6} \mathrm{~F} x^{6}+\frac{n+6}{7} \mathrm{G} x^{7}\)
\(+\& c \mathrm{c}\) (being always lefs by 2 than the number of the terms from the beginning of the feries to the term in which it occurs, including the faid term), it is evident, that, by continuing the terms of the feries, we mult always come to a term in which the generating fraction \(\frac{n^{2}+z}{z+1}\) fhall be lefs than the fraction \(\frac{x}{x}\). And when we are arrived at this term, the next term of the feries will be lefs increafed by being multiplied into the next generating fraction (which will be lefs than the fraction \(\frac{1}{x^{*}}\) ) than it will be diminifhed by being multiplied into the fraction \(\frac{x}{1}\), or the reciprocal of the fraction \(\frac{1}{x}\); and confequently it will be lefs than the laft preceeding term of the feries from which it is derived. And therefore, when
when we are cone to this term, all the following terms of the faid feries (which have hitherto been increafing quantities) will decreafe continually, and in a greater and greater proportion continually, as the feries advances. And confequently the faid feries will in all cafes be of a finite magnitude, however nearly the quantity \(x\) may approach to an equality with 1 . \&. E. D.

End of the Adriitional Corollaries not contained in the original text of Mr. James Bernoulli, which began in page 123.

\section*{A SCHOLIUM.}
135. We may here take occafion to obferve, that, though many writers on mathematical fubjects (as for example, Faulhaber and Remmelin of the city of Ulm in Germany, and Dr. John Wallis of Oxford, Mr. Nicholas Mercator in his Logarithmorechnia *, and Monfieur Prefter, a learned French mathematician) have made the properties of the figurate numbers the fubject of their confideration, yet no one has hitherto given the publick a general and fcientifis \(k\) demonftration of the foregoing important 12 th property of them. At leaft I may fay, that no fuch demonftration has ever come to my knowledge. Dr. Wallis, indeed, in that part of his learned treatife on the arithmetick of infinites, in which he eftablifhes the foundations of his method, has inveftigated by arguments of induction the proportions which a feries of the fquares of a given number of the natural numbers, \(1,2,3,4,5,6,7,8,9, \& c\), and a feries of their cubes, and a feries of their fourth powers, and feriefes

\footnotetext{
* See Vol. I. of the Collection of Tracts, in quarto, intitled, Scriptores Logarilhmici, pages 192, 193.
}
of their following higher powers, would bear to a feries confifting of the fame number of terms all equal to the laft, or greateft, term of the former feries; and, after performing thefe invertigations, has, in his 176 th propofition, made a tranfition to the contemplation of the trigonal, or triangular, and the pyramidal, and trigono-pyramidal, or trangulopyramidal, numbers, and other following orders of the figurate numbers. But I apprehend he would have acted more judicioufty and more agreeably to the nature of the fubject he was confidering, if he had taken the contrary courle, and begun with the inveftigation of the properties of the figurate numbers, and then, after having difcovered thofe properties, and given a juft and general demonftration of them, had proceeded to inveftigate the fums of the powers of the natural numbers \(1,2,3,4,5,6,7,8,9, \& c\). Wor, befides the objections that may be juftly made to his method of making thefe inveftigations by inductions from particular examples, as being by no means fcientifick or fatisfactory to a mind accuftomed to more accurate modes of reafoning, and likewife as being more prolix and tedious than need be, on account of the neceffity of having a feparate inveftigation for every new feries of powcrs;-1 fay, befides thefe objections to his method of treating this fubject, it may be confidered as inelegant and unnatural on anuther account, namely, becaufe it treats of the more abftrufe parts of the fubject, to wit, the inveftigation of the fums of powers, before the more fimple and eafy parts of it, or the doctrine of the figurate numbers. For thefe numbers may be juftly efteemed to be more fimple and eafy to be underftood than the powers of the natural numbers, partly, becaufe the feveral orders of them are generated one from another by the ealy operation of addition; whereas, the powers of numbers are produced by the more complicated operation of multiplication; and partly and efpecially, becaufe the fums of the feveral orders of tigurate numbers (reckoning from the beginning of the foregoing table of them, or including the feveral cyphers prefixed to the fignificant terms of the feveral vertical columns of the faid table) are (as we have feen) exact aliquot parts of the feriefes that confin of clie fame
fame numbers of terms all equal to their laft, or greateft, terms, refpectively; whereas the fums of the powers of the natural numbers \(1,2,3,4,5,6,7,8,9, \& c\), never are exact aliquot parts of the fums of equal numbers of terms equal to the laft, or greateft, of them, refpectively, but always exceed, or fall hoort of, fuch aliquot parts by fome fmall finite quantity, how great foever the number of the terms of fuch feriefes may be fuppofed to be, and what number of cyphers foever we may prefix to the faid feriefes confifting of the powers of the natural numbers. Nor can it be alledged, that it was neceffary for Dr . Wallis to begin by inveftigating the fums of the powers of the natural numbers \(1,2,3,4,5,6,7,8,9, \& \mathrm{c}\), on account of the difficulty of deducing the values of thofe furns from the doctrine of the fums of the figurate numbers. For, it is full as eafy to deduce the fums of the faid powers from the fums of the feveral orders of figurate numbers, as to deduce the latter from the fums of the powers of numbers in the manner adopted by Dr. Wallis : as I fhall now proceed to fhew by deducing the fums of the faid powers from the fums of the feveral orders of figurate numbers, which we have already inveftigated.

An invefigation of the fum of the natural numbers \(1,2,3,4\), \(5,6,7,8,9,10,11, \mathcal{C}\), continued to any given number of terms, and of the fums of their Squares, and of their cubes, and of their fourth powers, and other bigher powers, continued to the fome rumber of tirms.
\({ }_{3} 6\). If the letter \(x\) be made to denote the feveral fuccerfive terms of the feries \(1,2,3,4,5,6,7,8,9,10,11, \& c\), continued to the \(u\) th term, which, it is evident, will be \(n\),

Mr. Fames Bernoulli's Treatije De Arte Conjectandi. 169 the fucceffive values of the refidual quantities \(x-1, x-r\), \(x-\mathrm{I}, x-\mathrm{I}, x-\mathrm{I}, x-\mathrm{I}, \mathfrak{x}-\mathrm{I}, x-\mathrm{I}, x-\mathrm{I}, x-\mathrm{I}\), \(x-\mathrm{I}\), \&cc, continued to \(n\) terms, will be \(1-1,2-1\), \(3-1,4-\mathrm{I}, 5-\mathrm{I}, 6-\mathrm{I}, 7-\mathrm{I}, 8-\mathrm{I}, 9-\mathrm{I}, 10-\mathrm{I}\), II- I, \& C c, continued to \(n\) terms, or \(0,1,2,3,4,5,6\), \(7,8,9,10, \& \mathrm{c}\), continued to \(n\) terms. But, by coroll. 2, of the foregoing propofition, arr. 81 , the feries \(0,1,2,3\), \(4,5,6,7,8,9,10, \& x\), (which are the terms contained in the fecond vertical column of the foregoing table of combinations), continued to \(n\) terms, is \(=\frac{n \times n-1}{2}=\frac{n n-n}{2}=\frac{n n}{2}\) \(-\frac{n}{2}\). Therefore the fum of all the \(n\) fucceffive values of \(x-1\) will be equal to \(\frac{n n}{2}-\frac{n}{2}\); and confequently, if we denote the faid fum by \(\mathrm{S} \cdot \overline{x-1}\), we fhall have \(\mathrm{S} \cdot \overline{x-1}=\) \(\frac{m n}{2}-\frac{n}{2}\). But the fum of the \(n\) fucceffive values of \(x-I\) is equal to the excefs of the \(n\) fucceffive values of \(x\) above the \(n\) fucceffive values of \(I\), or (making ufe of the fame kind of notation) to S.x-S.i. Therefore S.x-S.I will be \(=\frac{n \pi}{2}-\frac{n}{2}\), and confequently (adding S.I to both fides) S.x will be \(=\frac{n n}{2}-\frac{n}{2}+\) S.i. But the fum of the \(n\) fucceffive values of \(I\) is evidently the number \(n\). Therefore S. \(x\) will be \(=\frac{n n}{2}-\frac{n}{2}+n=\frac{n n}{2}+\frac{n}{2}\), or the fum of all the \(n\) furceffive values of \(x\), to wit, \(1+2+3+4+5\) \(+6+7+8+9+10+11+8 \mathrm{c}+n\) will be \(=\) \(\frac{n n}{2}+\frac{n}{2}\). CE.D.

Thus, for example, if \(n\) is \(=12\), the fum of the twelve terms of the feries \(1+2+3+4+5+6+7+8+\) \(9+10+11+12\) will be \(=\frac{12 \times 12}{2}+\frac{12}{2}=12 \times 6+6\)
\(=72+6=78\). And fo we fhall find it to be by actually adding up the terms.
\[
\begin{array}{r}
1 \\
2 \\
3 \\
4 \\
5 \\
6 \\
7 \\
8 \\
9 \\
10 \\
11 \\
12 \\
\hline 78
\end{array}
\]

Of the funn of the Squares of the natural numbers, \(1,2,3,4,5 \%\) \(\mathcal{E}_{c}\), continued to any given number n:
137. Let it now be required to find the fum of the fquares. of the natural numbers \(\mathrm{I}, 2,3,4,5,6,7,8 \mathrm{c}\), continued to \(n\), or the fum of the numbers \(I, 4,9,16,25,36,49, \& c\), continued to the \(n\)th term, which will be \(m n\). This may be done in the manner following.

Let \(x\) be put, as before, for the feveral fucceffive terms of the feries \(\mathrm{I}, 2,3,4,5,6,7,8,9,10,1 \mathrm{I}, \& \mathrm{c}, n\). Then, fince by coroll. 4, of the foregoing propofition, art. 83, the \(n\)th term of the third vertical column of the foregoing table of combinations is \(=\frac{\overline{n-1} \times \overline{n-2}}{2}=\frac{n n-3 n+2}{2}\), it fol lows,
lows, that every wth term of the fame vertical column will be \(=\frac{x \cdot x-3 x^{x}+2}{2}\), or that, if \(x\) be made fucceffively equal to I , \(2,3,4,5,6, \& c\), the fucceffive values of the fraction \(\frac{x x-3 \cdot x+2}{2}\), will produce the firft, fecond, third, fourth, fifth, fixth, and other following terms of the fame vertical column, which are \(0,0,1,3,6,10\), \&c. Thus, for example, if \(x\) is \(=1\), we fhall have \(\frac{x x-3^{x+2}}{2}=\frac{1-3+2}{2}=\frac{0}{2}\) \(=0\); and, if \(x\) is \(=2\), we fhall have \(\frac{x x-3 x+2}{2}=\frac{4-6+2}{2}\) \(=\frac{0}{2}=0\); and, if \(x\) is \(=3\), we thall have \(\frac{x x-3 x+2}{2}=\) \(\frac{9-9+2}{2}=\frac{2}{2}=1\); and, if \(x\) is \(=4\), we fhall have \(\frac{x: x-3 x+2}{2}=\frac{16-12+2}{2}=\frac{6}{2}=3\); and, if \(x\) is \(=5\), we fhall have \(\frac{x x-3^{x+2}}{2}=\frac{25-15+2}{2}=\frac{12}{2}=6\); and, if \(x\) is \(=6\), we fhall have \(\frac{x:-3^{x+2}}{2}=\frac{3^{6-18+2}}{2}=\frac{20}{2}=10\); which numbers \(0,0, I, 3,6\), and 10 , are the firt fix terms of the faid third vertical column. And the fame thing will be found to be true in any greater number of its terms. But, by the fecond corollary of the foregoing propofition, art. 8 I , the fum of all the \(n-2\) fignificant terms, or, including the two cyphers at the beginning of it, the fum of all the \(n\) terms, of the faid third vertical column is \(=\frac{n \times \overline{n-1} \times \overline{n-2}}{2 \times 3}\) \(=\frac{n \times n n-3^{n+2}}{2 \times 3}=\frac{n^{3}-3^{n n}+2 n}{6}\). Therefore the fum of all the \(n\) fucceffive values of the fraction \(\frac{x x-3 x+2}{2}\) will be \(=\) \(\frac{n^{3}-3^{n n}}{6}+2 n\). But the fum of all the \(n\) fucceffive values of \(\frac{x x-3 x+2}{3}\) is evidently equal to the fum of all the \(n\) fucceifive

172 A Tranfation of the foregoing Extratit from
values of \(\frac{N x}{2}\), together with the fum of all the \(n\) fucceffive values of \(\frac{2}{2}\), or \(I\), diminifhed by the fum of all the \(n\) fucceffive values of \(\frac{3^{x}}{2}\), or (according to our former notation) S. \(\sqrt{\frac{x x-3 x+2}{2}}\) is \(=\) S. \(\frac{x x}{2}+\mathrm{S} . \frac{2}{2}-\mathrm{S} \cdot \frac{3 x}{2}=\mathrm{S} . \frac{x x}{2}+\mathrm{S} .1-\) S. \(\frac{3 x}{2}=\mathrm{S} \cdot \frac{x x}{2}+n-\mathrm{S} \cdot \frac{3 x}{2}\). Therefore S. \(\frac{x x}{2}+n-\mathrm{S} \cdot \frac{3 x}{2}\) will be \(=\frac{n^{3}-3^{n n+2 n}}{6}\). But S. \(\frac{3 \cdot x}{2}\) is evidently \(=\frac{3}{2} \times\) S. . . Therefore \(\mathrm{S} \cdot \frac{x x}{2}+n-\frac{3}{2} \times \mathrm{S}\). \(r\) will be \(=\mathrm{S} \cdot \frac{2 x}{2}+n-\) S. \(\frac{3 x}{2}\), and confequently will be \(=\frac{n^{3}-3 n n+2 n}{6}\). But it has been fhewn in art. 136 , that \(S . x\) is \(=\frac{m n}{2}+\frac{n}{2}\). Therefore \(\frac{3}{2} \times\).S . \(x\) will be \(=\frac{3}{2} \times \sqrt{\frac{n n}{2}+\frac{n}{2}}=\frac{3 n n}{4}+\frac{3^{n}}{4}\). Therefore S. \(\frac{x: x}{2}+n-\frac{3 n n}{4}-\frac{3^{n}}{4}\) will be \(=\frac{n^{3}-3^{n n+2 n}}{6}\), or S. \(\frac{x x}{2}-\) \(\frac{3^{n n}}{4}+\frac{n}{4}\) will be \(=\frac{n^{3}-3^{n n+2 n}}{6}\), or S \(\cdot \frac{x x}{2}-\frac{9^{n n}}{12}+\frac{3^{n}}{12}\) will be \(=\frac{n^{3}}{6}-\frac{6 m n}{12}+\frac{4 n}{12}\). Therefore (adding \(\frac{9^{n n}}{12}\) to both fides) we Hall have \(S \cdot \frac{x x}{2}+\frac{3^{n}}{12}=\frac{n^{3}}{6}+\frac{3 n n}{12}+\frac{4^{n}}{12}\); and (fubtracting \(\frac{3 n}{12}\) from both fides) we thall have \(S . \frac{a x x}{2}=\frac{n^{3}}{6}+\frac{3^{n n}}{12}+\frac{n}{12}=\) \(\frac{n^{3}}{6}+\frac{n n}{4}+\frac{n}{12}\), and confequently S. \(x x\left(=2 \times\right.\) S \(\left.\cdot \frac{x x}{2}\right)=\frac{n^{3}}{3}\) \(+\frac{n n}{2}+\frac{n}{6}\); that is, the fum of all the \(n\) fquares \(1,4,9\), \(16,25,36,49, \&-c\), of the \(n\) firft natural numbers 1,22 \(3,4,5,6,7\), \&c. . . . \(n\) will be \(=\frac{n^{3}}{3}+\frac{n n}{2}+\frac{n}{6}\), or onethird of the cube of the greateft number \(n\), together with

Mr. Fames Bernoulli's Treatife De Arte Conjectandi.
half the fquare of the faid number, and a fixth part of the faid number itfelf. e. E. I.

Thus, for example, if \(n\) is \(=12\), we fhall have \(n n=\) 144, and \(n^{3}=1728\), and \(\frac{n^{3}}{3}+\frac{n n}{2}+\frac{n}{6}\left(=\frac{1728}{3}+\frac{144}{2}+\right.\) \(\left.\frac{12}{6}=57^{6}+72+2\right)=650\). Therefore the fum of the following twelve numbers, to wit, \(1,4,9,16,25,36,49\), \(64,8_{1}, 100,121\), and 144 , (which are the fquares of the twelve natural numbers \(1,2,3,4,5,6,7,3,9,10,11\), and 12) will be equal to 650 . And fo, upon adding them up together, we fhall find them to be
\begin{tabular}{r}
1 \\
4 \\
9 \\
16 \\
25 \\
36 \\
49 \\
64 \\
81 \\
100 \\
121 \\
144 \\
\hline 650
\end{tabular}

Of the fum of the cubes of the natural numbers \(1,2,3,4,5\) : \(\mathcal{E}_{c}\), continued to any given number n .
138. Let \(x\) be put, as before, for the feveral fucceffive terms of the feries \(1,2,3,4,5,6,7,8,9,10,11, \& \mathrm{c}, n\). Then, fince by coroll. 4, of the foregoing propofition, art. \(8_{3}\), the \(n\)th term of the fourth vertical column of the foregoing table of combinations is \(=\frac{\overline{n-1} \times \overline{n-2} \times \overline{n-3}}{2 \times 3}=\)
\(\frac{2 n-3 n+2}{2} \times \frac{n-3}{3}=\frac{n^{3}-6 n n+1 n n-6}{6}\); it follows, that every wth term of the fame fourth column will be \(=\frac{x^{3}-6 x x+11, x^{x}-6}{6}\), or that, if \(x\) be made fucceffively equal to \(1,2,3,4,5,6\), \&c. the fucceffive values of the fraction \(\frac{x^{3}-6 x+x+11 x-6}{6}\) will produce the firt, fecond, third, fourth, fifth, fixth, and other following terms of the fame vertical column, which are \(0,0,0,1,4,10,20,35\), \&c. But, by the 2d corollary of the foregoing propofition, art. 8 I , the fum of all the terms of the faid fourth vertical column (the number of which, including the three cyphers at the beginning of it, is \(n\) ) is \(=\frac{n \times \overline{n-1} \times \overline{n-2} \times \overline{n-3}}{2 \times 3 \times 4}=\frac{n^{4}-6 n^{3}+11 n n-6 n}{24}\). Therefore the fum of the \(n\) fucceffive values of the fraction \(\frac{x^{3}-6 x x+1 x x-6}{6}\) will be \(=\frac{n^{4}-6 n^{3}+11 n n-6 n}{24}\), or, according to our former notation, \(\mathrm{S} \cdot \sqrt{\frac{x^{3}-6 x: x+11 x-0}{6}}\) will be \(=\frac{n^{4}-6 n^{3}+11 n n-6 n}{24}\). But S. \(\sqrt{\frac{x^{3}-6 x x+11, x-6}{6}}\) is \(=S \cdot \frac{x^{3}}{6}-S \cdot \frac{6 x x}{6}+S \cdot \frac{1+x}{6}-S \cdot \frac{6}{6}=S\).

Mr. Games Bernoulli's Treatise De Arse Conjectandi.
\(\frac{x^{3}}{6}-S_{0} \cdot x+\frac{11}{6} \times S: x-S .1=\) (by the two foregoing articles \(\mathrm{I}^{6}\) 6 and 137) S. \(\frac{n^{3}}{6}-\frac{n^{3}}{3}-\frac{m n}{2}-\frac{n}{6}+\frac{11}{6} \times \sqrt{\frac{n n}{2}+\frac{n}{2}}\) \(-n=\mathrm{S} \cdot \frac{x^{3}}{6}-\frac{n^{3}}{3}-\frac{n n}{2}-\frac{n}{6}+\frac{11 n n}{12}+\frac{11 n}{12}-n=\mathrm{S} \cdot \frac{x^{3}}{6}\) \(-\frac{n^{3}}{3}-\frac{6 n n}{12}-\frac{2 n}{12}+\frac{11 n n}{12}+\frac{11 n}{12}-\frac{12 n}{12}=\mathrm{S} \cdot \frac{x^{3}}{6}-\frac{n^{3}}{3}+\frac{5 n n}{12}\) \(-\frac{3^{n}}{12}=\mathrm{S} \cdot \frac{x^{3}}{6}-\frac{n^{3}}{3}+\frac{5 n n}{12}-\frac{n}{4}\). Therefore S. \(\frac{x^{3}}{6}-\frac{n^{3}}{3}+\) \(\frac{5 n n}{12}-\frac{n}{4}\) will be \(=\frac{n^{4}-6 n^{3}+1}{24} \frac{1 n n-6 n}{24}\); and consequently (adding \(\frac{n^{3}}{3}+\frac{n}{4}\) to both fides) S. \(\frac{x^{3}}{6}+\frac{5^{n \pi}}{12}\) will be \(=\) \(\frac{n^{4}-6 n^{3}+11 n n-6 n}{24}+\frac{n^{3}}{3}+\frac{n}{4}=\frac{n^{4}-6 n^{3}+1 \mathrm{I} 1 n n-6 n}{24}+\frac{8 n^{3}}{24}+\frac{6 n}{24}\) \(=\frac{n^{4}+2 n^{3}+11 n n}{24}\); and (fubtracting \(\frac{5 n \pi}{12}\) from both fides) S. \(\frac{x^{3}}{6}\) will be \(=\frac{n^{4}+2 n^{3}+1 \mathrm{I} n n}{24}-\frac{5^{n n}}{12}=\frac{n^{4}+2 n^{3}+11 m n}{24}-\frac{10 n n}{24}\) \(=\frac{n^{4}+2 n^{3}+m n}{24}\). Therefore S. \(x^{3}\) will be \(=6 \times \frac{n^{4}+2 n^{3}+m n}{24}\) \(=\frac{n^{4}+2 n^{3}+n n}{4}=\frac{n^{4}}{4}+\frac{n^{3}}{2}+\frac{n n}{4}\), or the fum of the \(n\) fucceffive values of \(x^{3}\), or of the feveral cube numbers \(\mathrm{I}, 8,27\), \(64,125,216,343,512,729,1000,1331, \& \mathrm{c}\), continued to \(n^{3}\), will be \(=\frac{n^{4}}{4}+\frac{n^{3}}{2}+\frac{n n}{4} . \quad\) e. E. I.

Thus, for example, if \(n\) is \(=12\), we hall have \(n n=\) 144, and \(n^{3}=1728\), and \(n^{4}=20,736\), and confequently \(\frac{n^{4}}{4}\left(=\frac{20736}{4}\right)=5184\), and \(\frac{n^{3}}{2}\left(=\frac{3728}{2}\right)=864\), and \(\frac{n n}{4}(=\) \(\frac{144}{4}=36\), and \(\frac{n^{4}}{4}+\frac{n^{3}}{2}+\frac{n n}{4}(=5184+864+36)=\) 6084. Therefore the fum of the twelve numbers \(1,8,27\), \(64,125,216,343,512,729,1000,133 \mathrm{r}\), and 1728 , (which are the cubes of the frt twelve natural numbers i,
\(2,3,4,5,6,7,8,9,10,11\), and 12), will be \(=6084{ }^{\circ}\) And fo we fhall find the faid fum to be, if we actually add up together the faid twelve cube numbers.
\begin{tabular}{r}
\(\mathbf{r}\) \\
8 \\
27 \\
64 \\
125 \\
216 \\
343 \\
512 \\
729 \\
1000 \\
1331 \\
1728 \\
\hline 6084
\end{tabular}

Of the fum of the fourth powers of the natural numbers \(\mathrm{i}, \mathbf{2}, \mathbf{3}\), \(4,5, \mathcal{E}^{c}\), continued to any given number n.
139. Let \(x\) be put, as before, for the feveral fucceffive terms of the feries \(1,2,3,4,5,6,7,8,9,10,11, \& c, n\).

Then, fince by coroll. 4, of the foregoing propofition, art. 83, the \(n\)th term of the fifth vertical column of the foregoing table of combinations is \(\frac{\overline{n-1} \times \overline{n-2} \times \overline{n-3} \times \overline{n-4}}{2 \times 3 \times 4}\) \(=\frac{n^{3}-6 n n+11 n-6}{6} \times \frac{n-4}{4}=\frac{n^{4}-10 n^{3}+35 n n-50 n+24}{24}\), it follows that

\section*{Mr. James Berrioulli's Treatife De Arte Conjectandi.}
that every eth term of the fame fifth column will be \(=\) \(\frac{x^{4}-10 x^{3}+35 x x-50 \cdot x+24}{24}\), or that, if \(x\) be made fucceffively equal to \(1,2,3,4,5,6,7,8,9,10,11, \& c\), the fucceffive values of the fraction \(\frac{x^{4}-10 x^{3}}{+35 \cdot x+50 x+24} \frac{14}{24} \underline{w i l l}\) produce the firt, fecond, third, fourth, fifth, fixth, and other following terms of the fame vertical column, which are \(0,0,0,0\), I, 5, I5, 35, 70, \&c. But, by the fecond corollary of the foregoing propofition, art. \(8 \mathbf{I}\), the fum of all the terms of the faid fifth vertical column (the number of which, including the four cyphers at the beginning of it, is \(n\) ) is \(=\frac{n \times \overline{n-1} \times \overline{n-2} \times \overline{n-3} \times \overline{n-4}}{2 \times 3 \times 4 \times 5}=\frac{n^{5}-10 n^{4}+35 n^{3}-50 n n+24 n}{120}\).
Therefore the fum of all the \(n\) fucceffive values of the fraction \(\frac{x^{4}-10 x^{3}+\frac{35 x x-50 x+24}{24}}{24}\) will be \(=\frac{n^{5}-10 n^{4}}{+35 n^{3}-50 n n+24 n} \frac{120}{}\); or, according to our former notation,
\[
\text { S. } \sqrt{\frac{x^{4}-10 x^{3}+35 x x-50 x+24}{24}} \text { will be }=\frac{n^{5}-10 n^{4}+35 n^{3}-50 x n+24 n}{120} .
\]
\[
\text { But } S \cdot \sqrt{\frac{x^{4}-10 x^{3}+35 x x-50 x+24}{24}} \text { is }=S \cdot \frac{x^{4}}{24}-S \cdot \frac{10 x^{3}}{24}+
\]
\[
\text { S. } \frac{3 j x \cdot x}{24}-S \cdot \frac{50 x}{24}+S \cdot \frac{24}{24}=\text { S. } \frac{x^{4}}{24}-\frac{10}{24} \times \text { S. } x^{3}+\frac{35}{24}
\]
\[
\times \text { S. } x-\frac{50}{24} \times \text { S } x+\text { S. } I=S \cdot \frac{x^{4}}{24}-\frac{10}{24} \times \sqrt{\frac{n^{4}}{4}+\frac{n^{3}}{2}+\frac{n^{n} n}{4}}
\]
\[
+\frac{35}{24} \times \sqrt{\frac{n^{3}}{3}+\frac{n n}{2}+\frac{n}{6}}-\frac{50}{24} \times \sqrt{\frac{n n}{2}+\frac{n}{2}}+n=\mathrm{S} \cdot \frac{x^{4}}{24}-
\]
\[
\frac{10 n^{4}}{9^{6}}-\frac{10 n^{3}}{4^{8}}-\frac{10 n n}{9^{6}}+\frac{35 n^{3}}{7^{2}}+\frac{35 n n}{4^{8}}+\frac{35 n}{144}-\frac{50 n n}{4^{8}}-\frac{50 n}{4^{8}}+n
\]
\[
=S \cdot \frac{x^{4}}{24}-\frac{5^{4}}{4^{4}}-\frac{30 n^{3}}{144}-\frac{10 n n}{9^{6}}+\frac{70 n^{3}}{144}+\frac{70 n n}{96}+\frac{35 n}{144}-\frac{100 n^{n}}{9^{6}}
\]
\[
-\frac{150 n}{144}+\frac{144 n}{1+4}=5 \cdot \frac{x^{4}}{24}-\frac{5 n^{4}}{48}+\frac{40 n^{3}}{144}-\frac{40 n \pi}{96}+\frac{29 n}{144} .
\]

Therefore S. \(\frac{x^{4}}{24}-\frac{5 n^{4}}{4^{8}}+\frac{40 n^{3}}{144}-\frac{40 n n}{9^{6}}+\frac{29 n}{144}\) will be \(=\) \(\frac{n^{5}-10 n^{4}+35^{n^{3}}-50 n n+24 n}{120}\); and confequently (adding \(\frac{5^{n^{4}}}{4^{8}}+\) \(\frac{40 n n}{96}\) to boch fides) we fhall have S \(\frac{x^{4}}{24}+\frac{40 n^{3}}{144}+\frac{29 n}{144}\) \(\left(=\frac{n^{5}-10 n^{4}+35 n^{3}-50 n n+24 n}{120}+\frac{5 n^{4}}{4^{8}}+\frac{40 n n}{9^{6}}=\frac{n^{5}}{120}-\frac{n^{4}}{12}+\frac{7 n^{3}}{24}\right.\) \(-\frac{5 n n}{12}+\frac{n}{5}+\frac{5 n^{4}}{48}+\frac{5 n n}{12}=\frac{n^{5}}{120}-\frac{4 n^{4}}{48}+\frac{7 n^{3}}{24}-\frac{5 n n}{12}+\frac{n}{5}+\) \(\left.\frac{5 n^{4}}{4^{8}}+{ }_{12}^{5 n n}\right)=\frac{n^{5}}{120}+\frac{n^{4}}{4^{8}}+\frac{7 n^{3}}{24}+\frac{n}{5}\), and fubtracting \(\cdot \frac{40 n^{3}}{144}\) \(+\frac{29 n^{n}}{144}\) from both fides) \(S \cdot \frac{x^{4}}{24}\left(=\frac{n^{5}}{120}+\frac{n^{4}}{48}+\frac{7 n^{3}}{24}+\frac{n}{5}-\right.\) \(\frac{40 n^{3}}{144}-\frac{29 n}{1+4}=\frac{n^{5}}{120}+\frac{n^{4}}{4^{8}}+\frac{4: n^{3}}{144}+\frac{144 n}{720}-\frac{40 n^{3}}{144}-\frac{145^{n}}{720}=\frac{n^{5}}{120}\) \(\left.+\frac{n^{4}}{4^{8}}+\frac{2 n^{3}}{1+4}-\frac{n}{720}\right)=\frac{n^{5}}{120}+\frac{n^{4}}{4^{8}}+\frac{n^{3}}{7^{3}}-\frac{n}{720}\); and confequently S. \(x^{4}\) will be \(\left(=24 \times \frac{n^{5}}{120}+24 \times \frac{n^{4}}{4^{8}}+24 \times \frac{n^{3}}{7^{2}}\right.\) \(\left.-24 \times \frac{n}{7^{20}}\right)=\frac{n^{5}}{5}+\frac{n^{4}}{2}+\frac{n^{3}}{3}-\frac{n}{30}\); or the fum of the \(n\) fucceffive values of \(x^{4}\), or of the feveral fourth powers of the natural numbers \(\mathrm{I}, 2,3,4,5,6,7,8,9,10,11, \& \mathrm{c}\), continued to \(n\), will be \(=\frac{n^{5}}{5}+\frac{n^{4}}{2}+\frac{n^{3}}{3}-\frac{n}{30} \quad\) Q. E. I.

Thus, for example, if \(n\) is \(=12\), we fhall have \(n^{3}=\) 1728 , and \(n^{4}=20,73^{6}\), and \(n^{5}\left(=n^{4} \times n=20,73^{6}\right.\) 12) \(=248,832\), and confequently \(\frac{n^{5}}{5}=\frac{248,832}{5}\), and \(\frac{n^{4}}{2}\) \(\left(=\frac{20,736}{2}=10,368\right.\), and \(\frac{n^{3}}{3}\left(=\frac{1728}{3}\right) 576\), and \(\frac{n}{30}\left(=\frac{12}{30}\right)\) \(=\frac{2}{5}\), and \(\frac{n^{5}}{5}+\frac{n^{4}}{2^{4}}+\frac{n^{3}}{3}-\frac{n}{30}\left(=\frac{248,83_{2}}{5}+10,368+\right.\) \(576-\frac{2}{5}=\frac{248,830}{5}+10,368+576=49,766+10,368\) \(+576)=60,710\) : Therefore the fum of the twelve numbers
bers i, 16, \(8 \mathrm{I}, 256,625,1296,2401,4096,656 \mathrm{r}, 10000\), \(146+1\), and 20,736 , (which are the fourth powers of the firft twelve natural numbers \(1,2,3,4,5,6,7,8, \cdot 9,10,11\), and 12), will be \(=60,710\). And fo we fhall find the faid fum to be, if we actually add up together the faid tivelve numbers, or fourth powers of the firft twelve natural numbers; which may be done as follows.
\begin{tabular}{r}
1 \\
16 \\
81 \\
256 \\
625 \\
1,296 \\
2,401 \\
4,096 \\
6,561 \\
10,000 \\
14,641 \\
20,736 \\
\hline 60,710
\end{tabular}
140. The foregoing examples are, I prefume, fufficient to thew how the fums of the feveral powers of the natural numbers \(1,2,3,4,5,6,7,8,9,10,11, \& c\), continued to any number \(n\), may be deduced from the fums of the feveral correfponding orders of figurate numbers contained in the foregoing table of combinations. I fhall not therefore add the inveltigations of the fums of any higher powers of the numbers \(1,2,3,4,5,6,7,8,9,10,11, \& c\), than the foregoing ones, but thall only fet down the refults of the like inveltigations which I have made for my own farisfaction with reipect to the fums of the fix next higher powers of thofe numbers, to wit, the fifth powers, the fixth powers, the feventh powers, the eighth powers, the ninth powers, and the tenth powers of them. Thefe refults are as follows.

The fum of all the fifth powers of the natural numbers \(1,2,3,4,5,6,7,8,9,10,11, \& c\), continued to \(n\), is \(=\)
\(\frac{n^{6}}{6}+\frac{n^{5}}{2}+\frac{5 n^{4}}{12}-\frac{m n}{12}\).
The fum of all the fixth powers of the fame numbers is \(=\) \(\frac{n^{7}}{7}+\frac{n^{6}}{2}+\frac{n^{5}}{2}-\frac{n^{3}}{6}+\frac{z}{42}\).

The fum of all the feventh powers of the fame numbers is \(=\) \(\frac{n^{8}}{8}+\frac{n^{7}}{2}+\frac{7 n^{6}}{12}-\frac{7 n^{4}}{24}+\frac{n n}{12}\).

The fum of all the eighth powers of the fame numbers is \(=\) \(\frac{n^{9}}{9}+\frac{n^{8}}{2}+\frac{2 n^{7}}{3}-\frac{7 n^{5}}{15}+\frac{2 n^{3}}{9}+\frac{n}{30}\).

The fum of all the ninth powers of the fame numbers is \(=\) \(\frac{z^{10}}{10}+\frac{n^{0}}{2}+\frac{3 n^{8}}{4}-\frac{7 n^{6}}{10}+\frac{n^{4}}{2}-\frac{3 n n n^{2}}{20}\).

And the fum of all the tenth powers of the fame numbers is \(=\) \(\frac{n^{11}}{11}+\frac{n^{10}}{2}+\frac{5 n^{0}}{6}-n^{7}+n^{5}-\frac{n^{3}}{2}+\frac{5 n}{66}\).
* N. B. In computing the laft term of this expreffion (which is equal to the fum of all the ninth powers of the natural numbers \(1,2,3,4,5,6,7\), 8,9 , \&c, continued to \(\%\) ) the author has fallen into a miltake, having made the faid laft term to be \(\frac{n n}{12}\), inftead of \(\frac{3 n n}{20}\). I have therefore fet down \(\frac{3 n n}{20}\) inftead of \(\frac{n n}{12}\) in this tranflation. I had not difcovered this miftake when the Theet containing it in the original text of the author, page 32 , was printing ; or I fhould have fet it right before.

Mr. Fames Bernoulli's Treatije De Arte Conjectandi. Isi

Examples of the fummation of the fifth, fixth, feventh, eigbth, ninth, and tenth powers of the natural numbers \(1,2,3,4\), \(5,6,7,8,9,10,11, \mathcal{E}_{c}\), continued to \(n\), by means of the foregoing exprefions.

Let \(n\) be \(=12\).
Then for the fum of the fifth powers of the firlt tweive natural numbers \(1,2,3,4,5,6,7,8,9,10,11\), and 12 , (which are \(1 ; 32 ; 243 ; 1,024 ; 3,125 ; 7,776 ; 16,807\); 32,\(768 ; 59,049\); 100,000; 161,051; and 248,832;) we thall have \(\frac{n^{6}}{6}+\frac{n^{5}}{2}+\frac{5 n^{4}}{12}-\frac{n n}{12}\), or \(\frac{177^{6}}{6}+\frac{125^{5}}{2}+\frac{5 \times \overline{12} 4^{4}}{12}-\) \(\frac{122^{2}}{12}\left(=\frac{12 \times \overline{12}]^{5}}{6}+\frac{12]^{5}}{2}+5 \times 12\right]^{3}-12=2 \times\left. 12\right|^{5}+\) \(\frac{127^{5}}{2}+5 \times{ }_{1728}-12=2 \times 248,832+\frac{248,832}{2}+8640\) - \(12=497,664+124,416+8628)=630,708\). And fo we fhall find the faid fum to be, if we add up together the faid twelve numbers, or fifth powers of the firft awelve natural numbers \(1,2,3,4,5,6,7,8,9,10,11\), and 12 . This addition will be as follows.
\begin{tabular}{r}
1 \\
32 \\
243 \\
1,024 \\
3,125 \\
7,776 \\
16,807 \\
32,763 \\
59,049 \\
100,000 \\
161,051 \\
248,832 \\
\hline 630,708
\end{tabular}

And for the fum of the fixth powers of the firft twelve natural numbers, 1, 2, 3, 4, 5, \(6,7,8,9,10,1 \mathrm{r}\), and 12 , (which powers are \(1 ; 64\); \(729 ; 4,096 ; 15,625 ; 46,656 ; 117,649 ; 262,144 ; 531\), \(44^{1}\); 1,000,000; 1,7-1,561 ; and 2,985,984), we fall have \(\frac{n^{7}}{7}+\frac{n^{6}}{2}+\frac{n^{5}}{2}-\frac{n^{3}}{6}+\frac{n}{42}\), or \(\frac{\pi 17}{7}+\frac{\overline{12}^{6}}{2}+\frac{12]^{5}}{2}-\frac{12]^{3}}{6}+\) \(\frac{12}{42},=\frac{\overline{121}^{6} \times 12}{7}+\frac{\overline{12}^{6}}{2}+\frac{177^{5}}{2}-\frac{1273}{6}+\frac{2}{7}=\frac{2,985,984 \times 12}{7}\) \(+\frac{2,985,984}{2}+\frac{248,832}{2}-\frac{1,288}{6}+\frac{2}{7}=\frac{35,831,808}{7}+1,492,99^{2}\) \(+124,416-288+\frac{2}{7}=\frac{35,831,810}{7}+1,492,992+124\), \(416-288=5,118,830+1,492,992+124,416-288\) \(=5,118,830+1,492,992+124,128)=6,735,950\). And fo we floall find the faid fum to be, if we add up together the faid twelve numbers, or fixth powers of the firt twelve natural numbers \(1,2,3,4,5,6,7,8,9,10,11\), and 12 . This addition will be as follows.
\[
\begin{array}{r}
1 \\
64 \\
729 \\
4,096 \\
15: 625 \\
46,656 \\
117,649 \\
262,144 \\
531,441 \\
1,000,000 \\
1,771,561 \\
2,985,984 \\
\hline 6,735,950
\end{array}
\]

Mr. Fames Eernoulli's Treatije De Arte Conjectandi. i83

And for the fum of the feventh powers of the firt twelve natural numbers \(1,2,3,4,5,6\), \(7,8,9,10,11\), and 12 , (which powers are 1; 128; 2, 187; 16,\(384 ; 78,125 ; 279,9,36 ; 823,543 ; 2,097,152 ; 4,782\), \(969 ; 10,000,000 ; 19,487,171\); and \(35,831,808\) ), we thall have \(\frac{n^{8}}{8}+\frac{n 7^{7}}{2}+\frac{7 n^{6}}{12}-\frac{\eta n^{4}}{24}+\frac{n \pi}{12}\), or \(\frac{17^{3}}{8}+\frac{17^{7}}{2}+\frac{\eta \times \overline{12}^{6}}{12}-\) \(\frac{7 \times \overline{12}+{ }^{4}}{24}+\frac{\overline{12}{ }^{2}}{12}\left(=\frac{12 \times \overline{12}}{8}+\frac{\overline{12} 7}{2}+7 \times \overline{12}^{5}-\frac{2 \times \overline{12}]^{3}}{2}+12\right.\) \(=\frac{3 \times \overline{T_{2} 7}}{2}+\frac{17^{7}}{2}+7 \times \sqrt{17}-\frac{7 \times 17]^{3}}{2}+12=\frac{3 \times 35,831,808}{2}\) \(+\frac{35 \cdot 8_{3} 1,808}{2}+7 \times 248,832-\frac{7 \times 1728}{2}+12=3 \times\) \(17,915,904+17,915,904+1,741,824-7 \times 864+12\) \(=4 \times{ }_{17,915,904}+1,741,524-6048+12=\) \(71,663,616+1,741,824-6048+12=73,405,452-\) \(604{ }^{\circ}\) ) \(=73,399,404\). And fo we fhall find the taid funn to be, if we add up together the faid twelve numbers, or feventh powers of the firlt twelve natural numbers \(1,2,3\), \(4,5,6,7,8,9,10,11\), and 12 . This addition will be as follows.
\begin{tabular}{r}
1 \\
128 \\
2,187 \\
16,384 \\
78,125 \\
279,936 \\
823,543 \\
\(2,097,152\) \\
\(4,782,969\) \\
\(10,000,000\) \\
\(10,487,171\) \\
\(35,8,31,808\) \\
\hline \(73,399,404\).
\end{tabular}

And

And for the fum of the eighth powers of the find twelve natural numbers \(1,2,3,4,5,6\), \(7,8,9,10,11\), and 12 , (which powers are \(1 ; 256 ; 6,561\); 65,5,36; 390,625; 1,679,616; 5,764,801; 16,777,216; \(43,046,72 \mathrm{I} ; 100,000,000 ; 214,358,38 \mathrm{I}\); and \(429,981,6,6\) ) we hall have \(\frac{n^{9}}{9}+\frac{n^{8}}{2}+\frac{2 n^{7}}{3}-\frac{7 n^{5}}{15}+\frac{2 n^{3}}{9}-\frac{n}{30}\), or \(\frac{n 9}{9}+\) \(\frac{120^{3}}{2}+\frac{2 \times 12]^{7}}{3}-\frac{7 \times 12]^{5}}{15}+\frac{2 \times 12^{3}}{9}-\frac{12}{30}\left(=\frac{12 \times 121^{8}}{9}+\frac{12]^{8}}{2}+\right.\) \(\frac{2 \times \overline{127^{7}}}{3}-\frac{7 \times \overline{12}^{5}}{15}+\frac{2 \times 17^{3}}{9}-\frac{2}{5}=\frac{4 \times \overline{12}^{8}}{3}+\frac{\overline{121}^{3}}{2}+\frac{2 \times \overline{17} 7}{3}\) \(-\frac{7 \times \overline{1 月}^{5}}{15}+\frac{2 \times 1728}{9}-\frac{2}{5}=\frac{4 \times 429,981,696}{3}+\frac{429,98 \mathrm{r}, 696}{2}+\) \(\frac{2 \times 35,831,808}{3}-\frac{7 \times 248,83^{2}}{15}+\frac{345^{6}}{9}-\frac{2}{5}=\frac{1,719,926,784}{3}+\)
\(214,990,848+\frac{71,665,616}{3}-\frac{1,741,824}{15}+384-\frac{2}{5}=\) \(573,308,928+214,990,843+23,887,872-\frac{580,608}{5}+\) \(3 S_{4}-\frac{2}{5}=S_{12,188,032}-\frac{580,610}{5}=8_{12,188,032}-\) \(116,12)=S_{12,071,910 \text {. And fo we mall find the raid }}\) fum to be, if we add up together the fad twelve numbers, or eighth powers of the fill twelve natural numbers 1,2 , \(3,4,5,6,7,8,9,10,11\), and 12. This addition will be as follows.

Mr. Games Bernoulli's Treatife De Arte Conjectandi. 185
\begin{tabular}{r}
1 \\
2,56 \\
6,561 \\
65,536 \\
390,625 \\
\(1,679,616\) \\
\(5,764,801\) \\
\(16,777,216\) \\
\(43,046,721\) \\
\(100,000,000\) \\
\(214,3,58,881\) \\
\(429,981,696\) \\
\hline \(812,071,910\)
\end{tabular}

And for the fum of the ninth powers of the firt twelve natural numbers \(1,2,3,4,5,6\), \(7,8,9,10\), II and 12 , (which powers are \(1 ; 512 ; 19,683\); 262,144; 1,953.125; 10,077,696; 40,353,607; 134,217, \(7=8 ; 387,420,489 ; 1,000,000,000 ; 2,357,947,691\); and 5, \(159,780,35^{2}\);) we Thall have \(\frac{n^{10}}{10}+\frac{n^{9}}{2}+\frac{3 n^{8}}{4}-\frac{7 \pi^{5}}{10}+\frac{n^{4}}{2}\) \(-\frac{3 n n}{20}\), or \(\frac{\overline{12} 10}{10}+\frac{\overline{1} 7}{2}+\frac{3 \times \overline{12}]^{3}}{4}-\frac{7 \times \overline{12}]^{6}}{10}+\frac{127+}{2}-\frac{3 \times \overline{122} 2}{20}\) \(\left(=\frac{12 \times 120}{10}+\frac{120^{9}}{2}+\frac{3 \times 1]^{3}}{4}-\frac{7 \times 120^{6}}{10}+\frac{127^{4}}{2}-\frac{3 \times 12]^{2}}{20}=\right.\) \(\frac{12 \times 5,159,780,352}{10}+\frac{5159,780,352}{2}+\frac{3 \times 429,985,696}{4}-\)
\(\frac{7 \times 2,985,984}{10}+\frac{20,73^{6}}{2}-\frac{3 \times 144}{20}=\frac{61,917,564 \cdot 224}{10}+2,579,890_{2}\)
\({ }_{1} 77+\frac{1,280,945,088}{4}-\frac{20,901,888}{10}+10,368-\frac{3 \times 72}{10}=\)
\(\frac{61,21 \%, 54,224}{10}+2,579,890,176+322,486,2,72-\frac{20,901,889}{10}\)
\(10,368-\frac{216}{10}=\frac{61,917,364,224}{10}-\frac{20,902,104}{10}+2,579,890\),
2 B
\(176+322,486,272+10,368=\frac{61,896.462,120}{10}+2,902\), \(386,816=6,189,646,212+2,902,386,816)=9,092\), 033,028 . And fo we thall find the faid fum to be, if we add up together the faid twelve numbers, or ninth powers of the firft twelve natural numbers \(1,2,3,4,5,6,7,8,2\), 10, II, and 12. This addition will be as follows:
\[
\begin{array}{r}
1 \\
512 \\
19,683 \\
262,144 \\
1,953,125 \\
10,077,696 \\
40,353,607 \\
134,217,728 \\
387,420,489 \\
1,000,000,000 \\
2,357,947,691 \\
5,159,780,352 \\
\hline 9,092,033,028
\end{array}
\]

And for the fum of the tently powers of the firft twelve natural numbers, \(1,2,3,4,5,6\), \(7,8,9,10\), II and 12 , (which powers are I; 1,024; 59,\(049 ; 1,048,576 ; 9.765,625 ; 60,465,176 ; 282,475\), 249; 1,073,741,824; 3,486,784,401; 10,000,000,000; \(25,937,424,601\); and \(61,917,36,4,224\) ), we thall have \(\frac{n^{1 .}}{11}+\) \(\frac{n^{10}}{2}+\frac{5 n^{8}}{6}-n^{2}+n^{5}-\frac{n^{3}}{2}+\frac{5^{n}}{66}\) or \(\frac{171}{11}+\frac{\overline{1210}}{2}+\frac{5 \times \overline{120}}{6}\)
 \(\left.-\overline{12}]^{7}+\overline{12}\right]^{5}-\frac{122^{3}}{2}+\frac{10}{16}=\frac{12 \times 51,917,3 \sigma_{4}, 224}{11}+\)
\[
\frac{61,914,364,224}{2}
\]

Mr. Fames Berroutli's Treatije De Arte Conjectandi. 187 \(\frac{61,917,364,224}{2}+\frac{5 \times 5,159,780,352}{6}-35,831,808+248,832\) \(-\frac{1728}{2}+\frac{10}{11}=\frac{743,009,370,688}{11}+30,958,682,112+5 x\) \(859,963,392-35,831,808+248,832-864+\frac{10}{11}=\) \(\frac{743,008,370,698}{11}+30,958,682,112+4,299,816,960-\) \(35,831,808+248,832-864=67,546,215,518+\) \(30,958,682,112+4,299,816,960-35,831,808+248\), \(832-864=102,804,963,422-35,832,672)=102\), \(769,130,750\). And fo we thall find the faid fum to be, if we add up together the faid twelve numbers, or tenth powers of the firft tivelve natural numbers, \(1,2,3,4,5\), \(6,7,8,9,10,11\), and 12 . This addition will be as follows:
\begin{tabular}{r}
1 \\
1,024 \\
59,049 \\
\(1,048,576\) \\
\(9,7656,625\) \\
\(60,466,176\) \\
\(282,475,249\) \\
\(1,073,741,824\) \\
\(3,466,784,401\) \\
\(10,000,00,000\) \\
\(25,937,424,601\) \\
\(61,917,364,224\) \\
\hline \(102,769,130,750\).
\end{tabular}
141. If the foregoing expreffions of the values of the furs of thefe feveral fets of powers of the natural numbers 1,2 , \(3,4,5,6,7,8,9,10,11, \& c\), continued to \(n\), be fet down one under the other in a regular table, the faid table will be as follows:

A Table of the values of the fums of the natural numbers 1,2 ; \(3.4,5,6,7,8,9,10,11, E^{3} c\), continued \(t 0 \mathrm{n}\) terms, aind of the Squares, and the cubes, and the fourib powers, and otber following powers of the faid numbers, as far as the tenth powers, inclufively.

The fum of the firt \(n\) terms of the faid feries of natural numbers is equal to
\[
\frac{n n}{2}+\frac{n}{2}
\]

The fum of the fquares of the faid \(n\) terms is
\[
=\frac{n^{3}}{3}+\frac{m n}{2}+\frac{n}{6} .
\]

The fum of the cubes of the faid \(n\) terms is
\[
=\frac{n^{4}}{4}+\frac{n^{3}}{2}+\frac{n n}{4}
\]

The fum of the fourth powers of the faid \(n\) terms is
\(=\frac{n^{5}}{5}+\frac{n^{4}}{2}+\frac{n^{3}}{3} *-\frac{n}{30}\).
The fum of the fifth powers of the faid \(n\) terms is
\[
=\frac{n^{6}}{6}+\frac{n^{5}}{2}+\frac{5 n^{4}}{12} *-\frac{n n}{12} .
\]

The fum of the fixth powers of the fiad \(n\) terms is
\[
=\frac{n^{7}}{7}+\frac{n^{6}}{2}+\frac{n^{5}}{2} *-\frac{n^{3}}{6} *+\frac{n}{42} .
\]

The fum of the ferenth powers of the faid \(n\) terms is
\[
=\frac{n^{8}}{S}+\frac{n^{7}}{2}+\frac{7 n^{6}}{12} *-\frac{\eta^{4}}{24} *+\frac{n n}{12} .
\]

The fum of the eighth powers of the faid \(n\) terms is
\[
=\frac{n^{9}}{9}+\frac{n^{8}}{2}+\frac{2 n r^{7}}{3} *-\frac{7^{5}}{1_{5}} *+\frac{2 n^{3}}{9} *-\frac{n}{30} .
\]

The fum of the ninth powers of the fard \(n\) terms is
\[
=\frac{n^{10}}{10}+\frac{n^{9}}{2}+\frac{3^{n^{8}}}{4} *-\frac{7 氵^{0}}{10} *+\frac{n^{4}}{2} *-\frac{3^{n n s}}{20}
\]

And the fum of the tenth powers of the faid \(n\) ternis is
\[
=\frac{n^{\mathrm{II}}}{1 E}+\frac{n^{\mathrm{Yo}}}{2}+\frac{5^{n^{9}}}{6} *-n^{7} *+n^{5} *-\frac{n^{3}}{2} *+\frac{5 n}{66} .
\]

The law of the generation, or derivation, of the terms of the feveral expreffions fet down in the foregoing table, one from the other.
142. By an attentive confideration of the foregoing table we may difcover the law by which the terms of the feveral expreffions of which it confifts, may be derived one from the other; after which we fhall be able to continue the faid table to the fums of the eleventh and twelfth and other higher powers of the numbers \(1,2,3,4,5,6, \& \mathrm{c}\), without entering into the long trains of reafoning and making the laborious fubttitutions of the fums already known in the expreffion of the value of the new fum, which have been ufed in obtaining the foregoing fums. This law will be found to be as follows.

Let the fatural numbers \(1,2,3,4,5,6,7,8,9,10,11\), \(\&<c\), be fuppofed to be continued to any number \(n\); and let it be required to find the fum of the \(c\) th powers of the faid \(n\) terms, or the value of the feries \(\overline{1}{ }^{c}+27^{c}+39^{c}+\overline{49^{c}}\) \(+\overline{5}{ }^{c}+\overline{0}^{c}+\overline{7}^{c}+\overline{8} 7^{c}+\overline{9}{ }^{c}+\overline{1 c^{c}}+\left.\overline{11}\right|^{c}+\varepsilon x\) c, continued to \(\mathrm{ai}^{c}\). Let the capital letters \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \& \mathrm{c}\), be put for the co-efficients of the laft terms of the fums of the fquares, and the fourch powers, and the fixth powers, and the eighth powers, and the other following even powers of the numbers \(1,2,3,4,5,0,7,8,0,10,11,8 x c\), already computed, with the fame figns + or - prefixed to them, as are prefixed to the faid laft terms, of which they are the co-cfficients. Thus, becaufe the laft term of the fum of the fquares of the numbers \(1,2,3,4,5,6,7,8 x\), is \(+\frac{n}{6}\), or \(+\frac{1}{6} \times n\), A will be \(=+\frac{1}{6}\); and, becaufe

190 ATranfation of the foregoing Extrair frowa
the laft term of the fum of the fourth powers of the faid numbers is \(-\frac{n}{30}\); or \(-\frac{1}{30} \times n, \mathrm{~B}\) will be \(=-\frac{1}{30}\); and, becaufe the laft term of the fum of the fixth powers of the faid numbers is \(+\frac{n}{4^{2}}\), or \(+\frac{1}{4^{2}} \times n, \mathrm{C}\) will be \(=+\frac{1}{4^{2}}\); and, becaufe the laft term of the fum of the eighth powers of the faid numbers is \(-\frac{n}{30}\), or \(-\frac{1}{30} \times n, \mathrm{D}\) will be \(=\) \(-\frac{1}{3^{0}}\); and, becaufe the laft term of the fum of the tenth powers of the faid numbers is \(+\frac{5 i}{60}\), or \(+\frac{5}{66} \times n, \mathrm{E}\) will be \(=+\frac{5}{66}\). Thefe being the feveral values of the capital letters \(A, B, C, D, E, \& c\), the feries \(\overline{I^{c}}+\overline{2} i^{c}+\overline{3} i^{c}\)
 \(\& c,+\bar{n}^{c}\) will be equal to the feries \(\frac{1}{c+1} \times n^{c+1}+\frac{1}{2}\) \(\times n^{c}+\frac{\dot{c}}{2} \times \mathrm{A} n^{c-1}+\frac{c \times \overline{c-1} \times \overline{c-2}}{2 \times 3 \times+} \times \mathrm{B}^{n^{c-3}}\) \(+\frac{c \overline{c-1} \times \overline{c-2} \times \overline{c-3} \times \overline{c-4}}{2 \times 3 \times 4 \times 5 \times 6} \times \mathrm{Cn}^{c-5}\)
\(+\frac{c \times \overline{c-1} \times \overline{c-2} \times \overline{c-3} \times \overline{c-4} \times \bar{c}-5 \times \overline{c-6}}{2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8} \times \mathrm{D} n^{c-7}\)
\(+\frac{c \overline{c-1} \times \overline{c-2} \times \overline{c-3} \times \overline{c-4} \times \overline{c-5} \times \overline{c-6} \times \overline{c-7} \times \overline{c-8}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 8 \cdot 9 \cdot 10} \times \mathrm{E} n^{c-9}\)
\(+\delta \mathrm{c}\); in which the indexes of the powers of \(n\), after the third term \(\frac{c}{2} \times \mathrm{A}^{c-1}\), decreafe continually by 2 , till we come at laft to \(n\) or \(n n\), and the co-efficients of \(\mathrm{A} n^{c-1}\), \(\mathrm{B} n^{c-3}, \mathrm{C}_{n}{ }^{c-5}, \mathrm{D}_{n}{ }^{c-7}, \mathrm{En}^{\mathrm{c}-9}\), \& c , are formed by the continual
continual multiplication of I into the fractions \(\frac{c}{2}, \frac{c-1}{3} \times\) \(\frac{c-2}{4}, \frac{c-3}{5} \times \frac{c-4}{6}, \frac{c-5}{7} \times \frac{c-6}{8}, \frac{c-7}{9} \times \frac{c-8}{10}, \frac{c-9}{11} \times \frac{c-10}{12}\), \(\&<c\), till we come to \(\frac{c-\sqrt{c-1}}{c+r} \times \frac{c-c}{c+2}\), or \(\frac{c-c+1}{c+1} \times \frac{c-c}{c+2}\), or \(\frac{1}{c+1} \times \frac{c-c}{c+2}\), or \(\frac{1}{c+1} \times \frac{0}{c+2}\), which will be \(=0\). And thus we fhall determine the powers of \(n\) in all the terms of the faid feries, and alfo the co-efficients of the faid powers of \(n\) in all the terms of the faid feries, except the laft term. And this laft co-efficient may be derived from the co-efficients of the preceeding terms, by an eafy addition or fubtraction, being always the quantity which is neceffary to be added to, or fubtracted from, the refult of all the preceeding co-efficients, in order to make fuch refult become equal to I. Thus, in the firft fum in the foregoing table, to wit, \(\frac{n n}{2}+\frac{n}{2}\), the co-efficient of the laft term \(\frac{n}{2}\) is \(\frac{1}{2}\), which is the quantity which mult be added to \(\frac{1}{2}\), the co-efficient of the firft term \(\frac{n n}{2}\), in order to make it equal to I ; and, in the fecond fum, \(\frac{n^{3}}{3}+\frac{n^{2}}{2}+\frac{n}{6}\), the co-efficient of the laft term \(\frac{n}{6}\) is \(\frac{\pi}{6}\), which is the quantity that muft be added to \(\frac{1}{3}+\frac{1}{2}\), or the fum of the co. efficients of the firft and fecond terms, \(\frac{n^{3}}{3}+\) \(\frac{n^{2}}{2}\), in order to make it equal to I; and in the third fum, \(\frac{n^{4}}{4}+\frac{n^{3}}{2}+\frac{n n}{4}\), the co-efficient of the laft term is \(\frac{1}{4}\), which is the quantity that muft be added to \(\frac{1}{4}+\frac{1}{2}\), or the fum of the co-efficients of the firt and fecond terms, \(\frac{n^{4}}{4}+\frac{n^{3}}{2}\), in order
order to make it equal to I ; and in the fourth fum, \(\frac{n^{5}}{5}\) to \(\frac{x^{4}}{2}+\frac{n^{3}}{3}-\frac{n}{30}\), the co-efficient of the laft term is \(\frac{1}{30}\), which is the quantity which munt be fubtracted from \(\frac{1}{5}+\frac{1}{2}+\frac{1}{3}\), or the fum of the co-efficients of the three firft terms \(\frac{n^{5}}{5}+\) \(\frac{n^{4}}{2}+\frac{n^{3}}{3}\), in order to make it equal to r. And the fame thing is true with refpect to the co-efficients of the laft terms of all the following fums *; and confequently the faid coefficients, and the figns + or 一, to be prefixed to them, may always be determined, by means of the co-efficients of the preceeding torms of the fums to which they belong. And thus all the terms of the feries \(\frac{1}{c+1} \times n^{c+1}+\frac{1}{2} \times n^{c}\) \(+\frac{c}{2} \times \mathrm{A}_{n^{c-1}}+\frac{c}{2} \times \frac{c-1}{3} \times \frac{c-2}{4} \times \mathrm{B} n^{c-3}+\frac{c}{2} \times \frac{c-1}{3}\)
* And hence it will appear that the co-efficient of the laft term of the expreffion that is equal to the fum of the ninth powers of the natural numbers \(1,2,3,4,5,6,7,8,9,10,11,8 c\), continued to \(n\), mull be \(\frac{3}{20}\), and not \(-\frac{1}{12}\); agreeably to what was obferved above in the note at the bottom of page 180 . For, as the feveral terms of that expreffion preceeding the laft term are \(\frac{n^{10}}{10}+\frac{n^{9}}{2}+\frac{3 n^{8}}{4}-\frac{7 n^{6}}{10}+\frac{n^{4}}{2}\), of which the co-efficients are \(\frac{1}{10}+\frac{1}{2}+\frac{3}{4}-\frac{7}{10}+\frac{1}{2}\), which are \(=\frac{2}{20}+\frac{10}{20}+\frac{15}{20}-\frac{14}{20}+\frac{10}{20}\) or \(\frac{22}{20}+\frac{1}{20}\), or \(\frac{23}{20}\), or \(\frac{20}{20}+\frac{3}{20}\), or \(1+\frac{3}{20}\) (from which it is neceffary to fubtract the fraction \(\frac{3}{20}\) in order to make it become cqual to 1 ), it follows, according to the rule here laid down by the author, that the co-efficient of the laft term of the faid expreffion mult be \(-\frac{3}{20}\), and confequently that the laft term of the faid expreffion muft be \(-\frac{3 n n}{20^{\circ}} \quad\) Q. E. D.

Mr. James Bernoulli's Treatise De Arte Conjectandi.
\(\times \frac{c-2}{4} \times \frac{c-3}{5} \times \frac{c-4}{6} \times \mathrm{C}_{i n}^{c-5}+\frac{c}{2} \times \frac{c-1}{3} \times \frac{c-2}{4} \times \frac{c-3}{5}\)
\(\times \frac{c-4}{6} \times \frac{c-5}{7} \times \frac{c-6}{8} \times \mathrm{D} n^{c-7}+\frac{c}{2} \times \frac{c-1}{3} \times \frac{c-2}{4} \times\)
\(\frac{c-3}{5} \times \frac{c-4}{6} \times \frac{c-5}{7} \times \frac{c-6}{8} \times \frac{c-7}{9} \times \frac{c-8}{10} \times \mathrm{En}^{c-9}+8 \mathrm{c}\), may be determined, and confequently the value of the feries
 \(\left.+\overline{1}]^{c}+\overline{1}\right)^{c}+8 x c+\bar{n}{ }^{c}\) (to which the faid feries is equal) may be affigned, without the help of the long reafonings and laborious fubftitutions that were employed for this purpofe in the foregoing articles. The method of doing this will appear more clearly from the following example.

An example of the computation of the expreffon that is equal to the fum of certain powers of the notural numbers \(1,2,3,4\), \(5,6,7, \varepsilon^{2} c\), continued to \(n\), by means of the foregoing feries.
143. As an example to the foregoing feries, let it be required to find the value of the feries \(17^{10}+21^{10}+31^{10}+\) \(47^{10}+57^{10}+77^{10}+77^{10}+87^{10}+97^{10}+107^{10}+717^{10}+\& c\) \(+\bar{n}^{10}\), or the fum of the roth powers of the feveral natural numbers \(1,2,3,4,5,6,7,8,9,10,11, \& c\), continued to \(n\) terms; which fum, as fet down in the foregoing table, is \(=\frac{n^{11}}{1!}+\frac{n^{10}}{2}+\frac{5^{n 9}}{6}-n^{7}+n^{5}-\frac{n^{3}}{2}+\frac{5^{n}}{66}\).

In this cafe the index \(c\) is \(=10\), and confequently \(c+1\) is \(=11\), and \(\varsigma-I\) is \(=9\), and \(c-2, c-3, c-4, c-5\),
\[
2 \mathrm{C} \quad 5 \quad \quad=6
\]
\(c-6, c-7, c-8, c-9\), and \(c-10\) are, refpectively, equal to \(8,7,6,5,4,3,2,1\), and 0 . We thall therefore have
\[
\frac{c}{2}\left(=\frac{10}{2}\right)=5
\]
\[
\text { and } \frac{c-1}{3} \times \frac{c-2}{4}\left(=\frac{9}{3} \times \frac{8}{4}=3 \times 2\right)=6
\]
and \(\frac{c-3}{5} \times \frac{c-4}{6}\left(=\frac{7}{5} \times \frac{6}{6}\right)=\frac{7}{5}\),
and \(\frac{c-5}{7} \times \frac{c-6}{8}\left(=\frac{5}{7} \times \frac{4}{8}=\frac{5}{7} \times \frac{1}{2}\right)=\frac{5}{14}\),
and \(\frac{c-7}{9} \times \frac{c-8}{10}\left(=\frac{3}{9} \times \frac{2}{10}=\frac{1}{3} \times \frac{1}{5}\right)=\frac{1}{15}\),
and \(\frac{c-9}{11} \times \frac{c-10}{12}\left(=\frac{1}{11} \times \frac{0}{12}\right)=0\).
Therefore the faeries \(\frac{1}{c+1} \times n^{c+1}+\frac{1}{2} \times n^{c}+\frac{c}{2} \times\) \(\mathrm{A} n^{c-1}+\frac{c}{2} \times \frac{c-1}{3} \times \frac{c-2}{4} \times \mathrm{B} n^{c-3}+\frac{c}{2} \times \frac{c-1}{3} \times \frac{c-2}{4}\) \(\times \frac{c-3}{5} \times \frac{c-4}{6} \times \mathrm{C}_{n}^{c-5}+\frac{c}{2} \times \frac{c-1}{3} \times \frac{c-2}{4} \times \frac{c-3}{5} \times \frac{c-4}{6}\) \(\times \frac{c-5}{7} \times \frac{c-6}{8} \times \mathrm{D}_{n}^{c-7}+\frac{c}{2} \times \frac{c-1}{3} \times \frac{c-2}{4} \times \frac{c-3}{5} \times \frac{c-4}{6}\) \(\times \frac{c-5}{7} \times \frac{c-6}{8} \times \frac{c-7}{9} \times \frac{c-8}{10} \times \mathrm{En}^{c-9}\) will be \(=\frac{1}{11} \times n^{\mathrm{rz}}\). \(+\frac{1}{2} \times n^{10}+5 \times \mathrm{An}+5 \times 6 \times \mathrm{B} n^{7}+5 \times 6 \times \frac{7}{5}\) \(\times \mathrm{C} n^{5}+5 \times 6 \times \frac{7}{5} \times \frac{5}{14} \times \mathrm{D} n^{3}+5 \times 6 \times \frac{7}{5} \times \frac{5}{14} \times\) \(\frac{1}{15} \times \mathrm{E} n=\frac{n^{1 \mathrm{I}}}{11}+\frac{n^{\mathrm{50}}}{2}+5 \mathrm{~A} n^{9}+30 \mathrm{~B} n^{7}+42 \mathrm{C} n^{5}+42\) \(\times \frac{5}{14} \times \mathrm{D} n^{3}+42 \times \frac{5}{14} \times \frac{1}{15} \times \mathrm{E} n=\frac{n^{11}}{11}+\frac{n^{10}}{2}+5 \mathrm{~A} n^{0}\). \(+30 \mathrm{~B} n^{7}+42 \mathrm{C} n^{5}+15 \mathrm{D} n^{3}+\mathrm{E} n=\frac{n^{1 \mathrm{I}}}{11}+\frac{n^{\mathrm{ro}}}{2}+5 \mathrm{X}\) \(+\frac{1}{6} \times n^{9}+30 \times-\frac{1}{30} \times n^{7}+42 \times+\frac{1}{4^{2}} \times n^{5}+15\)

Mr. Fames Berioulli's Trentije De Arte Conjectandi. 195 \(\times-\frac{1}{30} \times n^{3}-\mathrm{E} n=\frac{n^{17}}{11}+\frac{n^{10}}{2}+\frac{5 n^{0}}{6}-n^{7}+n^{5}-\frac{n^{3}}{2}\) + En; of which exprefion all the terms, except the laft term \(\mathrm{E} n\), are known quantities. And this laft term \(\mathrm{E} n\) may be found in the following manner. The co-efficients of all the preceeding terms are \(\frac{1}{11}+\frac{1}{2}+\frac{5}{6}-1+1-\frac{1}{2}\), which are equal to \(\frac{1}{11}+\frac{5}{6}=\frac{6}{66}+\frac{55}{66}=\frac{61}{66}\); to which it is neceffary to add \(\frac{5}{66}\), in order to make the refult equal to I. Therefore E, or the co-efficient of the laft term En, will be \(=+\frac{5}{6}\); and confequently the compleat value of the foregoing feries in this cafe of the ioth powers of \(1,2,3,4,5\), \(6,7,8,9,10,11, \& c\), continued to \(n\) terms, will be \(\frac{n^{15}}{11}+\) \(\frac{n^{\mathrm{T}}}{2}+\frac{5 n^{9}}{6}-n^{7}+n^{5}-\frac{n^{3}}{2}+\frac{5 n}{66}\); which is the value fet down for the fum of the faid roth powers in the foregoing table.

A numerical example of the computation of the fum of the tenth powers of the natural numbers \(1,2,3,4,5 ; 6,7,8,9\), \(10,11, \mathcal{E}^{\circ}\), continued to 1000 , by means of the foregoing exprefion.
144. If \(n\) is \(=1000\), we fhall have
\[
n^{3}\left(=\overline{1000}^{3}\right)
\]
\(=1000,000,000\),
and \(\left.n^{5}(=1000)^{5}\right)\)
\(=1000,000,000,000 ; 000\);
\[
\text { and } \left.n^{7}(=1000]^{7}\right)
\]
\(=1000,000,000,000,000,000,000\),
and \(\left.n^{9}(=1000)^{9}\right)\)
\(=1000,000,000,000,000,000,000,000,000\),
and \(\left.n^{10}(=100)^{10}\right)\)
\(=1000,000,000,000,000,000,000,000,000,000\),
and \(\left.n^{\text {II }}(=100)^{11}\right)\)
\(=1000,000,000,000,000,000,000,000,000,000,000\),
and confequently
\[
\frac{\mathrm{in}_{11}}{11}\left(=\frac{1000,000,000,000,000,000,000,000,000,000,000}{11}\right)=
\]

90,909,090,909,090,909,090,909,090,909,090,
and \(\frac{n^{10}}{2}\left(=\frac{1000,000,000,000,000,000,000,000,000,000}{2}\right)=\)
500,000,000,000,000,000,000,000,000,000,
and \(\frac{5 \pi^{9}}{6}\left(=\frac{5}{6} \times 1000,000,000,000,000,000,000,000,000\right.\),
\[
\left.=\frac{5000,000,000,000,000,000,000,000,000}{6}\right)=
\]
\(833,333,333,333,333,333,333,333,333 \cdot 333,333, \& c\).
and \(\frac{n^{3}}{2}\left(=\frac{1000,000,000}{2}=500,000,000\right.\);

Mr. Fames Bernoulli's Treatife De Arte Conjectandi. 197:
\[
\begin{aligned}
& \text { and } \frac{5 \pi}{6}\left(=\frac{5 \times 1000}{66}=\frac{5000}{66}\right)=75.757,575,88 \mathrm{c} \text {; } \\
& \text { and } \frac{n^{15}}{11}+\frac{n^{20}}{2}+\frac{5 n^{9}}{6}-n^{7}+n^{5}-\frac{n^{3}}{2}+\frac{5 n}{66} \\
& =\left\{\begin{array}{r}
90,909,090,909,090,909,090,909,090,909,090.909,090, \text { \&c } \\
+500,000,000,000,000,000,000,000,000,050.000,000, \\
+833,333,333,333,333,333,333,333,333.333,333, \\
-1,000,000,000,000,000,000,000.000,000, \\
+1,000,000,000,000,000.000,000, \\
-500,000,000.000,000, \\
+75 \cdot 757,575,
\end{array}\right. \\
& =\left\{\begin{array}{r}
91,409,924,242,424,243,424,242,424,242,499 \cdot 999,998, \& c \\
-1,000,000,000,000,500,000,000.000,000,
\end{array}\right. \\
& =91,4 \times 9,924,241,424,243,424,24 \mathrm{I}, 924,242,499 \cdot 999,998 \text {, } \\
& \text { or } 91,409,9^{2} 4,241,4^{24}, 243,4^{2} 4,24^{1}, 924,242,500 \text {. }
\end{aligned}
\]

Therefore the fum of all the tenth powers of the firt thous fand natural numbers \(1,2,3,4,5,6,7,8,9,10,11, \& c_{\text {; }}\) .... 1000, is \(91,409,924,241,424,243,424,241,924,242\), 500 , or more than 91 quintillions, or 91 times the fifth power of a million.
145. I cannot but obferve on this occafion, that the learned Ifmael Bullialdus, or Bouillaud, has been rather unfortunate in his manner of treating this fubject, in his Treatife on the Arithmetick of Infinites \({ }^{*}\); fince the whole of the folio volume which he has written upon it does nothing more than enable us to find the fums of the firtt fix powers of the natural numbers \(1,2,3,4,5,6,7, \& c\) c, continued to any given number \(n\); which is only a part of what we have here accomplifhed in the compafs of a dozen pages.
* See an account of this book of Monfieur Bouillaud in Dr. Wallis's Algrbra, chapter lxax. pages \(310,311\).

\section*{198} A Tranfation of the foregoing Extract froms

A computation of all the otber expreffions given above in the Table Jet doron in art. 14.1, page 188, for the values of the fums of the powers of the natural numbers \(1,2,3,4,5,6,7,8\), \(9,10,11,12, \mathcal{E}^{2} c\), continued to the number \(\pi\), by means of the foregoing general feries \(\frac{1}{c+1} \times n^{c+1}+\frac{1}{2} \times n^{c}+\)
\(\frac{c}{2} \times \mathrm{A} n^{c-1}+\frac{c \times \overline{c-1} \times \overline{c-2}}{2 \times 3 \times+} \times B n^{c-3}\)
\(+\frac{c \overline{x-1} \times \overline{c-2} \times \overline{c-3} \times \overline{c-4}}{2 \times 3 \times 4 \times 5 \times 6} \times \mathrm{Cn}^{c-5}\)
\(+\frac{c \times \overline{c-1} \times \overline{c-2} \times \bar{c}-3 \times \overline{c-4} \times \bar{c}-5 \times \overline{c-6}}{2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8} \times \mathrm{D} n^{c-7}\)
\(+\frac{c \times \overline{c-1} \times \frac{c-2}{} \times \overline{c-3} \times \overline{c-4} \times \overline{c-5} \times \overline{c-6} \times \overline{c-7} \times \overline{c-8}}{2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 9 \times 9 \times 10} \times \mathrm{En}^{c-9}\)
\(+8 c\).
146. If the foregoing feries be applied in the fame manner to the computation of the fums of the preceeding powers of the natural numbers \(1,2,3,4,5,6,7,8,9,10,11,12\), \&ic, continued to the number \(n\), as it has here been applied to the computation of the frum of their tenth powers, it will be found to produce the feveral expreffions fer down above in the table in art. 141, for the values of the fums of thofe powers; to wit, for the value of the fum of the firt, or fimple, powers of the faid natural numbers, continued to the number \(n\), or for the fum of the faid natural numbers themfelves, continued to the number \(n\), the expreffion
\[
\frac{n n}{2}+\frac{n}{2}
\]

And for the fum of the fquares of the faid \(n\) terms the expreffion
\[
\frac{n^{3}}{3}+\frac{n n}{2}+\frac{n}{6} ;
\]

And for the fum of the cubes of the faid \(n\) terms the expreffion
\[
\frac{n^{4}}{4}+\frac{n^{3}}{2}+\frac{n n}{4} ;
\]

And for the fum of the foarth powers of the faid \(n\) terms the expreffion
\[
\frac{n^{5}}{5}+\frac{n^{4}}{2}+\frac{n^{3}}{3} *-\frac{n}{30}
\]

And for the fum of the fifth powers of the faid \(\pi\) terms the expreffion
\[
\frac{n^{6}}{6}+\frac{n^{5}}{2}+\frac{5 n^{4}}{12} *-\frac{n n}{12} ;
\]

And for the fum of the fixth powers of the faid \(n\) terms the expreffion
\[
\frac{n^{7}}{7}+\frac{n^{6}}{2}+\frac{n^{5}}{2} *-\frac{n^{3}}{6} *+\frac{n}{4^{2}}
\]

And for the fum of the feventh powers of the faid \(n\) terms the exprefifion
\[
\frac{n^{8}}{8}+\frac{n^{7}}{2}+\frac{7 n^{6}}{12} *-\frac{\eta^{4}}{24} *+\frac{n \pi}{12} ;
\]

And for the fum of the eiglth powers of the faid \(n\) terms the expreffion
\[
\frac{n^{9}}{9}+\frac{n^{8}}{2}+\frac{2 n^{2}}{3} *-\frac{7 n^{5}}{15} *+\frac{2 n^{3}}{9} *-\frac{n}{30} ;
\]

And for the fum of the ninth powers of the faid \(n\) terms the expreffion
\[
\frac{n^{10}}{10}+\frac{n^{9}}{2}+\frac{3 n^{8}}{4} *-\frac{n^{6}}{10} *+\frac{n^{4}}{2} *-\frac{3 n n}{20} .
\]

This may be done in the manner following.
In applying this feries to the firft cafe, or the fum of the firft, or fimple, powers of the natural numbers \(1,2,3,4\), \(5,6,7,8,9,10,11,12, \& c\), continued to \(n\), or to the fun of the faid natural numbers themfelves, it is evident that we muft compute only the two firf terms of the faid feries,
to wit, the terms \(\frac{1}{c+1} \times n^{c+1}\) and \(\frac{1}{2} \times n^{c}\); becaufe the following terms involve in them the numbers \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\), \(\& c\), which are derived from the values of the fums of the fquares, and the fourth powers, and the fixth powers, and the eighth powers, and the tenth powers, and the other following even powers of the faid natural numbers, with which feveral fums we have as yet nothing to do.

Now, becaufe \(c\) is in this cafe \(=1\), the two firft terms \(\frac{1}{c+1} \times n^{c+1}+\frac{1}{2} \times n^{c}\) of the foregoing feries will be \(=\) \(\frac{1}{1+1} \times n^{1+1}+\frac{1}{2} \times n^{1}\left(=\frac{1}{2} \times n^{2}+\frac{1}{2} \times n\right)=\frac{m n}{2}+\frac{n}{2}\). Therefore the fum of the firt, or fimple, powers of the natural numbers I, \(2,3,4,5,6,7,8,9,10,1\) I, 12, \&c, continued to \(n\), or the fum of the faid natural numbers them. felves, will be \(=\frac{n n}{2}+\frac{n}{2}\). Q. E. I.

Secondly, When \(c\) is \(=2\), and the fum of the fquares of the faid natural numbers is to be inveltigated by means of the foregoing feries, we muft compute only the three firft terms of the faid feries, to wit, the terms \(\frac{1}{c+1} \times n^{c+1}\) \(+\frac{1}{2} \times n^{c}+\frac{c}{2} \times A n^{c-1}\); becaufe the following terms involve in them the numbers \(\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \& \mathrm{c}\), which relate to the fums of the fourth, and the fixth, and the eighth, and the tenth, and the other following even powers of the faid natural numbers, with which fums we have as yet nothing to do.

Now, when \(c\) is \(=2\), the three terms \(\frac{1}{c+1} \times n^{\dot{c}+1}\) \(+\frac{1}{2} \times n^{c}+\frac{c}{2} \times \mathrm{An}^{c-1}\) will be \(\left(=\frac{1}{2+1} \times n^{2+1}+\right.\) \(\left.\frac{1}{12} \times n^{2}+\frac{2}{2}+A n^{2-1}=\frac{-1}{3} \times n^{3}+\frac{1}{2} \times n^{2}+1 \times A n^{1}\right)\)
\(=\frac{\mathrm{I}}{3} \times n^{3}+\frac{1}{2} \times n^{2}+\mathrm{A} n\); of which expreffion the two firft terms are known quantities, and only the third, or laft, term An remains to be inveftigated. Now this laft term A \(n\) is to be found in the following manner. The co-efficients of the two preceeding terms are \(\frac{1}{3}+\frac{1}{2}\), which are equal to \(\frac{2}{6}+\frac{3}{6}=\frac{5}{6}\); to which it is neceffary to add \(\frac{1}{6}\), in order to make the refult equal to \(I\). Therefore \(A\), or the co-efficient of the laft term \(A n\), will be \(=+\frac{1}{6}\); and confequently the compleat value of the three firft terms of the foregoing feries in this cafe of the fquares of the natural numbers \(1,2,3,4,5,6,7,8,9,10,11,12\), continued to the number \(n\), will be \(\frac{1}{3} \times n^{3}+\frac{1}{2} \times n^{2}+\frac{1}{6} \times n\), or \(\frac{n^{3}}{3}\) \(+\frac{n}{2}+\frac{n}{6}\). C. E. .

3 dly, When \(c\) is \(=3\), and the fum of the cubes of the faid natural numbers is to be inveftigated by means of the foregoing feries, we mutt (as in the laft cafe) compute only the three firt terms of the faid feries, to wir, the terms \(\frac{1}{c+1} \times n^{c+1}+\frac{1}{2} \times n^{c}+\frac{c}{2} \times \mathrm{A}^{c-1}\); becaufe the following terms involve in them the numbers \(\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{F}\), \&c, which relate to the fums of the fourth, and the fixth, and the eighth, and the tenth, and the other following even powers of the faid natural numbers, with which fums we have as yet nothing to do.

Now, when \(c\) is \(=3\), the three terms \(\frac{1}{c+1} \times n^{c+1}\) \(+\frac{1}{2} \times n^{c}+\frac{c}{2} \times \mathrm{A} n^{c-1}\) will be \(=\frac{1}{3+1} \times n^{3+1}+\frac{1}{2}\) \(\times n^{3}+\frac{3}{2} \times \mathrm{An}^{3-1}\left(=\frac{1}{4} \times n^{4}+\frac{1}{2} \times n^{3}+\frac{3}{2} \times \mathrm{A} n^{2}\right.\) \({ }_{2}\) D
\(=\frac{1}{4} \times n^{4}+\frac{1}{2} \times n^{3}+\frac{3}{2} \times+\frac{1}{6} \times n^{2}=\frac{1}{4} \times n^{4}+\frac{1}{2}\)
\(\left.\times n^{3}+\frac{1}{4} \times n^{2}\right)=\frac{n^{4}}{4}+\frac{n^{3}}{2}+\frac{n n}{4}\). Therefore the fum of the cubes of the natural numbers \(1,2,3,4,5,6,7,8\), \(9,10,11,12, \& c\), continued to the number \(n\), will be \(=\) \(\frac{n^{4}}{4}+\frac{n^{3}}{2}+\frac{n n}{4}\). Q. E. I.

4thly, When \(c\) is \(=4\), and the fum of the fourth powers of the faid natural numbers is to be inventigated by means of the foregoing feries, we muft only compute the four firft terms of the faid feries, to wit, the terms \(\frac{1}{c+1} \times n^{c+1}\) \(+\frac{1}{2} \times n^{c}+\frac{c}{2} \times \mathrm{A}_{n}^{c-1}+\frac{c \times \overline{c-1} \times \overline{c-2}}{2 \times 3 \times 4} \times \mathrm{Bn}^{c-3}\); becaufe the following terms involve in them the numbers \(C\), \(D, E, \& c\), which relate to the fums of the fixth, and the eighth, and the tenth, and the orher following even powers of the faid natural numbers, with which fums we have hitherto nothing to do.

Now, when \(c\) is \(=4\), the four terms \(\frac{1}{c+1} \times n^{c+1}\) \(+\frac{1}{2} \times n^{c}+\frac{c}{2} \times \mathrm{A} n^{c-1}+\frac{c \times \overline{c-1} \times \overline{c-2}}{2 \times 3 \times 4} \times \mathrm{B} n^{c-3}\) will be \(=\frac{1}{4+1} \times n^{4+1}+\frac{1}{2} \times n^{4}+\frac{4}{2} \times \mathrm{A} n^{4-1}+\)
\(\frac{4 \times \overline{4-1} \times 4-2}{2 \times 3 \times 4} \times \mathrm{Bn}^{4-3}\left(=\frac{1}{5} \times n^{5}+\frac{1}{2} \times n^{4}+2 \times \mathrm{An}^{3}\right.\) \(+\frac{4 \times 3 \times 2}{2 \times 3 \times 4} \times \mathrm{B} n^{\mathrm{r}}=\frac{1}{5} \times n^{5}+\frac{1}{2} \times n^{4}+2 \times \mathrm{A} n^{3}+\) \(\left.\mathrm{B} n=\frac{1}{5} \times n^{5}+\frac{1}{2} \times n^{4}+2 \times+\frac{1}{6} \times n^{3}+\mathrm{B} n\right)=\) \(\frac{1}{5} \times n^{5}+\frac{1}{2} \times n^{4}+\frac{1}{3} \times n^{3}+\mathrm{B} n\); of which expreffion the laft term \(\mathrm{B} n\) is to be determined in the manner follow-
ing. The coefficients of the three frt terms \(\frac{1}{5} \times n^{5}+\frac{1}{2}\) \(\times n^{4}+\frac{1}{3} \times n^{3}\) are \(\frac{1}{5}+\frac{1}{2}+\frac{1}{3}\left(=\frac{6}{30}+\frac{15}{30}+\frac{10}{30}=\right.\) \(\left.\frac{31}{30}\right)=1+\frac{1}{30}\); from which it is necefiary to fubtract \(\frac{1}{30}\), in order to make the refult equal to I . Therefore B , or the coefficient of the lat term \(B n\), will be \(\doteq-\frac{1}{30}\), and conSequently the compleat value of the four firth terms of the fid fries in this cafe will be \(\frac{1}{5} \times n^{5}+\frac{1}{2} \times n^{4}+\frac{1}{3} \times n^{3}\). \(-\frac{1}{30} \times n\), or \(\frac{n^{5}}{5}+\frac{n^{4}}{2}+\frac{n^{3}}{3}-\frac{n}{30}\). Therefore the fum of the fourth powers of the natural numbers \(1,2,3,4,5,6\), \(7,8,9,10,11,12, \& \mathrm{c}\), continued to the number \(n\), will be \(=\frac{n^{5}}{5}+\frac{n^{4}}{2}+\frac{n^{3}}{3} *-\frac{n}{30}\). C. E. I.

5 thly, When \(c\) is \(=5\), and the fum of the fifth powers of the faid natural numbers is to be inveltigated by means of the foregoing fries, we mut, as in the laft cafe, compute only the four firft terms of the fail feries, to wit, the terms
\(\frac{1}{c+1} \times n^{c+1}+\frac{1}{2} \times n^{c}+\frac{c}{2} \times \mathrm{A} n^{c-1}+\frac{c \times \overline{c-1} \times \overline{c-2}}{2 \times 3 \times 4}\).
\(\times \mathrm{B} n^{c-3}\); because the following terms involve in them the numbers \(\mathrm{C}, \mathrm{D}, \mathrm{E}, \& \mathrm{c}\), which relate to the fums of the firth, and the eighth, and the tenth, and the other following even powers of the raid natural numbers, with which fums we have hitherto nothing to do.

Now, when \(c\) is \(=5\), the four terms \(\frac{1}{c+1} \times n^{c+1}\)
\(+\frac{1}{2} \times n^{c}+\frac{c}{2} \times \mathrm{A}^{c-1}+\frac{c \times \overline{c-1} \times \overline{c-2}}{2 \times 3 \times 4} \times \mathrm{B} n^{c-3}\)
will be \(=\frac{1}{5+1} \times n^{5+1}+\frac{1}{2} \times n^{5}+\frac{5}{2} \times A n^{5-1}\)
2. D 2
\(+\)
\(+\frac{5 \times \overline{5-1} \times \overline{5-2}}{2 \times 3 \times 4} \times \mathrm{Bn}^{5-3}\left(=\frac{1}{6} \times n^{6}+\frac{1}{2} \times n^{5}+\frac{5}{2}\right.\).
\(\times \mathrm{A} n^{4}+\frac{5 \times 4 \times 3}{2 \times 3 \times 4} \times \mathrm{B} n^{2}=\frac{1}{6} \times n^{6}+\frac{1}{2} \times n^{5}+\frac{5}{2} \times\)
\(\mathrm{A} n^{4}+\frac{5}{2} \times \mathrm{B} n^{2}=\frac{1}{6} \times n^{6}+\frac{1}{2} \times n^{5}+\frac{5}{2} \times+\frac{1}{6} \times\)
\(n^{4}+\frac{5}{2} \times-\frac{1}{30} \times n^{2}=\frac{1}{6} \times n^{6}+\frac{1}{2} \times n^{5}+\frac{5}{12} \times n^{4}\)
\(\left.-\frac{5}{12} \times n^{2}\right)=\frac{n^{6}}{6}+\frac{n^{5}}{2}+\frac{5 n^{4}}{12}-\frac{5^{n n}}{12}\). Therefore the fum of the fifth powers of the natural numbers \(1,2,3,4,5\). \(6,7,8,9,10,1 \mathrm{r}, 12, \& \mathrm{c}\), continued to \(n\), will be \(=\) \(\frac{n^{6}}{6}+\frac{n^{5}}{2}+\frac{5 n^{4}}{12} *-\frac{5^{m} \cdot 2}{12}\). C. E. I.

6thly, When \(c\) is \(=6\), and the fum of the fixth powers of the faid natural numbers is to be inveftigated by means of the foregoing feries, we mult compute only the fire firft terms of the faid feries, to wit, the terms \(\frac{1}{c+1} \times n^{c+1}\)
\(+\frac{1}{2} \times n^{c}+\frac{c}{2} \times \mathrm{A} n^{c-1}+\frac{c \times \overline{c-1} \times \overline{c-2}}{2 \times j \times+} \times \mathrm{B} n^{c-3}\)
\(+\frac{6 \times \overline{r-1} \times \overline{c-2} \times \overline{c-3} \times \overline{i-4}}{2 \times 3 \times+\times 5 \times 6} \times \mathrm{Cn}^{6-5}\); becaufe the following terms involve in them the numbers \(D, F, F, G\), \&c, which relate to the fums of the eig'th, and the tenth, and the iwelfth, and the fourteenth, and the obher following even powers of the faid natural numbers, with which fums we have hitherto nothing to do.

Now, when \(c\) is \(=6\), the five terms \(\frac{1}{c+1} \times n^{c+1}\)
\[
+\frac{1}{2} \times n^{c}+\frac{c}{2} \times \mathrm{An}^{c-1}+\frac{c \times \overline{c-1} \times \overline{c-2}}{2 \times 3 \times 4} \times \mathrm{B} n^{c-3}
\]
\[
+\frac{c \times \overline{c-1} \times \overline{c-2} \times \overline{c-3} \times \overline{c-4}}{2 \times 3 \times 4 \times 5 \times 6} \times \mathrm{C}_{20}{ }^{c-5} \text { will be }=\frac{1}{6+1}
\]
\[
\times n^{6+1}
\]

Mr. Games Bernoulli's Treatife De Are Conjectandi. 205
\(\times n^{6+1}+\frac{\mathrm{T}}{2} \times n^{6}+\frac{6}{2} \times \mathrm{An}^{6-\mathrm{r}}+\frac{6 \times \overline{6-1} \times \overline{0-2}}{2 \times 3 \times 4} \times\) \(\mathrm{B} n^{6-3}+\frac{6 \times \overline{0-1} \times \overline{0-2} \times \overline{1-3} \times \overline{0-4} \times \mathrm{C}^{6}=5\left(=\frac{1}{7}, ~(3 \times 4 \times 5 \times 6\right.}{}\) \(\times n^{2}+\frac{1}{2} \times n^{6}+3 \times \mathrm{A} n^{5}+\frac{6 \times 5 \times 4}{2 \times 3 \times 4} \times \mathrm{B} n^{3}+\) \(\frac{6 \times 5 \times 4 \times 3 \times 2}{2 \times 3 \times 4 \times 5 \times 6} \times \mathrm{C} n^{\mathrm{x}}=\frac{1}{7} \times n^{7}+\frac{1}{2} \times n^{6}+3 \times \mathrm{A}^{5} n^{5}\) \(+5 \times \mathrm{B} n^{3}+\mathrm{C} n=\frac{\mathrm{I}}{7} \times n^{7}+\frac{1}{2} \times n^{6}+3 \times+\frac{\mathrm{T}}{6}\) \(\left.\times n^{5}+5 \times-\frac{1}{30} \times n^{3}+\mathrm{C} n\right)=\frac{1}{7} \times n^{7}+\frac{1}{2} \times n^{6}+\) \(\frac{1}{2} \times n^{5}-\frac{1}{6} \times n^{3}+\mathrm{C} n\); of which expreffion the lat term \(C n\) is to be determined in the manner following. The co-efficients of the four firth terms of the expreffion \(\frac{1}{7} \times n^{7}\) \(+\frac{1}{2} \times n^{6}+\frac{1}{2} \times n^{5}-\frac{1}{6} \times n^{3}+\mathrm{C} n\) are \(\frac{1}{7}+\frac{1}{2}+\frac{1}{2}\) \(-\frac{1}{6}\left(=\frac{6}{42}+\frac{21}{4^{2}}+\frac{21}{42}-\frac{7}{4^{2}}=\frac{6}{42}+\frac{4^{2}}{4^{2}}-\frac{7}{4^{2}}=\frac{6}{4^{2}}+1\right.\) \(\left.-\frac{7}{4^{2}}\right)=1-\frac{1}{42}\); to which it is neceffary to add \(\frac{1}{42}\), in order to make the refult be equal to I . Therefore C , or the coefficient of the lat term \(C n\), will be \(+\frac{1}{42}\), and confequently the whole expreffion \(\frac{1}{7} \times n^{7}+\frac{1}{2} \times n^{6}+\frac{1}{2} \times n^{5}\) \(-\frac{1}{6} \times n^{3}+\mathrm{C} n\) will be \(=\frac{1}{7} \times n^{7}+\frac{1}{2} \times n^{6}+\frac{1}{2} \times n^{5}\) \(-\frac{1}{6} \times n^{3}+\frac{1}{4^{2}} \times n\), or \(\frac{n^{7}}{7}+\frac{n^{6}}{2}+\frac{n^{5}}{2} *-\frac{n^{3}}{6} *+\frac{n}{42}\). Therefore the fum of the firth powers of the natural numbbert \(1,2,3,4,5,6,7,8,9,10,11,12, \& c\), continued to the number \(n\), will be \(=\frac{n^{7}}{7}+\frac{n^{6}}{2}+\frac{n^{5}}{2} *-\frac{n^{3}}{6} *+\frac{n}{42}\). Q. E. I. 7thly,

7 thly, When \(c\) is \(=7\), and the fum of the feventh powers of the faid natural numbers is to be inveftigated by means of the foregoing feries, we muft, as in the laft cafe, compute only the five firt terms of the faid feries, to wit, the terms \(\frac{1}{c+1} \times n^{c+1}+\frac{1}{2} \times n^{c}+\frac{c}{2} \times A n^{c-1}+\frac{c \times \overline{c-1} \times \overline{c-2}}{2 \times 3 \times 4}\) \(\times \mathrm{B}_{n}{ }^{c-3}+\frac{c \times \overline{c-1} \times \overline{c-2} \times \overline{c-3} \times \overline{c-4}}{2 \times 3 \times 4 \times 5 \times 6} \times \mathrm{C}^{c-5}\); becaufe the following terms involve the numbers \(D, E, F, G, \& c\), which relate to the fums of the eighth, and the tenth, and the twelfth, and the fourteenth, and the other following even powers of the faid natural numbers, with which fums we have hitherto nothing to do.

Now, when \(c\) is \(=7\), the faid five terms \(\frac{1}{c+1} \times n^{c+1}\) \(+\frac{1}{2} \times n^{c}+\frac{c}{2} \times \mathrm{An}^{c-1}+\frac{c \times \overline{c-1} \times \overline{c-2}}{2 \times 3 \times 4} \times \mathrm{B}_{n}{ }^{c-3}\) \(+\frac{c \overline{c-1} \times \overline{c-2} \times \overline{c-3} \times \overline{c-4}}{2 \times 3 \times 4 \times 5 \times 6} \times \mathrm{C}^{c-5}\) will be \(=\frac{1}{7+1} \times n^{7+1}\) \(+\frac{1}{2} \times n^{7}+\frac{7}{2} \times \mathrm{A} n^{7-1}+\frac{7 \times 7-1 \times 7-2}{2 \times 3 \times 4} \times \mathrm{B}^{7-3}\). \(+\frac{7 \times 7-1 \times 7-2 \times 7-3 \times 7-4}{2 \times 3 \times 4 \times 5 \times 6} \times \mathrm{Cn}^{7-5}\left(=\frac{1}{8} \times n^{8}+\frac{1}{2}\right.\) \(\times n^{7}+\frac{7}{2} \times \mathrm{A} n^{6}+\frac{7 \times 6 \times 5}{2 \times 3 \times 4} \times \mathrm{Bn}^{4}+\frac{7 \times 6 \times 5 \times 4 \times 3}{2 \times 3 \times 4 \times 5 \times 6} \times \mathrm{C}^{2} n^{2}\) \(=\frac{1}{8} \times n^{8}+\frac{1}{2} \times n^{7}+\frac{7}{2} \times \mathrm{A} n^{6}+\frac{7 \times 5}{4} \times \mathrm{B} n^{4}+\frac{7}{2}\) \(\times \mathrm{C} n^{2}=\frac{1}{8} \times n^{8}+\frac{1}{2} \times n^{7}+\frac{7}{2} \times+\frac{1}{6} \times n^{6}+\frac{7 \times 5}{4}\) \(x-\frac{1}{30} \times n^{4}+\frac{7}{2} \times+\frac{1}{4^{2}} \times n^{2}=\frac{1}{8} \times n^{8}+\frac{1}{2} \times n^{7}\) \(\left.+\frac{7}{12} \times n^{6}-\frac{7}{24} \times n^{4}+\frac{1}{12} \times n^{2}\right)=\frac{n^{8}}{8}+\frac{n^{7}}{2}+\frac{7 n^{6}}{12}-\) \(\frac{7^{4}}{1^{2} 4}+\frac{m n}{12}\). Therefore the fum of the feventh powers of the

Mir. Fames Bernoulli's T'reatije De Arte Conjectandi. 207 natural numbers \(1,2,3,4,5,6,7,8,9,10,11,12,8 \mathrm{c}\), continued to the number \(n\), will be \(=\frac{n^{8}}{8}+\frac{n 7}{2}+\frac{7 n^{6}}{12}\) * \(-\frac{7 n^{4}}{24} *+\frac{n n}{12}\). e. E. I.

Sthly, When \(c\) is \(=8\), and the fum of the eighth powers of the faid natural numbers is to be inveltigated by means of the foregoing feries, we muft compute only the fix firt terms of the faid feries, to wit, the terms \(\frac{1}{c+1} \times n^{c+1}\)
\(+\frac{1}{2} \times n^{c}+\frac{c}{2} \times \mathrm{A}^{c-1}+\frac{c \times \overline{c-1} \times \overline{c-2}}{2 \times 3 \times 4} \times \mathrm{B}^{c-3}\)
\(+\frac{c \times \overline{c-1} \times \overline{c-2} \times \overline{c-3} \times \overline{c-4}}{2 \times 3 \times 4 \times 5 \times 6} \times \mathrm{Cn}^{c-5}\)
\(+\frac{c \times \overline{c-1} \times \overline{c-2} \times \overline{c-3} \times \overline{c-4} \times \overline{c-5} \times \overline{c-6}}{2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8} \times \mathrm{Dn}^{c-7}\); becaufe the following terms involve in them the numbers \(E, F, G\), \(\& \mathrm{c}\), which relate to the fums of the tenth, and the twelfth, and the fourteenth, and the other following even powers of the faid natural numbers, with which fums we have hitherto norhing to do.

Now, when \(c\) is \(=8\), the fix terms \(\frac{1}{c+1} \times n^{c+1}+\frac{1}{2}\) \(\times n^{c}+\frac{c}{2} \times \mathrm{An}^{c-1}+\frac{c \times \overline{c-1} \times \overline{c-2}}{2 \times 3 \times 4} \times \mathrm{Bn}^{c-3}\) \(+\frac{c \times \overline{c-1} \times \overline{c-2 \times c} \overline{-3 \times c-4}}{2 \times 4 \times 5 \times 6} \times \mathrm{C}^{c-5}\)
\(+\frac{c \times \overline{c-1 \times} \times-2 \times \bar{c}-3 \times \bar{c}-\bar{c} \times \bar{c} \times \overline{c-6}}{2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8} \times \mathrm{D} n^{c-7}\) will be \(=\)
\(\frac{1}{8+1} \times n^{8+1}+\frac{1}{2} \times n^{8}+\frac{8}{2} \times \mathrm{An}^{8-1}+\frac{8 \times \overline{8-1} \times \overline{8-2}}{2 \times 3 \times 4}\)
\(\times \mathrm{Bn}^{8-3}+\frac{8 \times \overline{8-1} \times \overline{8-2} \times \overline{8-3} \times \overline{8-4}}{2 \times 3 \times 4 \times 5 \times 6} \times \mathrm{C}^{8-5}\)
\(+\frac{8 \times \overline{8-1} \times \overline{8-2} \times \overline{8-3} \times \overline{8-4} \times \overline{8-5} \times \overline{8-6}}{2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8} \times \mathrm{D}^{8-7}\)
\(\left(=\frac{1}{9} \times n^{9}+\frac{1}{2} \times n^{8}+4 \times \mathrm{A} n^{7}+\frac{8 \times 7 \times 6}{2 \times 3 \times 4} \times \mathrm{B} n^{5}+\right.\) \(\frac{8 \times 7 \times 6 \times 5 \times 4}{2 \times 3 \times 4 \times 5 \times 6} \times \mathrm{C} n^{3}+\frac{8 \times 7 \times 6 \times 5 \times 4 \times 3 \times 2}{2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8} \times \mathrm{D} n^{1}=\frac{1}{9} \times n^{6}\) \(+\frac{1}{2} \times n^{8}+4 \times \mathrm{A} n^{7}+7 \times 2 \times \mathrm{B} n^{5}+\frac{7 \times 4}{3} \times \mathrm{C} n^{3}\) \(+\mathrm{D} n=\frac{1}{9} \times n^{9}+\frac{1}{2} \times n^{8}+4 \times+\frac{1}{6} \times n^{7}+7 \times 2 \times\) \(\left.-\frac{1}{30} \times n^{5}+\frac{7 \times 4}{3} \times+\frac{1}{4^{2}} \times n^{3}+\mathrm{D} n\right)=\frac{\mathrm{I}}{9} \times n^{9}+\frac{1}{2}\) \(\times n^{8}+\frac{2}{3} \times n^{7}-\frac{7}{15} \times n^{5}+\frac{2}{9} \times n^{3}+\mathrm{D} n\); of which expreffion the laft term \(D i\) is to be determined in the manner following. The co-efficients of the five firt terms of the exprefion \(\frac{1}{9} \times n^{9}+\frac{1}{2} \times n^{8}+\frac{i}{3} \times n^{7}-\frac{4}{15} \times n^{5}+\frac{2}{9}\) \(\times n^{3}+\mathrm{D} n\) are \(\frac{1}{9}+\frac{1}{2}+\frac{2}{3}-\frac{7}{15}+\frac{2}{9}\), which are \((=\) \(\frac{10}{90}+\frac{45}{90}+\frac{60}{90}-\frac{42}{90}+\frac{20}{90}=\frac{135}{90}-\frac{42}{90}=\frac{93}{90}=\frac{90}{90}+\frac{3}{90}=\) \(\left.x+\frac{3}{90}\right)=1+\frac{1}{30}\); from which it is neceffary to fubtract \(\frac{1}{30}\), in order to make the refult be equal to i. Therefore \(D\), or the co-efficient of the laft term \(\mathrm{D} n\), will be \(=-\frac{\mathrm{I}}{30^{\circ}}\), and confequently the whole expreffion \(\frac{1}{9} \times n 9+\frac{1}{2} \times n^{8}+\) \(\frac{2}{3} \times n^{7}-\frac{7}{15} \times n^{5}+\frac{2}{9} \times n^{3}+\mathrm{D} n\) will be \(=\frac{1}{9} \times n^{9}\) \(+\frac{1}{2} \times n^{8}+\frac{2}{3} \times n^{7}-\frac{7}{15} \times n^{5}+\frac{2}{9} \times n^{3}-\frac{1}{30} \times n=\) \(\frac{\pi^{9}}{9}+\frac{n^{9}}{2}+\frac{2 n^{7}}{3} *-\frac{7 n^{5}}{15} *+\frac{2 n^{3}}{9} *-\frac{n}{30^{\circ}}\). Therefore the fum of the eighth powers of the natural numbers \(1, \angle, 3,4\), \(5,6,7,8,9,10, I 1,12, \& c\), continued to the number \(n\), will be \(=\frac{n^{9}}{9}+\frac{n^{8}}{2}+\frac{2 n^{7}}{3} *-\frac{7 n^{5}}{15} *+\frac{2 n^{3}}{9}-\frac{n}{30}\). e. E. I. And,

And, 9thly, When \(c\) is \(=9\), and the fum of the ninth powers of the fail, natural numbers is to be invaltigated by means of the foregoing faeries, we mut, as in the lat cafe, compute only the fix firlt terms of the find faeries, to wit, the terms \(\frac{1}{c+1} \times n^{c+1}+\frac{1}{2} \times n^{c}+\frac{c}{2} \times \mathrm{A}_{n^{c-1}}\)
\[
+\frac{c \times \overline{c-1} \times \overline{c-2}}{2 \times 3 \times+} \times \mathrm{B}_{i l}{ }^{c-3}
\]
\(+\frac{c \overline{c c-1} \times \overline{c-2} \times \overline{c-3} \times \overline{c-4}}{2 \times 3 \times 4 \times 5} \times \mathrm{C}_{n}{ }^{c-5}\)
\(+\frac{c \times \overline{c-1} \times \overline{c-2} \times \overline{c-3} \times \overline{c-4} \times \overline{c-5} \times \overline{c-6}}{2 \times 3 \times 4 \times 5 \times 6} \times \mathrm{D} n^{c-7}\); because the following terms involve the numbers \(E, F, G, \& c\), which relate to the fums of the tenth, and the twelfth, and the fourteenth, and the other following even powers of the said natural numbers, with which fums we have hitherto nothing to do.

Now, when \(c\) is \(=9\), the faid fix terms \(\frac{1}{c+1} \times n^{c+1}+\frac{1}{2}\) \(\times n^{c}+\frac{c}{2} \times \mathrm{An}^{c-1}+\frac{c \times \overline{c-1} \times \overline{c-2}}{2 \times 3 \times 4} \times \mathrm{Bn}^{c-3}\) \(+\frac{c \times \overline{c-1} \times \overline{c-2} \times \bar{c} \overline{-3} \times c \overline{-4}}{2 \times 3 \times 4 \times 5 \times 6} \times \mathrm{Cn}^{c-5}\)
\(+\frac{c \times c \overline{-1 \times c-2 \times c-3} \times \overline{c-4} \times \overline{c-5} \times \overline{c-6}}{2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8} \times \mathrm{D} n^{c-7}\) will be \(=\) \(\frac{1}{9+1} \times n^{9+1}+\frac{1}{2} \times n^{9}+\frac{9}{2} \times \mathrm{A} n^{9-1}+\frac{9 \times \overline{9-1}}{2 \times 3 \times 4} \overline{9-2}\) \(\times \mathrm{Bn}^{9-3}+\frac{9 \times \overline{9-1} \times \overline{9-2} \times \overline{9-3} \times \overline{9-4}}{2 \times 3 \times 4 \times 5 \times 6} \times \mathrm{Cn}^{9-5}\) \(+\frac{9 \times \overline{9-1} \times \overline{9-2} \times \overline{9-3} \times \overline{9-4} \times \overline{9-5} \times \overline{9-6}}{2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8} \times \mathrm{D} n^{9-7}\) \(\left(=\frac{1}{10} \times n^{10}+\frac{1}{2} \times n^{9}+\frac{9}{2} \times \mathrm{A} n^{8}+\frac{9 \times 8 \times 7}{2 \times 3 \times 4} \times \mathrm{B} n^{6}+\right.\) \(\frac{9 \times 8 \times 5 \times 6 \times 5}{2 \times 3 \times 4 \times 5 \times 6} \times \mathrm{C}^{4}+\frac{9 \times 8 \times 7 \times 6 \times 5 \times 4 \times 3}{2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8} \times \mathrm{D} n^{2}=\frac{1}{10} \times n^{10}\).
\(+\frac{1}{2} \times n^{9}+\frac{!9}{2} \times \mathrm{A} n^{8}+7 \times 3 \times \mathrm{B} n^{6}+7 \times 3 \times \mathrm{C} n^{4}\) \(+\frac{9}{2} \times D n^{2}=\frac{1}{10} \times n^{10}+\frac{1}{2} \times n^{9}+\frac{9}{2} \times+\frac{1}{6} \times n^{8}\) \(+7 \times 3 \times-\frac{1}{30} \times n^{6}+7 \times 3 \times+\frac{1}{42} \times n^{4}+\frac{9}{2} \times\) \(-\frac{1}{30} \times n^{2}\left(=\frac{1}{10} \times n^{10}+\frac{1}{2} \times n^{9}+\frac{3}{4} \times n^{8}-\frac{7}{10} \times n^{6}\right.\) \(\left.+\frac{1}{2} \times n^{2}-\frac{3}{20} \times n^{2}\right)=\frac{n^{10}}{10}+\frac{n^{9}}{2}+\frac{3^{n^{8}}}{4} *-\frac{7 n^{6}}{10} *+\) \(\frac{n^{4}}{2} *-\frac{3 n^{2}}{20}\). Therefore the fum of the ninth powers of the natural numbers \(1,2,3,4,5,6,7,8,9,10,11,12, \& c\), continued to the number \(n\), will be \(=\frac{n^{10}}{10}+\frac{n^{9}}{2}+\frac{3 n^{8}}{4} *\) \(-\frac{7 n^{6}}{10} *+\frac{n^{4}}{2} *-\frac{3 n n}{20} \quad\) Q. E. I

Thefe feveral expreffions of the values of the fums of the firt nine powers of the natural numbers \(1,2,3,4,5,6,7\), \(8,9,10,11,12, \& c\), continued to the number \(n\), are the fame with thofe fet down above in the table in art. 141, page 188. And it is evident that this way of obtaining them, by means of the foregoing general feries, is much lefs laboious than the former method of obtaining them, fet forth above in art. \(136,137,138\), and 139.

End of the applications of the foregoing general feries \(\frac{1}{c+1}\) \(\times n^{c+1}+\frac{1}{2} \times n^{c}+\frac{c}{2} \times A n^{c-1}+\frac{c \times \overline{c-1} \times \overline{c-2}}{2 \times 3 \times 4} \times n^{c-\hat{0}}\) \(+E_{c} c\), to the inveftigation of the expreffions fet down above in art. 14 I , page 183.

\section*{Of certain feriefes confifing of nunbers analogous to the figurate numbers.}
147. Before we conclude this chapter, it will not be amifs to thew how certain other feriefes, which bear a great refemblance to the feriefes formed by the figurate numbers, may be reduced to, or compared with, the correfponding feriefes of thofe numbers, and how their values, or the fums of their terms, and likewife the values of their laft terms, may be thereby determined. The feriefes I bere fpeak of, and which I call onalogous to the figurate numbers, are fuch as have the differences of their terms, or the differences of thofe differences, or the differences of thofe fecond differences, or the differences of the differences of fome remoter oider, equal to each other, and which therefore are generated by the continual addition of a fet of equal quantities. Let \(d, d, d, d, d, d, \& c\), be a fet of equal quanticies, by the continual addition of which to another quantity \(c\) we obtain the quantities \(c, c+d, c+2 d, c+3 d, c+4 d, c+5 d_{3}\) \(\& c\). And let the terms of this fecond feries \(c, c+d, c+2 d\), \(c+3 d, c+4 d, \& c\), be continually added to each other, and to a third quantity \(b\), whereby we fhall obtain a third feries of terns, which will be \(b, b+c, b+2 c+d\), \(b+3 c+3 d, b+4 c+6 d, b+5 c+10 d, 8 c c\); and let the terms of this third feries be continually added to each other, and to a fourth quantity \(a\), whereby we thall obtain a fourth feries of terms, which will be \(a, a+b, a+2 b+c, a+\) \(3^{b}+3^{c}+d, a+4^{b}+6 c+4 d, a+5^{b}+10 c+10 d\), \(\& c\). And let the firtt feries \(d, d, d, d, d, d, \& c\), be calied D ; the fecond feries \(c, c+d, c+2 d, c+3 d, c+4 d\), \(c+5 d, \& c c\), be called \(C\); the third feries \(b, b+c, b+\) \(2 c+d, b+3 c+3 d, b+4 c+6 d, b+5 c+10 d, s c c\), be called \(B\); and the fourth, or laft, feries \(a, a+b, a+2 b+c\), \(a+3 b+3 c+d, a+4 b+6 c+4 d\), and \(a+5 b+10 c+10 d\), \&c, be called A. This laft feries A (the firft differences of
the terms of which conftitute the terms of the third feries \(\mathbb{B}_{3}\) and the fecond differences of the terms of which conttitute the terms of the fecond feries \(C\), and the third differences of the terms of which conftitute the terms of the firt feries D , which confits of the equal quantities \(d, d, d, d, d, d\), \&c), may, I think, with propriety be called a feries analogous to the figurate numbers. The generation of the terms of this feries will, perhaps, appear more clearly from the following table.
\begin{tabular}{l|l|l|l|}
D & C & B & \multicolumn{1}{|c|}{A} \\
\hline\(d\) & 6 & \(b\) & \\
\(d\) & \(c+d\) & \(b+c\) & \(a\) \\
\(d\) & \(c+2 d\) & \(b+2 c+c\) & \(a+b\) \\
\(d\) & \(a+2 b+c c\) \\
\(d\) & \(c+3 d\) & \(b+3 c+3 d\) & \(a+3 b+3 c+c\) \\
\(d\) & \(c+4 d\) & \(b+4 c+6 d\) & \(a+4 b+6 c+4 d\) \\
\(d\) & \(c+5 d\) & \(b+5 c+10 d\) & \(a+5 b+10 c+10 d\) \\
\hline
\end{tabular}
148. Now in the laft feries \(A\) it is obvious that the coefficients of the letters \(a\), which are the firft members of the feveral terms \(a, a+b, a+2 b+c, a+3 b+3 c+d\), \(a+4 b+6 c+4 d\), and \(a+5 b+10 c+10 d\), are a fet of units, or the firft order of the figurate numbers; and that the co-efficients of the feveral letiers \(b\) in the fecond members of the faid terms are the lateral, or natural, numbers I , \(2,3,4,5, \& c\), or the fecond order of the figurate numbers; and that the co-efficients of the feveral letters \(c\) in the third members of the faid terms are the trigonal, or triangular, numbers \(1,3,6,10\), \&ic, or the third order of the figurate numbers; and that the co-efficients of the feveral letters \(d\) in the fourth members of the faid terms are the pyramidal numbers \(1,4,10,8<c\), or the fourth order of the figurate numbers. And therefore, as we have above fhewn how the fums of the figurate numbers of the feveral fucceffive orders, and likewife the values of the laft terms in them, may be determined, when the number of terms contained in them is known; it will be eafy to find both the fum of all the terms of the feries \(A\), by multiplying the fums of the fucceffive columns of figurate numbers, into the letters
\(a, b, c\), and \(d\), refpectively, and adding the products fo obtained into one fum, and likewife to find the value of the laft term of the faid feries, by multiplying the laft terms of the feveral columns of co-efficients, or figurate numbers, into the letters \(a, b, c\), and \(d\), refpectively, and adding the faid products into one fum. For, if the number of terms in the feries A be denoted by the letter \(n\), it follows from coroll. 2, art. 81, pages 109, 1 , 0 , III, that the fum of the co-efficients of the letter \(a\) will be \(n\); and the fum of the co-efficients of the letter \(b\) will be \(n \times \frac{n-1}{2}\); and the fum of the co-efficients of \(c\) will be \(\frac{n \times \overline{n-1} \times \overline{n-2}}{\frac{2 \times 3}{2}}\); and the fum of the co-efficients of \(d\) will be \(\frac{n \times \overline{n-1} \times \overline{n-2} \times \overline{n-3}}{2 \times 3 \times 4}\); and confequently the fum of all the \(n\) terms of the faid feries A will be \(=n \times a+\) \(\frac{n \times \overline{n-1}}{2} \times b+n \times \frac{n \times \overline{n-1} \times \overline{n-2}}{2 \times 3} \times c+\frac{n \times \overline{n-1} \times \overline{n-2} \times \overline{n-3}}{2 \times 3 \times 4}\) \(\times d\). And it follows from coroll. 4, art. 83, papes i1 2 , \(1_{3}\), that the co-efficients of the letters \(a, b, c\), and \(d\), in the laft, or \(n\) th, term of the feries A will be \(\mathrm{I}, n-1\),
\(\overline{\overline{n-1} \times \overline{n-2}} \frac{2}{}\), and \(\frac{\overline{n-1} \times \overline{n-2} \times \overline{n-3}}{2 \times 3}\), refpectively; and confequently that the faid laft, or \(n\) th, term will be \(=a+n-1\) )
\[
\begin{array}{r}
\times b+\frac{\overline{n-1} \times \overline{n-2}}{2} \times c+\frac{\overline{n-1} \times \overline{n-2} \times \overline{n-3}}{2 \times 3} \times d . \\
\text { Q. E.I. } \% \text {. }
\end{array}
\]

\footnotetext{
*See upon this fubject Mr. Thomas Simpfon's Efays on feveral curious and ufeful fubjects in Jpeculative and mixed mathematics, publifhed in the year 1740, pages \(98,99,100,101,102,103,104\), and 105; and likewife his Algebra, 6 th Edition, publifhed in the year \(\mathbf{1 9 0}\), Sections XLV and XV, pages 201, 202, \& c. ——— 228.
}

End of the Tranfation of the foreryoing Extract frons Mro. Fames Bernoulli's Trsatije De Arte Conjectandi,

\section*{A}

\title{
NEW AND GENERAL METHOD
}

\section*{SUM OF ANY SERIES OF POWERS}

OF A SET OF

QUANTITIES that are in ARITHMETICAL PROGRESSION:
```

BEING THE TENTH OP THE LATE LEARNED

```

MR. THOMAS SIMPSON'S MATHEMATICAL ESSAYS,
- \(\quad\left[\begin{array}{ll}217\end{array}\right]\)

\section*{Mr. 'inmpsov's Tenth Mathematical Efay*。}

\section*{PROPOSITION.}

To find the fun of any Series of Powers wobofe roots are in arithmetical progrellion, as \(\left.\overline{m+d}\right|^{n}+\overline{m+2 d}{ }^{n}+\overline{m+3 d} n^{n} \cdots\) \(\ldots \ldots x^{n}, m, d\), and \(n\), being any numbers wobatfoever.
\(\mathrm{I} \mathrm{ET} \cdot \mathrm{A} x^{n+1}+\mathrm{B} x^{n}+\mathrm{C} x^{n-1}+\mathrm{D} x^{n-2}+\mathrm{E} x^{n-3}\) \(+F x^{n-4}\), \&c. - \(K\), if poffible, be always equal to \(\overline{m+d}^{n}+\overline{m+2 d}^{n} \ldots \ldots x^{n}\), and \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \& \mathrm{c}\), determinate quantities. Then, if any other number in the progreffion \(m+d, m+2 d, m+3 d \ldots x+d, x+2 d\), \(x+3 d, \& c\), as \(x+d\), be fubftitured inftead of \(x\), the equality will ftill continue; and we fhall have
\(\mathrm{A} \times\left.\overline{x+d}\right|^{n+1}+\mathrm{B} \times\left.\overline{x+d}\right|^{n}+\mathrm{C} \times\left.\overline{x+d}\right|^{n-1}+\mathrm{D} \times\) \(\left.\overline{x+d}\right|^{n-2} \& c .-\mathrm{K}\) equal \(\left.\overline{m+d}\right|^{n}+\left.\overline{m+2 d}\right|^{n} \ldots \overline{x+d^{2}}{ }^{n} ;\) from which if we take the former equation, there will remain \(\mathrm{A} \times \overline{x+\bar{d})^{n+1}-x^{n+1}}+\mathrm{B} \times \overline{\overline{x+d})^{n}-x^{n}}\) \(\left.+\mathrm{C} \overline{x+()^{n-1}-x^{n-1}}, \& \mathrm{cc}=\overline{x+d}\right)^{n}\), fhewing how much each fode is increafed by augmenting the number of terms in the given feries by unity; where, by tranfoofing \(\overline{x+d} n^{n}\), and throwing the feveral powers of \(x+d\) into feriefes, we fhall have
* This Effay of Mr. Sinupfun's is the part of his Effays alluded to in the Note at. the bottom of pare 21.3. As it is fo nearly connected with the fubject of the latter nart of the foregoing Extract from Mr. James Bernoulli's Treatife De Arte Conjectandi, relatiny to the fums of the powers of the natural rumbers \(1,2,3,4,5,6,7,8,9,10,11,8 \mathrm{ce}\), and is not very long, I thought it would be agreeable to the Reader to fee it here immediately after the faid Extract, and therefor: i have caufed it to be re-printed. F. M.

From which, by equating the homologous terms, A will come out \(=\frac{1}{n+1 \times d}, \mathrm{~B}=\frac{1}{2}, \mathrm{C}=\frac{n d}{3 \cdot 4}, \mathrm{D}=0, \mathrm{E}=-\) \(\frac{n \times n-\mathrm{I} \times n-2 \times d^{3}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}, \mathrm{~F}=\mathrm{O}, \mathrm{G}=\frac{n \times n-1 \times n-2 \times n-3 \times n-4 \times d^{5}}{\frac{n}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 5 \cdot 6.7 .6}}\) \(H=0\), \&c. wherefore the values of \(A, B, C, \& c\), being fo affigned, the whole expreffion, or its equal \(-\left.\overline{x+d}\right|^{n}\) \(+\mathrm{A} \times \overline{\overline{x+} d^{n+1}-x^{n+1}}+\mathrm{B} \times \overline{\overline{x+d_{1}^{n}}-x^{n}}\), \&ć, mult be equal o , and confequently \(\mathrm{A} \times \overline{x+\left.\right|^{n+1}-x^{n+1}}+\) \(\mathrm{B} \times \overline{x+d})^{n}-x^{n}, \& \varepsilon \mathrm{c},=\overline{x+d}\); that is, let \(x\) and \(n\) be what they will, the forefaid increments of \(\mathrm{A} x^{n-1}+\mathrm{B} x^{n}+\) \(C x^{n-1}, \& x c,-\mathrm{K}\) and \(m+\left.d\right|^{n}+\left.\overline{m+2 d}\right|^{n}, \& \mathrm{c}\). will, under the above affigned values of \(A, B, \& c\), be equal to one another: Therefore, if K be taken equal \(\mathrm{A} m^{n+1}+\) \(B_{m}{ }^{n}+C m^{n-1}, \& \mathrm{c}\), fo that when \(x\) equal \(m\), or the propofed feries is equal to nothing, \(\mathrm{A} x^{n+1}+\mathrm{B} x^{n}, \& \mathrm{c}\), , K may be alfo \(=0\), it is manifeft, that thefe two expreffio:is, as they are increafed alike, will, in all other circumftances, be equal ; that is, let \(x\) be what it will, \(A x^{n+1}\) \(+\mathrm{B} x^{n}+\mathrm{C} x^{n-1}+\mathrm{D} x^{n-2}, \& \mathrm{c},-\mathrm{A} m^{n+1}-\mathrm{B} m^{n}\) \(-\mathrm{C} m^{n-1}-\mathrm{D} m^{n-2}, \& \mathrm{c}\), under the faid values of \(\mathrm{A}, \mathrm{B}\), C, \&c, will be always equal to \(\left.\overline{m+d}\right|^{n}+m+2 d d^{n}+\) \(\overline{m+3 d}^{n} \ldots \hat{x}^{n}\); which values being therefore fubftituted, there will be \(\frac{x^{n+1}}{n+1 \times d}+\frac{x^{n}}{2}+\frac{d n x^{n-1}}{3 \cdot 4}-\frac{n \times \overline{n-1} \times \overline{n-2} d^{3} x^{n-3}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}\) \(+\frac{n \times \overline{n-1} \times \overline{n-2} \times \overline{n-3} \times \overline{n-4}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6 \cdot 7 \cdot 6} d^{5} x^{n-5}\)
\({ }_{2}\) F 2
\[
\begin{aligned}
& -\frac{n \times \overline{n-1} \times \overline{n-2} \times \overline{n-3} \times \overline{n-}+\overline{n-5} \times \overline{n-6}}{2.3 \cdot 4 \cdot 5 \cdot 6.7 .8, \ldots} d^{n} x^{n-7}
\end{aligned}
\]
\[
\begin{aligned}
& x^{n-9}, \& \mathrm{c},-\frac{m^{n+1}}{n+1 \times d}-\frac{m^{n}}{2}-\frac{n d m^{n-1}}{3 \cdot 4}+\frac{n \times \overline{n-1} \times \overline{n-2}}{2 \cdot 3 \cdot+\cdot 5 \cdot 6} \times d^{3} \\
& \left.m^{n-3}, 8<c,=\overline{m+a}\right]^{n}+\overline{m+2 d}^{n}+m+3 a \ldots x^{n}, \\
& \text { e. E. } 1 \text { 。 }
\end{aligned}
\]

\section*{C OROL. I.}

Hence, if \(n\) be a whole pofitive number, and \(n\) be taken equal 0 ; then all the terms in the fecond feries \(-\frac{m^{n+1}}{n+1 \times l}-\frac{m^{n}}{2}+\frac{n d n^{n-1}}{3 \cdot 4}\), \& c, vanifhing when \(n\) is even, and all but that where the exponent of \(m\) is nothing, when odd, we flall, in this cafe, have \(d^{n}+\left.2 \lambda\right|^{n}+{\overline{3} \lambda^{n}}^{n}+\left.\overline{4 d}\right|^{n}\) \(\ldots .\). . \(x^{n}\) barely equal to \(\frac{x^{n+1}}{\frac{n+1 \times d}{}}+\frac{x^{n}}{2}+\frac{n d x^{n-1}}{3 \cdot 4}-\) \(\frac{\pi \times \overline{n-1} \times \overline{n-2} n^{3} x^{n-3}}{2 \cdot 3 \cdot+\cdot 5 \cdot 5}, \& \mathrm{c}\), the firf feries continued till it terminates, provided that the laft term, when \(n\) is an odd number, be rejected.

\section*{C O R O L. II.}

Wherefore, by taking \(d\) equal to 1 , and \(n\) equal to 2,3 , \(4,5, \& c\), fucceffively, we have
\(x+2+3+4+5 \cdots+x=\frac{x^{2}}{2}+\frac{x}{2}\)
\(1^{2}+2^{2}+3^{2}+4^{2}+5^{2} \cdots+x^{2}=\frac{x^{3}}{3}+\frac{x^{2}}{2}+\frac{x}{6}\)
\(1^{3}+2^{3}+3^{3}+4^{3}+5^{3} \cdots+x^{3}=\frac{x^{4}}{4}+\frac{x^{3}}{2}+\frac{x^{2}}{4}\)
\(1^{4}+2^{4}+3^{4}+4^{4}+5^{4} \cdots+x^{4}=\frac{x^{5}}{5}+\frac{x^{4}}{2}+\frac{x^{3}}{3}-\frac{x}{3^{0}}\)
\(1^{5}+2^{5}+3^{5}+4^{5}+5^{5} \cdots+x^{5}=\frac{x^{6}}{6}+\frac{x^{5}}{2}+\frac{5 x^{4}}{12}-\frac{x^{2}}{12}\)
\(1^{6}+2^{6}+3^{6}+4^{6}+5^{6} \cdots+x^{6}=\frac{x^{7}}{7}+\frac{x^{6}}{2}+\frac{x^{5}}{2}-\frac{x^{3}}{6}+\frac{x}{43}\) \&c. \& c .

\section*{CO R O L. III.}

Moreover, if \(d\) be taken equal to 1 , and \(m\) equal to \(I_{s}\) our general equation will become \(2^{n}+3^{n}+4^{n} \ldots+\) \(x^{n}=\frac{x^{n+1}}{n+1}+\frac{x^{n}}{2}+\frac{n x^{n-1}}{3 \cdot 4}, \& \mathrm{c},-\frac{1}{n+1}-\frac{1}{2}-\frac{n}{3 \cdot 4}+\) \(\frac{n \times n-1 \times n-2}{2.3 .45 \cdot 5}, \& \mathrm{c}\), each fide of which being increafed by unity, and the whole multiplied by \(d^{n}\), gives \(d^{n}+2 d \|^{n}\) \(+\left.\overline{3 d}\right|^{n}+\overline{4 d} d^{n} \ldots+\overline{d x} x^{n}=d^{n}\) into \(\frac{x^{n+1}}{n+1}+\frac{x^{n}}{2}+\) \(\frac{n x^{n-1}}{3 \cdot 4}-\frac{n \times n-1 \times n-2 x^{n-3}}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}, \& c,-\frac{1}{n+1}+\frac{1}{2}-\frac{n}{3 \cdot 4}+\) \(\frac{n \times n-1 \times n-2}{2 \cdot 3 \cdot 4 \cdot 5 \cdot 6}, \& c\).

\section*{EXAMPLEI.}

Let it be required to find the fum of a feries, confitting of soo cube numbers, whofe roots are, \(\frac{1}{2}, 1, \frac{3}{2}, 2\), \(\frac{5}{2}, 3, \& c\).

Here \(d\), the common difference of the roots, being equal \(\frac{1}{2}\), \(n=3\), and \(x=0\), let thefe values be fubftituted in the equation in Cor. II. and it will become ( \(\frac{\bar{n}_{3}}{2}\) in, \(\frac{\overline{100})^{4}}{4}+\) \(\frac{\sqrt[2013]{2}}{2}+\frac{\sqrt[100]{2}}{4}=3187812.5\), the number that was to be found.

\section*{EXAMPLE II.}

Let \(n=\frac{1}{2}, d=\frac{1}{4}\). Then the equation in the laft Corollary will become \(\left.\frac{1}{4}\right|^{\frac{1}{2}}+\left.\frac{2}{4}\right|^{\frac{1}{2}}+\left.\frac{3}{4}\right|^{\frac{1}{2}} \cdots+\left.\frac{2}{4}\right|^{\frac{1}{2}}=\left.\frac{1}{4}\right|^{\frac{x}{2}}\) \(\times \frac{2 \times 2 \frac{3}{2}}{3}+\frac{x_{2}^{\frac{1}{2}}}{2}+\frac{1}{24 \times \times x_{2}^{\frac{1}{2}}}, \& c,-\frac{339}{1920}\) very ncarly; fo that, taking \(x\) equal 4 , it will be \(\frac{1}{4} 4^{\frac{1}{2}}+\left.\frac{1}{4}\right|^{\frac{1}{2}}+\frac{3}{4} 3^{\frac{1}{2}}+1=3.073^{1}\); which differs from the true value by lefs than \(\frac{1}{1} \frac{1}{0}\); and if more terms had been wfed, the anfwer would ft.ii have been more exact; but never can come accurately true, when \(n\) is negative or a fradion, becaufe then both feriefes run on nd infinizam.

\section*{SC HO LI U M.}

The theorems, above found, are not only ufeful in finding the fum of a Series of Powers, but may be of Service alto in the Quadrature of Curves, \&c, efpecially as the conclufions will be accurately true, and the realoning thereupon i scientific.

This I fall endeavour to flew by the following inftance; wherein AC, being fuppofed a curve, whole equation is. \(y=z^{n}\) (AB being equal \(z\), and CB equal \(y\) ) the area \(A B C\) is required.


Let \(A B\) be divided into any number, \(x\), of equal parts, as \(\mathrm{A} b, b c, c d, \& \mathrm{c}\), and from the points of divifion let perpendiculars be raifed, cutting the curve in the points, 1,2 , 3 , \(\& \mathrm{c}\), and having made \(p \mathrm{I}\), \(q 2, r 3, s 4, \& c\), parallel to AB, let the bare \(A b, b c, c d\), \(\& c\), of each of the rectangles \(p b, q c, r d, \& c\), be reprefented by \(d\) : Then \(b_{I}, c_{2}, d_{3}, \& c_{\text {, }}\), the heights of thole rectangles, being ordinates to the curve, will be \(d^{n}, \overline{2 d}^{n}, \overline{3 d}^{n}\), \(\& x c\), refpectively, each of which \(\because\) being multiplied by \(d\), the common bale, and the fum of all the products taken, will give \(d\) into \(\left.d^{n}+\left.2 d\right|^{n}+3 d\right]^{n} \ldots \overline{x d}^{n},(=\mathrm{A} p 1 q 2 r, 8 \mathrm{c}\), CB A) for the area of the whole circumfcribing polygon; and this faeries, according to the above faid Theorem
(Cor. III.) is equal to \(d^{n+1} \operatorname{in}, \frac{n x^{n+1}}{n+1}+\frac{x^{n}}{2}, \& c_{,}=\frac{\widetilde{d x}^{n+1}}{n+1}\)
\(+\frac{d \times d A^{n}}{2}, \& \mathrm{c}\), or, becaufe \(d x=x\), it will be \(=\frac{z^{n+1}}{n+1}+\) \(\frac{d z^{n}}{2}, \& c\). Now, if from this the difference of the infcribed and circumfcribed polygons, or the rectangle \(\mathrm{BD}=d z^{n}\) be taken, there will remain \(\frac{z^{n+1}}{n+1}-\frac{d z^{n}}{2}\), for the area of the infcribed polygon. Hence, it is manifeft, that, let \(d\) be what it will, the infcribed polygon can never be fo great, nor the circumfcribed fo fmall, as \(\frac{z^{n+1}}{n+1}\left(=\frac{A ® \times B C}{n+1}\right)\) : And therefore this expreflion muft be accurately equal to the required curvilinear area ACB.

> A N

\section*{I NVESTIGATION}

A N D

\section*{DEMONSTRATION}
\[
0 \mathrm{~F}
\]

SIR ISAAC NEWTON'S BINOMIAL THEOREM,
```

IN THE CASE OF

```

\section*{INTEGRAL AND AFFIRMATIVE POWERS;}
```

1N WHICK

```

The Law of the generation of the numeral co-efficients of the Series which is equal to the quantity \(\overline{a+b^{m}}\), is difcorered by a conjecture grounded on the obfervation of fome particular inftances; but, when fo difcovered, is fhewn to be true univerfally in all other Integral and Affirmative Powers whatfoever, by a frict and accurate Demontration.

\section*{A General Statement, or Expreffion, of the} Binomial Theorem.

Art. I. CIR ISAAC NEWTON's Binomial Theorem is a Propofition affirming that, if \(m\) be any number whatfoever, either integral or fractional, affirmative or negative, the quantity \(\overline{a+\lambda}{ }^{m}\), or the \(m\) th power of the binomial quantity \(a+b\), will be equal to the feries \(a^{m}+\frac{m}{x}\) \(a^{m-1} b+\frac{m}{1} \times \frac{m-1}{2} a^{m-2} b^{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} a^{m-3} b_{1}^{3}\) \(+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}+\frac{m-3}{4} a^{m-4} b^{4}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}\) \(\times \frac{m-3}{4} \times \frac{m-4}{5} a^{m-5} b^{5}+88 c\), or (if we put A.for 1 , or the co-efficient of the firft term \(a^{m}\), and B for \(\frac{m}{1}\), or the co-efficient of the fecond term \(\frac{m}{1} \times a^{m-\mathrm{r}} b\), and C for \(\frac{m}{x}\) \(\times \frac{m-1}{2}\), or the co-efficient of the third term \(\frac{m}{1} \times \frac{m-1}{2} \times\) \(a^{m-2} b^{2}\), and D, E, F, G, H, I, K, \&c, for the co-efficients of the fourth, fifth, fixth, feventh, eighth, ninth, tenth, and other following terms, refpectively), to the feries \(a^{m}+\frac{m}{1} \mathrm{~A} a^{m-1} b+\frac{m-1}{2} \mathrm{~B} a^{m-2} b^{2}+\frac{m-2}{3} \mathrm{C} a^{m-3} b^{3}\). \(+\frac{m-3}{4} \mathrm{D} a^{m-4} b^{4}+\frac{m-4}{5} \mathrm{E} a^{m-5} b^{5}+\frac{m-5}{6} \mathrm{~F}^{m-6} a^{6}\).

2 G 2
\(+\)

228 Invefigation of Sir I. Newton's Binomial Theorem,
\(+\frac{m-6}{7} \mathrm{G}_{a^{m-7}} b^{7}+\frac{m-7}{8} \mathrm{H} a^{m-8} b^{8}+\frac{m-8}{9} \mathrm{I} a^{m-9} b^{9}+\)
\(\& c\), in which faeries the powers of \(a\), to wit, \(a^{m}, a^{m-1}\), \(a^{m-2}, a^{m_{2}-3}, a^{m-4}, a^{m-5}, a^{m-6}, a^{m-7}, a^{m-8}, a^{m-9}, \& \mathrm{c}\), are produced from each other by a continual divifion by \(a\), and the powers of \(b\), to wit, \(b, b^{2}, b^{3}, b^{4}, b^{5}, b^{6}, b^{7}, b^{8}, b^{9}\), \(\& c\), are produced from each other by a continual multiplication by \(b\), and the numeral coefficients \(\mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}\), F; G, H, I, K, \&c, of the fecond, third, fourth, fifth, fixth, feventh, eighth, ninth, tench, and other following terms are derived, or generated, from I , or A , the numeral co efficient of the first term \(a^{1 m}\), by a continual multiplication of it into the fractions \(\frac{m}{1}\), or \(\frac{m-0}{1}, \frac{m-1}{2}, \frac{m-2}{3}, \frac{m-3}{4}, \frac{m-4}{5}\), \(\frac{m-5}{6}, \frac{m-6}{7}, \frac{m-7}{8}, \frac{m-8}{9}, \& c\), continued ad infinitum, or to the end of the ferias when the number of its terms is finite.
: :

\section*{Of the Invention of the said Theorem.}
2. Sir Ifaac Newton was the firf perfon that expreffed this important Theorem in the foregoing fort and convenient Algebräick notation, and likewife the firft perfon that difcovered that it would be true, not only when the index \(m\) of the power to which the binomial quantity is to be raifed is a whole number, as \(2,3,4,5,6,8 \mathrm{c}\), but alfo when it is a fraction of any kind, as \(\frac{1}{2}, \frac{4}{3}, \frac{1}{17}\), or \(\frac{2}{3}, \frac{3}{5}, \frac{4}{17}\), or
\(\frac{3}{2}, \frac{5}{3}, \frac{17}{4}, \& c\), or even a negative quantity, as \(-2,-3\), \(-5,-\frac{1}{1}\), or \(-\frac{1}{2},-\frac{1}{3},-\frac{1}{17}\), or \(-\frac{2}{3},-\frac{3}{5},-\frac{4}{17}\), or \(-\frac{3}{2},-\frac{5}{3},-\frac{17}{4}\), \&cc.. But he was not the firft perfon that difcovered it to be true in the firft, or fimpleft, cafe, or when the index \(m\) is equal to an integral and affirmative number. For in that cafe it was known to Mr. Henry Briggs, the celebrated improver and computer of Logarithms, above 40 years before it was difcovered by Sir Ifaac Newton; and it was publithed by Mr. Briggs, in his learned Treatife on Logarithms, intitled, Aritbmetica Logaritbmica, in the year 1624; as has been clearly thewn by the learned Dr. Hutton, of Woolwich Academy, in his very curions, hiftorical, Introduction to the new edition of Sherwin's Mathematical Tables, publifhed in the year 1784 .
3. But, though Mr. Briggs had publifhed this famous Theorem, in this firft cafe of it, in his Aritbmetica Logarithmica, in the year 1624 , yet it feems to tave been but little known to Msinematicians till about 60 years after. For even the famous Dr. John Wallis, of Oxford, (who was a very extenfive reader of Marhematical Works, as well as a great improver of the Science,) appears to have been ignorant of it till a little before the year 1685 , in which he publifhed his learned, hiftorical, Treatife of Algebra, at which time he was about 69 years old. For he there tells us, in page 3 19, that he had formerly fought to difcover the law by which the numeral co-efficients of the terms of the feries which is equal to \(\overline{a+b} b^{m}\) are generated from each other, but had not been able to find it; and that he had lately been made acquainted with it by the perufal of a very learned letter of Mr. Ifaac Newton, the Profeffor of Mathematicks in the Univerfity of Cambridge, to Mr. Oldenburgh, Secretary to the Royal Society, written in the year 1676 . His words are thefe, after fpeaking of fome other excellent inventions in the Mathematicks contained in the faid letter-

\section*{230 Inveftigation of Sir I. Newton's Binomial. Theorem,}
"He [Mr. Newton] then obferves (what I bad formerly " fougbt after, but unfuccefsfully), that the following numbers " are, from the two firf, to be found by continual multiplication " of this Series \(1 \times \frac{m-0}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{5} \times\) " \(\xi^{c} c\)." From this paffage of Dr. Wallis's Algebra, I am inclined to think that this famous theorem was never generally known to Mathematicians till this publication of it in that work. And from its having thus been communicated to the learned world as a difcovery of Mr. Newton (who swas afterwards better known by the title of Sir Ifaac Newton), it has ufually been called bis Theorem.
4. This Theorem had been difcovered by Sir Ifaac Newton about the year 1665 , as appears from his letters to Mr . Oldenburgh in the year 1676, copies of which were fent to Mr. Leibnitz by Mr. Newton's direction. But thefe letters do not appear to have been known to the Mathematical world in general, till the year 1712, when they were printed in the Commercium Epifolicum by the order of the Royal Society. And no part of them feems to have been publifhed before the year 1685 , when the foregoing account of the generation of the numeral co-efficients of the terms of the feries that is equal to the moth power of a binomial quantity, and a few more curious difcoveries contained in them, were inferted by Dr. Wallis, in his Treatife on Algebra.
5. It has been obferved above, that Mr. Briggs, and not Sir Ifaac Newton, was the firt inventor of this Theorem in the firf and fimpleft cafe of it, or when the index \(m\) is an affirmative whole number. Yet I am inclined to think that Sir Ifaac Newton was likewife on inventor of it even in that cafe, though not the firft inventor. For it is well known that he was not an extenfive reader of Mathematical Works; and he appears to have applied himfelf principally in his younger years to the ftudy of Des Cartes's Geometry, with Schooten's Commentary on it, and the other Tracts publifhed by Schooten with it, and of Dr. Wallis's Arithmetica Infinitorum, and his other works on mathematical fubjects
then publifhed; in none of which books is any mention made of this uleful Theorem that had been difcovered fo many years before by Mr. Briggs. And, as thefe were the books to which Mr. Newton is known to have given the greateft part of his attention at that time, he may very well be fuppofed not to have feen Mr. Briggs's Aritbmetica Logasitbmica, in which this Theorem is contained, at the time of his difcovering it himfelf, which was about the year 1665 , or when he was only 23 years old. And, if he had feen that book, and obferved this difcovery to be contained in it, I can hardly conceive that, when he was fpeaking of this Theorem, and fetting forth its great utility in mathematical inveftigations, he would have omitted to make mention of the name of Mr. Briggs, and to acknowledge that what he had delivered upon the fubject in his Aritbmetica Logaritbmica contained the fubftance of the faid Binomial Theorem in the cafe of Integral Powers, though not expreffed in Algebräick Symbols. For thefe reafons I am inclined to think that Sir Ifaac Newton had not feen Mr. Briggs's Aritbmetica Logaritbmica when he invented the Binomial Theorem, and confequently that he was truly an inventor of it even in the cafe of Integral Powers, thoulgh not the firft inventor.
6. But it feems more furprifing that Dr. Wallis, who was a much more copious reader of Mathematical Works than Sir lfaac Newton, and who actually had feen and read Mr. Briggs's Aritbmetica Logaritbmica, and makes mention of it in his Algebra, chapter XII, page 60, fhould not have attended to the contents of that ingenious Treatife enough to have obferved that it contained this moft ufeful Theorem. Yet this appears to have been the fact, from what the Doctor tells us in the 85 th chapter of his Algebra, page 319, in the paffage that has been already cited in art. 3, where he mentions the law of the generation of the co-efficients of the terms of the feries that is equal to the \(m\) th power of a binomial quantity, as a difcovery that had recently come to his knowledge by the perufal of Mr. Newton's letter to Mr. Oldenburgh. For, furely, it muft be concluded from this declaration, that, though he had feen Mr. Briggs's Aritb-
metica Logaritbmica, he had not read it with fufficient atten tion to difcover that this method of generating the co-efficients of the terms of the feries that is equal to the \(m\) th power of a binomial quantity, when \(m 2\) was equal to any whole number whatfoever, was contained in it: though it feems indeed unaccountably ftrange that he Thould not have taken notice of it.
7. We may therefore, upon the whole matter, confider the Binomial Theorem, in the cafe of Integral and Affirmative Powers, as having been firt invented by Mr. Briggs before the year 1624, and publifhed by him in that year in his Aritbinetica Logaritbmica, but in fuch a manner, and in fuch expreffions, as did not much engage the attention of Mathematicians towards it ; fince it does not feem to have been generally known amongt Mathematicians till it was afterwards publifhed in the year 1685 , as an invention of Mr. Ifaac Newton, by Dr. Wallis in his Algebra. And we may confider it as having been invented a fecond time by Mr. Newton about the year \(\mathrm{r} 66_{5}\), and extended by him at the fame time to the other cafes of Fractional and Negative Powers, and alfo expreffed in the very fhort and convenient Algebraick notation, in which it is fet forth above in art. \(\mathrm{I}_{*}\) and which has contributed fo much to give it currency amonglt Mathematicians. And, laftly, we may confider it as having been communicated by Mr. Newton to Mr. ()ldenburgh and \(\mathrm{Mr}_{r}\) Leibnitz, and probably alfo to his friend and patron Dr. Ifaac Barrow, the Mafter of Trinity College, Cambridge, and a few more of his Mathematical friends, in the year 1676 , in the letter above-mentioned; and as having afterwards been communicated to the world at large in the aforefaid extracts from the faid letter to Mr. Oldenburgh, which Dr. Wallis publifhed in his Algebra in the year 1685.
in the cafe of Integral and Agirmative Powers.

Of Mr. Fames Bernoulli's dennonfration of the Said Theorem, in his Treatife on the Doetrine of Cbances, intitled, De Arte Conjectandi.
8. But, by what fteps, or what train of reafoning, Sir Ifaac Newton difcovered this law of the faid co-efficients to be fuch as he-defcribed ir, is not known; nor is any demonftration of it, even in the eafieft cafe of it (or when the index \(m\) of the power to which the binomial quantity is to be raifed, is a whole number), any where to be found in all his works. Nor has Dr. Wallis attempted to fupply this defect, nor, as I believe, any other mathematical author whatfoever in the laft century, from the year 1685 (when the Theorem was firt publifhed by Dr. Wallis) to the end of it ; nor do I know of any demonftration of it given in the beginning of the prefent century before the year 1713, when the learned and fagacious Mr. James Bernoulli's excellent Treatife on the Doctrine of Chances, intitled, De Arte Conjectandi, was publifhed at Bafil, or Bane, in Switzerland. But there we find an excellent demonftration of it, in the cafe of Integral Powers, derived from the doctrine of Permutations and Combinations, and the properties of the Figurate numbers, which are the true principles to which it ought to be referred. This demonftration is contained in the 3 d clapter of the fecond part of that valuable Treatife, and may be perfectly underftood by a careful perufal of the three firft chapters of that fecond part, without the help of the firt part of the Treatife. For the doctrine of Permutations and Combinations is explained from its firft principles in the two firtt chapters of that fecond part of the Treatife, withoir any reference to the firf part; and the properties of the Figurate numbers are derived from that doctrine in a moft frict and fcientific manner, in the third chapter of the fame fecond part; and amongtt thefe proper\({ }_{2} \mathrm{H}\)
ties

\section*{234 Invefigation of Sir I. Newton's Binomial T'beorem,}
ties of the Figurate numbers, fo derived, is the Binomial Theorem, in the cafe of Integral and Affirmative Powers, or the law of the generation of the numeral co-efficients of the terms of a feries that is equal to any integral and affirmative power of the binomial quantity \(a+b\). This demonftration therefore deferves to be generally known and fudied by Mathematicians, as the true foundation of this celebrated and moft ufeful Theorem. And upon that account I have re-printed the faid three firt chapters of the fecond Part of that excelient Treatife De Aite Conjectandi, in the foregoing part of this volume, in the author's original Latin text, with fome explanatory notes on a few of the moft difficult paffages of it, and have afterwards added a very full Tranflation of the fame three chapters, with fome examples and additions of my own, which I thought might be ufeful to my readers, and which I have taken care to diftinguifly from the other parts which are tranflated from the Author's text. And I hope that, by thus exhibiting this part of that excellent work in an Englifh drefs, and removing the difficulties that occur in the original, in confequence of the Author's extreme concifenefs, I thall induce the young Students of the Mathematicks in England, to make themfelves acquainted with this mafterly and fcientific demonftration of this moft important Theorem, which feems hitherto to haverbeen adopted by too many Mathematicians, upon the mere ground of induction, and the experience of its truth in the feveral trials they have made of it, without endeavouring to find a demonftration of it.

Anotber demonftration of it, in the fame cafe of Integral Powers, will be given in the cnfuing part of this Discourfe.

9: But, though the demonftration of this propofition given by Mr. James Bernoulli in this excellent Treatife, De.Arte Conjectandi, Part 2d, Chapter 3d, (and which may be feen above in this volume in the original Latin text of Mr. James Bernoulli in page 28, and in my Tranflation of it in pages II 5 and 116), is the firf, and, in my opinion, the beft that has yet been given of it, yet I doubt not that the Mathematical Reader will be pleafed to fee another demonftration of it, that is fomewhat fhorter than Mr. Bernoulli's (inafmuch as it does not require the previous knowledge of the Doctrine of Permutations and Comoinations, and the properties of the Figurate Numbers), and yet is equally accurate and conclufive. Such a demonftration I fhall therefore now endeavour to lay before him in the remaining part of this Difcourfe.
10. Now in order to difcover the general relation of the terms of the feries that is equal to \(\left.\overline{a+b}\right|^{n \prime 2}\) to each other, when in denotes any whole number whatfoever, it will be proper in the firft place to examine their relation to each other when \(m\) is equal to fome particular whole numbers, and thofe not large ones, that they may be more eafily managed and their properties more readily feen into. And, if, when we have examined thefe particular feriefes that are equal to certain particular values of \(a \bar{\gamma}^{m}\), when \(m\) is equal to certain fmall whole numbers, we can find any common properties that belong equally to all of them, and can alfo perceive that the fame properties mult likewife belong to all the feriefes that Thall be equal to any other values of \(\overline{a+b^{m}}\), as well as to thofe which we have confidered; or, if we cannot immediately perceive this to be the cafe, but can find fome method of demonftrating that it is fo; we thall then arrive at the

\section*{236 Invefigation of Sir I. Newton's Binomial Theorem,}
knowledge of the general relation of the terms of the furies that is equal to \(\overline{a+b^{m}}\), to each other, which is the object of our purfinit. We will therefore raife the binomial quantity \(a+b\) to its fquare, and cube, and fourth power, and fifth power, and fixch power, by multiplication; which may be done in the manner following.
\[
\begin{aligned}
& \mathrm{r}=a+b^{0} . \\
& a+b \\
& a+b=a+b \\
& a+b \\
& a a+a b \\
& +a b+b b \\
& \overline{a a+2 a b+b b}=\overline{a+a} a^{2} . \\
& a+b \\
& a^{3}+2 a^{2} b+a b^{2} \\
& +a^{2} b+2 a b^{2}+b^{3} \\
& a^{3}+3 a^{2} b+3 a b^{2}+b^{3}=\overline{a+b^{3}} \text {. } \\
& a+b \\
& \overline{a^{4}+3 a^{3} b}+3 a^{2} \nu^{2}+a b^{3} \\
& +a^{3} b+3 a^{2} b^{2}+3 a b^{3}+b^{4} \\
& a^{4}+4 a^{3} b+6 a^{2} v^{2}+4 a b^{3}+b^{4}=\left.\overline{a+b}\right|^{4} \text {. } \\
& a+b \\
& a^{5}+4 a^{4} b+6 a^{3} b^{2}+4 a^{2} b^{3}+a b^{4} \\
& +a^{4} \dot{b}+4 c^{3} i^{2}+6 a^{2} b^{3}+4 a b^{4}+b^{5} \\
& \overline{a^{5}+5 a^{4} b+1 c a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}}=\overline{a+b^{5}} . \\
& a+b \\
& \begin{array}{l}
a^{6}+5 a^{5} b+10 a^{4} b^{2}+10 a^{3} b^{3}+5 a^{2} b^{4}+a b^{5} \\
\\
+a^{5} b+5 b^{4} b^{2}+10 a^{3} b^{3}+10 a^{2} b^{4}+5 a b^{5}+b^{6} \\
a^{6}+6 a^{5} b+15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+b^{6}=\overline{a+l}=
\end{array}
\end{aligned}
\]

Obferva.

Obferations on the terms of the foregoing Seriefes that are equal \(\left.\left.t 0 \overline{a+1} 1^{5}, \overline{a+b}\right)^{3}, \overline{a+b}\right)^{3}, \overline{a+b}^{4}, \overline{a+b} b^{5}\), and \(\overline{a+b}{ }^{6}\), explaining the Compofition of the Literal parts of the faid terms.
11. If we examine the compofition of the foregoing products, or feriefes, which are obtained by continual multiplications by the binomial quantity \(a+b\), the firft obfervation that will occur to us will be, that the firft term of the feries \(a a+2 a b+b b\), which is equal to the fquare of \(a+b\), is \(a a\) or \(a^{2}\); and that the firt term of the feries \(a^{3}+3 a^{2} b+\) \(3 a b^{2}+b^{3}\), which is equal to the cube of \(a+b\), is \(a^{3}\); and that the firft term of the feries \(a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}\), which is equal to the fourth power of \(a+b\), is \(a^{4}\); and that the firft term of the feries \(a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}\) \(+5 a b^{4}+b^{5}\), which is equal to the fifth power of \(a+b\), is \(a^{5}\); and that the firt term of the feries \(a^{6}+6 a^{5} b+15 a^{4} b^{2}+\) \(20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+b^{6}\), is \(a^{6}\); or that the firlt term of the feries that is equal to any one of the faid five powers of the binomial quantity \(a+b\), is the fame power of the fingle quantity \(a\).

And it is ealy to fee that, if we were to continue thefe multiplications by the binomial quantity \(a+b\) ever fo far, the fame thing would take place with refpect to the firt terms ôf the following products, or feriefes, which are equa! to any higher powers of the binomial quantity \(a+b_{2}\) let their number be ever fo great; or that, if the letter \(m\) be any number, how great foever, the firlt term of the product, or feries, that is equal to \(a+b^{m}\), or the \(m\) th power of the binomial quantity \(a+b\), will be \(a^{m}\), or the fame power of the fingle quantity \(a\).

For, as the firft term of every new product, or feries, is produced by the multiplication of the firt term of the next preceeding

\section*{238 Invefigation of Sir I. Newton's Binomial Theorem,}
preceeding product, or feries, by \(a\), or \(1 \times a\), the co-efficient of the firt term of the new feries, which is the product of the faid multiplication, muft be the fame with the co-efficient of the firft term of the next preceeding feries, which is the multiplicand of the faid multiplication. And confequently, as the co-efficient of the faid multiplicand, or firft term of the preceeding feries is originally x , (namely, when \(a+b\) is multiplied into \(a+b\), in order to produce the feries \(a a+2 a b+b b\), which is equal to its fquare), the co-efficients of the finft terms of all the following products, or feriefes, which are equal to \(\overline{a+b}=, \overline{a+2}, \overline{a+b} l^{4}, \overline{a+4}, \overline{a+b} b^{6}\), \(\overline{a+\lambda^{7}}, \overline{a+b^{3}}, \overline{a+b} 7^{9}, \overline{a+2}{ }^{10}, \& c\), ad infinitum, muft likewife all be equal to I . C. E. D.
12. The fecond obfervation that will occur to us, is, that the indexes of the feveral fucceffive powers of \(a\) in the terms of every product, or feries, that is equal to any power of the binomial quantity \(a+b\), decreafe continually by an unit, and that the indexes of the powers of \(b\) in the terms of the faid products, or feriefes, increafe by an unit at the fame time. Thus, in the feries \(a^{2}+2 a b+b^{2}\), or (as it is fometimes expreffed in Sir Ifaac Newton's Notation of Indexes, becaufe \(a^{\circ}\) is \(=1\), and \(b^{\circ}\) is likewife \(=1\) ), \(a^{2} b^{\circ}+\) \(2 a^{3} b^{3}+a^{0} b^{2}\), which is equal to the fquare of the binomial quantity \(a+b\), the indexes of the powers of a are 2,1 , and 0 , or \(2,2-1\), and \(2-2\), and the indexes of the powers of \(b\) are 0,1 , and 2 , or \(0,0+1\), and \(0+2\); and in the feries \(a^{3}+5 a^{2} b+3 a b^{2}+b^{3}\), or \(a^{3} b^{0}+3 a^{2} b^{2}+3 a^{2} b^{2}+a^{0} b^{3}\), which is equal to the cube of the binomial quantity \(a+b\), the indexes of the powers of \(a\) are \(3,2,1\), and 0 , or 3 , \(3-1,3-2\), and 3-3, and the indexes of the powers of \(b\) are \(0,1,2\), and 3. And the fame thing takes place in the following products, or feriefes, \(a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}\) \(+b^{4}\), and \(a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{2} b^{3}+5 a b^{4}+b^{5}\), and \(a^{6}+6 a^{5} b+1_{5} a^{4} b^{2}+20 a^{3} b^{3}+1_{5} a^{2} b^{4}+6 a b^{5}+b^{6}\), which are equal to the fourth, fifth, and fixth powers of \(a+b\). And it is eafy to fee that the fame thing will likewife take place in the terms of the products, or feriefes, that are equal
to any higher powers of \(a+b\) whatfoever, if the faid multiplications by \(a+b\) were to be continued till the feriefes equal to fuch higher powers were produced.. Therefore the literal parts of the fecond term, and of all the following terms of each of the faid products, or feriefes, may always be generated, or derived, from the firf term of it, by the continual multiplication of it by the fraction \(\frac{b}{a}\).
13. But, by the firft obfervation, the firft term of the feries which is equal to \(\overline{a+b} b^{m}\), or the \(m\) th power of the binomial quantity \(a+b\), when \(m\) is any whole number whatfoever, is \(a \mathrm{~m}\).

It follows therefore, in the 3 d place, that the literal parts of the terms of the feries that is equal to \(\left.\overline{a+b}\right|_{1} ^{m}\), will be \(a^{m}, a^{m-1} b, a^{n-2} b^{2}, a^{m-3} b^{3}, a^{m-4} b^{4}, a^{m-5} b^{5}, a^{m-6} b^{6}\), \(a^{m-7} b^{7}, a^{m-8} b^{8}, a^{m-9} b^{9}, \& \mathrm{c}\), till we come to the quantity \(a^{m-m} b^{m i}\), (or \(a^{0} b^{m}\), or \(\mathrm{I} \times b^{m}\) ), or \(b^{m i}\).

And thus we have difcovered the compofition of the literal parts of the terms of the feries which is equal to \(\overline{a+b}{ }^{n}\), as fully as can be defired. And we have likewife difcovered that the co-efficient of the firft term, of which the literal part is \(a^{m}\), is always I , or that the firft term of the faid feries is \(a^{m}\) itfelf, and not any multiple of \(a^{3 n}\). Q. E. I.
14. In the 4th place it is \({ }^{\circ}\) evident that all the terms of every product, or feries, arifing from the multiplication of the binomial quantity \(a+b\) into iffelf, muft be connected together by the fign + , or added to each other. And confequently the literal parts of the feries that is equal to \(\overline{a+b}{ }^{n z}\),
will be \(a^{m}+a^{m-1} b+a^{m-2} b^{2}+a^{m-3} b^{3}+a^{m-4} b^{4}+\) \(a^{m-5} b^{5}+a^{m-6} b^{6}+a^{m-7} b^{7}+a^{m-8} b^{8}+a^{m-9} b^{9}+\& c\) \(+b^{m t}\).

Of the numeral co-efficients of the fecond and otber following terins of the product, or feries, that is equal to \(\overline{a+b} 1^{m 2}\).
15. We come now to inquire into the numeral co-efficients of the fecond and other following terms of the product, or feries, which is equal to \(a+\left.b\right|^{m}\), or the \(m\) th power of the binomial quanticy \(a+b\).

Now the numeral co-efficient of the fecond term of this feries will always be equal to \(m\), or the index of the power to which the binomial quantity \(a+b\) is to be raifed. This may be demonftrated in the manner following.

In raifing the feveral powers of the binomial quantity \(a+b\) by the continual multiplication of that quantity into itfelf, in the manner above exemplified in art, 10 , it is evident that the faid fecond term of every new product, or feries, that is equal to a new power of \(a+b\), is always produced by adding the product of the multiplication of the firft term of the feries that is equal to the next lower power of \(a+b\) (of which firft term we have feen that I is always the co-efficient, by \(b\) to the product of the multiplication of the fecond term of the faid foregoing feries by \(a\); the effect of which addition is, to increafe the co-efficient of the fe. cond term of the new feries by an unit, or fo as to make it exceed the co-efficient of the fecond term of the foregoing feries by an unit. Thus, the fecond term, \(2 a b\), of the feries
\(2 a b+b^{2}\), which is equal to the fquare of \(a+b\), is produced by the addition of the prochect \(b a\), or \(a b\), (whoch arifes trom the multiplication of \(a\), the firft term of the former ferits \(a+b\), by \(b\), ) to the product \(a b\), which arifes from the multiplication of the fecond term \(b\) of the former leries \(a+b\) by \(a\); the effect of which addition is, to make the co efficient, 2 , of the fecond term \(2 a b\) in the new feries, exceed the coefficient, 1 , of the fecond term \(b\) of the former feries, by an unit. And, in like manner, the fecond term, \(3^{a^{2} b}\), of the feries \(a^{3}+3 a^{2} b+3 a b^{2}+b^{3}\), winch is equal to the cube of the binomial quantity \(a+b\), is produced by the addition of the product \(a^{2} b\) (which arifes from the multiplacation of \(a^{2}\), the firt term of the former feries \(a^{2}+2 a b+b^{2}\), by \(b\) ), to the product \(2 a^{2} b\), which arifes from the multiplication of the fecond term \(2 a b\) of the faid former feries \(a^{2}+2 a b+b^{2}\) by \(a\); the effect of which addition is, to make the co-efficient, 3 , of the fecond term \(3 a^{2} b\) of the new feries, exceed the co efficient, 2 , of the fecond term zab of the former feries, by an unit. And, in like manner, \(4 a^{3} b\), the fecond term of the next feries, is \(=a^{3} \times b+3 a^{2} b \times a\), or \(a^{3} b+\) \(3 a^{3} b=\overline{1+3} \times a^{3} b\); and \(5 a^{4} b\), the fecond term of the next feries, is \(=a^{4} \times b+4 a^{3} b \times a=a^{4} b+4 a^{4} b=1+4\) \(x a 4 b\); and \(6 a^{5} b\), the lecond term of the next feries, is = \(a^{5} \times b+5 a^{4} b \times a=a^{5} b+5 a^{5} b=\overline{1+5} \times a^{5} b\). And this, it is eafy to fee, mult be the cafe in any higher powers whatfoever of \(a+b\), if we were to continue the multiplications by \(a+b\) till the feriefes that were equal to fuch higher powers of \(a+b\) were produced. And confequently, ince in the firit power of the binomial quanricy \(a+b\), to wit, in the faid quantity itfelf, the co-eificient of the fecond term \(b\), to wit, 1 , is equal to the index of the fuid firft power, which is alfo I , and in the fecond, and third, and fourth, and fifth, and lixth powers of the faid binomial quantity, tee co elificient of the focond term of the feries that is equal to each of the faid powers of \(a+\dot{b}\) is alfo equal to the index of the fand powers; it follows that in all higher powers whatfoever of the faid binomial quantity \(a+b\), the co-ethcient of the fecond term of the feries which is equal to every fuch power

\section*{242 Inveffigation of Sir I. Newton's Einomial Theorem,}
will be equal to the index of the faid power; or, in other words, the co-efficient of the fecond term of the feries which is equal to \(\overline{a+4} 4^{m}\) will always be equal to the index \(m\).
Q. E. D.
16. From what has been thewn in the foregoing articles we may conclude with certainty, that the two firlt terms of the feries that is equal to \(\left.\overline{a+b}\right|^{n}\), when \(m\) is equal to any whole number whatfoever, will be \(a^{m}+m \times a^{m-1} b\), and that the literal parts of the following terms of the faid feries will be \(a^{m-2} b^{2}+a^{m-3} b^{3}+a^{m-7} b^{4}+a^{m-5} 5^{3}+a^{m-6} b^{6}+\) \(a^{m-7} b^{7}+a^{n-8} b^{3}+a^{m-9} b^{0}+8 i c a+a^{m-m} i^{n z}\), (or \(a^{0}\) \(b^{m}\), or \(1 b^{m 2}\), or) \(+b^{n t}\). It remains that we inquire what will be the numeral co-eficients of we faid third and other following terms of the faid feries, or by what law, or rule, they may be fenerated, or derived, from the two firft co-efficients, I and \(\%\). Whis is a mutrer of confoderable difinculty ; and 1 am rov acenainted with any direct and fcientilic methad of institigatong this law of the generation of the faid co-effecerts, betides that of NT. James Eernoult above memtioned, which is grounded on the Doctiine of Permutations and Combinations, and the properties of the Figurate numbers. But I can point out a manner of confudering the futjeet and attempting to find this law of geneation, which fecms likely enough to have occurred to a Mathematician who was in purfut of this inquiry, and which, if it had occurred to him, would have led him directly to form a jutt conjefure concerning this law by whici thefe co-efficienis are to be generated; after which he would have been induced to try the law, fo difionered by conjecture, in fome cafy particular inftances, and, having found it to be true in all of them, he would naturally conclude that it "as true in all other cales whatfoever. This conjectural method of inveftigation, I conceive, may have been as follow's.

A ConjeEtural Invefigetion of the Law by which the co-eficients of the third, and fourth, aind fifth, and otiner following terms of the feries robich is equal to \(a+b_{1}^{n}\), or the mith porver of the binomial quantity \(a+b\), may be generated, or derived, fromi 1 and m , the co-efficients of the two firft terms of the faid feries.
17. Now, in order to difcover the manner in which thefe co-efficients may be derived from the two firft co-efficients I and \(m\), I Chould think it would be natural to examine the co-efficients of the terms of the feries that is equal to \(\overline{a+b} 1^{n}\) in fome of the lower powers of \(a+b\) which we have actually raifed by multiplication, as, for example, in the feries which is equal to \(a+10^{6}\), and which we have found above in art. 10, to be \(a^{6}+6 a^{5} b+15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+b^{6}\). In this feries the co-efficients of the terms are \(1,6,15,20\), 15,6 , and 1 ; and our object is to difcover, 1 ft , by what number, integral or fractional, the fecond of thefe co-efficients, to wir, 6, ought to be multiplied in order to produce the third co-efficient, to wit, 15 ; and, 2 dly, by what number, integral or fractional, the third co-efficient, to wit, \({ }^{1} 5\), ought to be multiplied in order to produce the fourth co-efficient 20; and, 3 dly, by what number the fourth coefficient, 20 , ought to be multiplied in order to produce the fifth co-efficioni \(I_{5}\); and, 4 thly, by what number the fifth co-efficient, \(I_{5}\), onght to be multiplied in order to produce the fixth co-effieient 6 ; and, lattly, by what number the fixth co-cfficient, 6 , ought to be multiplied in order to produce the ferenth and lalt co-efficient i. Now thefe multiplying numbers are evidently \(\frac{15}{6}, \frac{20}{15}, \frac{15}{20}, \frac{6}{15}\), and \(\frac{1}{6}\). For 6 \(\times \frac{15}{6}\) is \(=15\), and \(15 \times \frac{20}{15}\) is \(=20\), and \(20 \times \frac{15}{20}\) is \(=15\), 212 and

\section*{244 Inveftigation of Sir I. Newton's Binomial Tibeorcmi,}
and \(15 \times \frac{6}{15}\) is \(=6\), and \(6 \times \frac{1}{6}\) is \(=1\). We mutt therefore now examine thefe five generating fractions \(\frac{15}{6}, \frac{20}{15}, \frac{15}{20}\), \(\frac{6}{15}\), and \(\frac{1}{6}\), together with the preceeding generating fraction \(\frac{6}{1}\), by the multiplication of which into the firft co efficient I the fecond co-efficient 6 is produced; and mult endeavour to find out fome remarkable, or regular, property' in them, which we may reafonably fuppofe to belong alfo to the coefficients of the terms of other powers of \(a+b\), as well as to thole of the terms of this, its fixth power. And, in order to examine thefe fractions with the greater eafe, it feems naturat, in the fint place, to reduce them to their loweft denominations, by dividing both their numerators and their denominators by the factors which are common to them both. Now, if this be done, the faid generating fractions \(\frac{6}{1}, \frac{15}{6}, \frac{20}{15}, \frac{15}{20}, \frac{6}{15}\), and \(\frac{1}{6}\), will be found to be equal to \(\left(\frac{6}{1}\right.\), \(\frac{5 \times 3}{2 \times 3}, \frac{4 \times 5}{3 \times 5}, \frac{3 \times 5}{4 \times 5}, \frac{2 \times 3}{5 \times 3}\), and \(\frac{1}{6}\), or) \(\frac{6}{1}, \frac{5}{2}, \frac{4}{3}, \frac{3}{4}, \frac{2}{5}\), and \(\frac{1}{6}\); in which laft fractions it is impofible not to obferve that the numerators regularly decreafe by an unit from 6 , which is the index of the power to which the binomial quantity \(a+b\) has been raifed, to 1 , and the denominators regularly increafe at the fame time by the fame quantily of an unit from 1 to the faid index 6. This regularity is wery ftriking, and naturally raifes a furpicion that the fame thing may take place in the generating fractions of the co-efficients of the turms of the feriefes that are equal to other powers of the biaomial quantity \(a+b\), and is an inducement to try it in the other fericles that have been produced above in art. 10, by hrulriplication, and which are equal to \(\left.\overline{a+a^{5}}, \overline{a+b}\right)^{2}\), \(\overline{a+b_{1}^{3}}\), and \(\overline{a+b} b^{2}\). We will therefore now proceed to try it in thofe inftances.
19. Now

IS. Now we have feen in art. Io, that \(a+b^{s}\) is = the feries \(a^{5}+5 a^{4} b+10 a^{3} b^{2}+10 a^{3} b^{3}+5 a b^{4}+b^{5}\), in which the numeral co-efficients of the terms are \(1,5,10,10,5\), and 1. Therefore the generating frations, by the multiplication of which the fecond of thefe co-efficients, to wit, 5 , is derived from the firft, or I , and every following co efficient from that which is next before it, will be \(\frac{5}{1}, \frac{10}{5}, \frac{10}{10}\), \(\frac{5}{10}\), and \(\frac{1}{5}\); which are refpectively equal to the fractions \(\frac{5}{1}\), \(\frac{4}{2}, \frac{3}{3}, \frac{2}{4}\), and \(\frac{1}{5}\). And in there latt fractions we cannot but obferve that the numerators \(5,4,3,2\), and 1 , regularly decreafe by an unit from 5, or the index of the power to which the binomial quantity \(a+\dot{b}\) is raifed, to \(\dot{1}\), and the denominators \(1,2,3,4\), and 5 , regularly increafe at the fame time, by the fame quantity of an unit from I to the faid index 5. It appears therefore that the fame rule takes place amongft thefe generating fractions \(\frac{5}{1}, \frac{4}{2}, \frac{3}{3}, \frac{2}{4}\), and \(\frac{1}{5}\), as took place amongft the generating fractions \(\frac{6}{1}, \frac{5}{2}\), \(\frac{4}{3}, \frac{3}{4}, \frac{2}{5}\), and \(\frac{1}{6}\), of the co-efficients of the terms of the former feries which was equal to \(a+1{ }^{6}\).
19. We will now try wherher the fame rule will take place in the feries which is equal to the fourth power of \(a+b\).

This feries is \(a^{4}+4 a^{3} b+6 a^{2} b^{2}+4 a b^{3}+b^{4}\), in which the numeral co efficients of the terms are \(1,4,6,4\), and 1 . Now the generating fractions by the multiplication of which the fecond of thefe co-efficients, to wit, 4 , is generated from the firlt, or \(I\), and every following co-efficient is generated from that which is next before it, are evidently \(\frac{4}{1}, \frac{6}{4}, \frac{4}{6}\),

\section*{246 Invefigation of Sir I. Newton's Binomial Theorem,}
and \(\frac{1}{4}\); which are refpectively equal to \(\frac{4}{1}, \frac{3}{2}, \frac{2}{3}\), and \(\frac{1}{4}\).
And in thefe laft fractions the numerators \(4,3,2\), and 1 , regularly decreafe by an unit from 4, which is the index of the power to which the binomial quantity \(a+b\) has been raifed, to 1 , and the denominators \(1,2,3\), and 4 , regularly increafe at the fame time by an unit from I to the faid index 4.
20. We come next to the feries which is equal to the cube of \(a+b\).

This feries is \(a^{3}+3 a^{2} b+3 a b^{2}+b^{3}\), in which the coefficients of the terms are \(1,3,3\), and 1 . Now the generating fractions, by the multiplication of which the fecond of there co-efficients is derived from the firf, and the third from the fecond, and the fourch from the third, are evidently \(\frac{3}{1}, \frac{3}{3}\), and \(\frac{1}{3}\), which are refpectively equal \(10 \frac{3}{1}, \frac{2}{2}\), and \(\frac{1}{3}\). And in thefe laft fractions the numerators 3,2 , and 1 , decreafe regularly by an unit from 3, which is the index of the power to which the binomial quantity \(a+b\) has been raifed, to 1 , and the denominators 1,2 , and 3 , increafe regularly at the fame time by an unit from I to the faid index 3 .
21. And the fame thing takes place in the feries which is equal to the fquare of \(a+b\). For this feries is \(a^{2}+2 a b+b^{2}\), in which the co-efficients of the terms are 1, 2, and I. Now the generating fractions, by the multiplication of which the fecond co-efficient 2 is derived from the firft co-efficient 1 , and the third co-efficient \(I\) is derived from the fecond coefficient 2 , are evidently \(\frac{2}{1}\), and \(\frac{1}{2}\); which admit of no reduction to lower denominations. And in thefe fractions \(\frac{2}{1}\) and \(\frac{1}{2}\), the numerators 2 and I decreafe by an unit, as
in the former cafes, from 2, which is the index of the power to which the binomial quantity \(a+b\) has been raifed, to 1 , and the denominators 1 and 2 increafe at the fame time by an unit from 1 to the faid index 2 .
22. It appears therefore that this law of the generating fractions of the numeral co-efficients of the terms of the feriefes that are equal to the powers of the binomial quantity \(a+b\), takes place in the cafes of the 〔quare, the cube, the fourth power, the fifth power, and the fixth power, of the faid binomial quantity. This is a very ftrong ground for conjecturing that the fame law will take place in the generating fractions of the numeral co-efficients of the terms of the feriefes which are equal to the powers of the faid binomial quantity in all other cafes whatfoever ; or that, if the index of the power to which the faid binomial quantity is raifed be any whole number wharfoever, denoted by the detter \(m\), the generating fractions, by the continual multiplication of which the numeral co-efficients of the fecond and other following terms of the feries which is equal to \(\left.\overline{a+b}\right|^{m}\), or the \(m\) th power of the faid binomial quantity, may be derived from 1 , or the co-efficient of the firft term, \(a^{m}\), or I \(\times a^{m}\), of the faid feries, will be \(\frac{m}{\mathrm{r}}\), or (as it is fometimes called) \(\frac{m-0}{I}\), and \(\frac{m-1}{2}, \frac{m-2}{3}, \frac{m-3}{4}, \frac{m-4}{5}, \frac{m-5}{6}, \& \mathrm{c}\), till we come to the term \(\frac{m-m}{m+1}\), which is \(=0\), or till the faid feries is terminated, or exhaufted.
23. And the ground for conjecturing that this is a general law that takes place among the generating fractions of the terms of thefe feriefes in all cafes, or when the index is equal to any whole number whatfoever, will become ftill flronger if we try it in a few more examples of feriefes that are equal to higher powers of the binomial quantity \(a+b\), than the fixth power. I fhall therefore now proceed to try

\section*{248 Inveftigation of Sir I. Newion's Binomial Theorem,}
it in the feriefes which are equal to \(a+\lambda^{2}, a+2^{2}\), and \(a+19\).
24. Now \(\overline{a+\lambda^{7}}\) is \(\left(=\overline{a+b^{6}} \times \overline{a+b}=a^{6}+6 a^{5} b+\right.\) \(\left.15 a^{4} b^{2}+20 a^{3} b^{3}+15 a^{2} b^{4}+6 a b^{5}+b^{6} \times a+b\right)=a^{7}+7 a^{6} b\) \(+21 a^{5} b^{2}+35 a^{4} v^{3}+35 a^{3} b^{4}+21 a^{2} b^{5}+7 a b^{6}+b^{7} ;\) in which feries the numeral co-efficients of the terms are 1,7 , 21, 35, 35, 21, 7, and 1. The generating fractions, by the multiplication of which the fecond of thefe co efficients, to wit, 7 , is derived from the fiff co-eficient \(r\), and the third and other foilowing co-efficients are derived from thofe which immediately preceed them, are evidently \(\frac{7}{1}, \frac{21}{7}, \frac{35}{21}\), \(\frac{35}{35}, \frac{21}{35}, \frac{7}{21}\), and \(\frac{1}{7}\); which are refpectivcly equal to \(\frac{7}{1}\), \(\frac{6}{2}, \frac{5}{3}, \frac{4}{4}, \frac{3}{5}, \frac{2}{6}\), and \(\frac{1}{7}\); in which laft fractions the numerators \(7,6,5,4,3,2\), and 1 , regularly decreafe by an unit from 7 , (which is the index of the power to which the binomial quantity \(a+b\) has been raifed), to \(t\), and the denominators \(1,2,3,4,5,6\), and 7 , regularly increafe at the fame time by an unit from 1 to the fad index 7 ; agoceably to what was obferved in the five former examples.
25. And \(\overline{a+a^{\circ}}\) is \(\left(=\overline{a+2} 7^{7} \times \overline{a+b}=a^{7}+7 a^{a} b+\right.\) \(\left.21 a^{5} b^{2}+35 a^{4} b^{3}+35 a^{3} b^{4}+21 a^{2} b^{5}+7 a b^{6}+b^{7} \times a+b\right)\) \(=a^{8}+8 a^{7} b+28 a^{6} b^{2}+56 a^{5} b^{3}+70 a^{4} b^{4}+56 a^{3} b^{5}+28 a^{2} b^{6}\) \(+8 a b^{7}+b^{8}\); in which feries the numeral co-efficients of the terms are \(1,8,28,56,70,56,28,8\), and 1. The generating fractions of thefe co-efficients are evidently \(\frac{8}{1}, \frac{28}{8}\), \(\frac{56}{28}, \frac{70}{5^{6}}, \frac{56}{7^{0}}, \frac{28}{5^{5}}, \frac{8}{28}\), and \(\frac{1}{5}\); which are refpectively equal to \(\frac{8}{1}, \frac{7}{2}, \frac{6}{3}, \frac{5}{4}, \frac{4}{5}, \frac{3}{6}, \frac{2}{7}\), and \(\frac{1}{8}\); in which laft fractions the numerators \(8,7,6,5,4,3,2\), and \(I\), decreafe regufarly by an unit from 8, (which is the index of the power in
which the binomial quantity \(a+b\) has been raifed), to 1 , and the denominators \(1,2,3,4,5,6,7\), and 8 , regularly increafe at the fame time by an unir from 1 to the fad index 8 ; agreeably to what has been obferved in the fix former cxamples.
26. And, laftly, \(\overline{a+2} 0{ }^{\circ}\) is \(\left(=\overline{a+c^{3}} \times \overline{a+b}=a^{8}+\right.\) \(8 a^{7} b+28 a^{0} b^{2}+56 a^{5} b^{3}+70 a^{4} b^{4}+56 a^{3} b^{5}+28 a^{2} b^{6}+8 a b^{7}\) \(+b^{8} \times \overline{a+b}=a^{9}+9 a^{3} b+36 a^{7} b^{2}+8+a^{6} b^{3}+126 a^{5} b^{4}+\) \(126 a^{4} i^{5}+84 a^{3} b^{6}+36 a^{2} b^{7}+9 a b^{8}+b^{9}\); in which feries the numeral co-efficients of the terms are \(1,9,36,84,126\), \(126,84,36 ; 9\), and 1 . The generating fractions of thefe co-efficients are evidently \(\frac{9}{1}, \frac{36}{9}, \frac{84}{36}, \frac{126}{84}, \frac{126}{126}, \frac{84}{126}, \frac{36}{84}, \frac{9}{36}\), and \(\frac{1}{9}\); which are refpectively equal to \(\frac{9}{1}, \frac{8}{2}, \frac{7}{3}, \frac{6}{4}, \frac{5}{5}\), \(\frac{4}{6}, \frac{3}{7}, \frac{2}{8}\), and \(\frac{1}{9}\); in which laft frastions the numerators \(9,8,7,6,5,4,3,2\), and 1 , decreafe regularly by an unit from 9 , (which is the index of the power to which the binomial quantity \(a+b\) has been raifed), to 1 , and the denominators \(1,2,3,4,5,6,7,8\), and 9 , regularly increale at the fame time by an unit from 110 the faid index 9 ; agreeably to what has been obferved in all the former ex amples.
27. After obferving this law of the co-efficients to take place in fo many different examples, it would be impoffible for our mathematical inveftigator not to conclude with a very high degree of confidence that it would take place in all other cafes whatfoever; or that, when the index \(m\) is equal to any whole number what oever, the generating fractions of the numeral co-efficients of the terms of the feries that is equal to \(\overline{a+2} 7^{m}\), will be \(\frac{m}{i}, \frac{m-1}{2}, \frac{m-2}{3}, \frac{m-3}{4}, \frac{m-4}{5}, \frac{m-5}{6}\), \(\frac{m-6}{7}, \frac{m-7}{8}, \& \mathrm{c}\), till we come to the fraction \(\frac{m-m}{m+1}\), which is 2 K
\(=0\),

\section*{\(25^{\circ}\) Inveftigation of Sir I. Nerwton's Binomial Theorem,}
\(=0\), or till the faid feries of fractions is terminated, or exhaufted. And then it would follow, from what has been fhewn above concerning the literal parts of the terms of the faid feries, that the faid feries which is equal to \(\overline{a+b}{ }^{n}\), or the \(m\) th power of the binomial quantity \(a+b\), would be \(a^{m}+\frac{m}{1} \mathrm{~A} a^{m-1} b+\frac{m-1}{2} \mathrm{~B} a^{m-2} b^{2}+\frac{m-2}{3} \mathrm{C} a^{m-3} b^{3}\) \(+\frac{m-3}{4} \mathrm{D} a^{m-4} b^{4}+\frac{m-4}{5} \mathrm{E} a^{m-5} b^{5}+\frac{m-5}{6} \mathrm{~F} a^{m-6} b^{\circ}+\) \(\& \mathrm{c}\), continued to \(b^{\prime \prime \prime}\). C. E. I.
28. This method of difcovering (by a conjecture grounded on fome trials in particular examples) that the generating fractions by which the numeral co-efficients of the third, and fourth, and other following terms of the feries that is equal to \(\overline{a+} b^{\prime \prime \prime}\) (or any integral power of the binomial quantity \(a+b\) ), are derived from \(m\) (the index of the power to which the faid binomial quantity is raifed), or from the co-efficient of the fecond term of the faid feries (which is always equal to the faid index) are \(\frac{m-1}{2}, \frac{m-2}{3}, \frac{m-3}{4}, \frac{m-4}{5}\), \(\frac{m-5}{6}\), \&cc, is fuggefted by Profeffor Saunderfon, in the fecond volume of his Algebra, in the chapter on the Binomial Theorem; where the Reader will find a good explanation and illuftration of the fand celebrated Theorem, by a variety of examples, both in the care of Integral powers, and in the cafe of Roots and other Fractional powers, and even in the cafe of Negative powers, and of powers that are both fractional and negative; but no demonftration of it in any cafe, not even in that of Integral and Affirmative powers.
29. We have now thewn with demonftrative certainty that the literal parts of the terms of the feries which is equal
to \(\overline{a+\lambda}{ }^{m}\), or the \(m\) th power of the binomial quantity \(a+b\), when
when the letter \(n\) denotes any affirmative whole number whatfoever, are \(a^{m}+a^{m-1} b+a^{m-2} b^{2}+a^{m-3} b^{3}+\) \(a^{n-4} b^{4}+a^{m-5} b^{5}+a^{n-6} b^{6}+a^{m-7} b^{7}+8 c \mathrm{c}\), till we come to the term \(a^{n-m} b^{m}\), (or \(a^{\circ} \times b^{m i}\), or \(1 \times b^{m}\) ), or \(b^{m}\), and that the numeral co-efficient of the literal part of the firft term of the faid feries is 1 , and the numeral co-efficient of the literal part of the fecond term of it is \(m\), and confequently that the two firft whole terms of the faid feries are \(1 \times a^{m}\), and \(m \times a^{m-1} b\), or \(a^{m}+m \times a^{m-1} b\), or \(a^{m}+\) \(\frac{m}{\mathrm{I}} \times a^{m-1} b\), or \(a^{m}+\frac{m-0}{\mathrm{~s}} \times a^{m-\mathrm{r}} b\). And we have alfo Thewn that in the feriefes which are equal to \(\overline{a+b^{2}}, \overline{a+b^{3}}\), \(\overline{a+b}^{4}, a+\bar{b}^{5}, \overline{a+~}^{10}, \overline{a+b^{7}}, \overline{a+b} b^{3}\), and \(\overline{a+b}\), or when the index \(m\) is equal to 2 , or 3 , or 4 , or 5 , or 6 , or 7 , or 8 , or 9 , the numeral co-efficients of the third, and fourth, and fifth, and ocher following terms of the faid feriefes are derived from \(m\), or the numeral co-efficient of the fecond term, by the continual multiplication of the fractions \(\frac{m-1}{2}\), \(\frac{m-2}{3}, \frac{m-3}{4}, \frac{m-4}{5}, \frac{m-5}{6}, \frac{m-6}{7}, \frac{m-7}{8}, \frac{m-8}{9}\), and \(\frac{m-9}{10}\); which affords a very ftrong ground for conjecturing that the numeral co-efficients of the third, and fourth, and fifth, and other following terms of the feriefes that are equal to any higher powers whatfoever of the binomial quantity \(a+b\), will, in like manner, be derived from \(m\), the co-efficient of the fecond term, by the continual multiplication of the fame generating fractions \(\frac{m-1}{2}, \frac{m-2}{3}, \frac{m-3}{4}, \frac{m-4}{5}, \frac{m-5}{6}, \frac{m-6}{7}\), \(\frac{m-7}{8}, \frac{m-8}{9}, \frac{m-9}{10}, \frac{m-10}{11}, \frac{m-11}{12}, \& c\), till we come to the term \(\frac{m-n}{m+1}\), which is \(=0\), or till the faid feries of generating fractions is terminated, or exhaufted. Now this con2 K 2 jecture
jecture may be changed into abfolute certainty, and the faid law of the generation of the co efficients may be fhewn to take place in all the feriefes that are equal to the quantity \(\overline{a+t^{n 2}}\), or the powers of the binomial quantity \(a+b\), when the index \(m\) of the faid quantity \(\bar{a}+b_{1}^{m}\), is equal to any whole number, how great foever, by thewing that, if it takes place when the index \(m\) is equal to any one particular number, (as we have feen that it does when the index \(m\) is equal either to 2 , or to 3 , or to 4 , or to 5 , or to 6 , or to 7 , or to 3 , or to 9), it muft alfo take place when the index \(m\) is greater by an unit than in the former cafe. For then it will follow that it mut be true likewife when the index \(n\) is greater by any multitude of units than in the former cafe, or when it is equal to any other whole number, how great foever. This we thall now proceed to thew in the remainiag part of this difcourfe.

Of the numeral co-efficients of the third, and fourth, and fifth, and other following terms of the Series that is equal to \(\overline{a+b}]^{m}\), and the law of the generation of the faid co-efficients from m , the co-efficient of the fecond term of the faid feries, and from each other.
30. In order to demonftrate the lav of the generation of thefe co-efficients, it will be convenient to get rid of the powers of \(a\) and \(b\), in the terms of the feries that is equal to \(a+\left.b\right|^{m \prime}\), and to fix our attention only on the generation of the numeral co-efficients of the third, fourth, fifth, fixth, and other following terms of the faid Ceries. This may be done by fuppofing \(a\) and \(b\) to be, each of them, equal to I ,
and confequently \(a+b\) to be equal to \(\mathrm{x}+\mathrm{x}\), and \(\overline{a+b}{ }^{n}\) to be equal to \(\overline{1+1}{ }^{n / 2}\). For, as all the powers of both \(a\) and \(b\) will, on this fuppofition, be equal to 1 , the Binomial Theorem fet forth above in art. I, will then be reduced to this, to wit, that \(\overline{1+1}{ }^{m}\) will be equal to the feries \(1+\frac{m}{I}\) \(+\frac{m 1}{1} \times \frac{m-1}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}\) \(\times \frac{m-3}{4}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{5}+8 \mathrm{c}\), continued to the term \(\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{5} \times 8 \mathrm{c}\), \(\times \frac{m-\sqrt{n-1}}{n}\), or to the term \(\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times\) \(\frac{m-4}{5} \times \& \mathrm{c}, \times \frac{m-m+1}{m}\), or to the term \(\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times\) \(\frac{m-3}{4} \times \frac{m-4}{5} \times \& c, \times \frac{1}{m}\), or to the term 1 . For the laft term of this feries mult always be 1 ; becaufe the numerators of the feveral fators in it form a decreafing progreffion of numbers, decrealing by an unit, from \(n\) to 1 ; and the denominators of the fame fators form an increafing progreffion of numbers, increafing by an unit, from 1 to \(m\); and confequently the product of the multiplication of all the denominators is equal to the product of the multiplication of all the numerators, and therefore the product of the multiplication of all the faid factors, or fractions, \(\frac{m}{1}, \frac{m-1}{2}\), \(\frac{m-2}{3}, \frac{m-3}{4}, \frac{m-4}{5}, \& \mathrm{c}\), into each other, or the laft term of the feries, muft always be equal to 1 .

We are therefore now to demonftrate that \(\overline{1+1}{ }^{n \prime 2}\) is equal to the feries \(1+\frac{m}{1}+\frac{m}{2} \times \frac{m-1}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}+\frac{m}{1}\)
254. Inveftigation of Sir I. Nerwton's Binomial Theorem,
\(\times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times\) \(\frac{m-4}{5}+\& c,+1\). And this we propofe to do by fhewing, by abftract and general reafonings, that, if this Theorem is true when the index \(m\) is of any particular value, as, for example, when it is equal to 9, it muft likewife be true when the index \(m\) is increafed by an unit, or that, if \(n\) be taken \(=n_{1}+1\), the quantity \(\left.\overline{I+1}\right|_{n} ^{n}\), or the \(n\)th power of the binomial quantity \(I+I\), will be equal to the Ceries \(I+\) \(\frac{n}{1}+\frac{n}{1} \times \frac{n-1}{2}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} \times\) \(\frac{n-3}{4}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4} \times \frac{n-4}{5}+\& c\), continued to the term \(\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4} \times \frac{n-4}{5} \times \& c, \times \frac{1}{n}\), or to the term I .

3I. To facilitate the demonfration of this propofition, it will be convenient to premife the following Lemma.

\section*{A L E M M A.}

If the terms of the feries \(1+\frac{m}{1}+\frac{m}{1} \times \frac{m-1}{2}+\frac{m}{1} \times\) \(\frac{m-1}{2} \times \frac{m-2}{3}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4}+\frac{m}{1} \times \frac{m-1}{2} \times\) \(\frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{5}+\& c_{2}+1\) (in which \(m\) reprefents any whole number whatfoever), be fet down twice together in two parallel lines, or row's, one under the other, but with the terms in the lower row advanced one ftep further to the right-
right-hand than the terms in the upper row, fo that the firft term in the lower row fhall ftand under the fecond term of the upper row, and the fecond term in the lower row hall ftand under the third term in the upper row, and the third, fourth, fifth, fixth, and other following terms in the lower row fhall fand under the fourth, fifth, fixth, feventh, and other following terms in the upper row, refpectively; and both rows are continued to the fame number of terms, namely, to the whole number of terms in the faid feries, or to \(m+1\) terms; and then the terms in the lower row (each of which, it is evident, will confift of one factor lefs than the correfponding term, or term fanding immediately above it in the upper row) be reduced to the fame denomination as the terms that fand immediately above them in the upper row, and, after being fo reduced, are added to the faid terms that ftand immediately above them in the faid upper row ;upon the fe fuppofitions the new feries of terms arifing from this addition of the faid two rows of terms to each other, will be as follows, to wit, \(I+\frac{m+1}{1}+\frac{m}{1} \times \frac{m+1}{2}+\frac{m}{1} \times \frac{m-1}{2}\)
\[
\times \frac{m+1}{3}+\frac{m}{I} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m+1}{4}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}
\]
\(\times \frac{m-3}{4} \times \frac{m+1}{5}+8 c+1\); in which feries the laft term
is \(I\), as well as in the two feriefes from the addition of which this feries arifes; and the numerators of the laft factors in all the terms, except the laft, are always equal to \(m+1\), inftead of being equal to \(m-1, m-2, m-3, m-4\), \(\& c\), as in the two foregoing feriefes; and the number of terms in the faid new feries is \(m+2\), inftead of \(m+1\), which is the number of terms in each of the faid foregoing feriefes.
\({ }_{5} 56\) Inveftigation of Sir I. Newton's Binomial Tbeoreke,

> DEMONSTRATION.
\(3^{2}\). This will appear by fetting down the faid feries \(1+\frac{m}{1}+\frac{m}{1} \times \frac{m-1}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}+\frac{m}{1} \times \frac{m-1}{2}\)
\(\times \frac{m-2}{3} \times \frac{m-3}{4}+\& c,+1\) twice over, in the manner that has been juft defcribed; which may be done as follows:
\[
\begin{aligned}
1+\frac{m}{1}+\frac{m}{1} \times \frac{m-1}{2} & +\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}
\end{aligned}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4}+\& \mathrm{c}
\]

In thefe two rows of terms it is evident, in the firlt place, that the terms in the upper row, after the two firlt terms I and \(\frac{m}{1}\), confift of two, three, and four, and more, factors, every new term having one more factor than the term next before it; and, \(2 \mathrm{~d} l \mathrm{y}\), that the terms in the lower row that ftand immediately under the third, fourth, fifth, and other following terms in the upper row, confilt of one factor lefs than the correfponding terms, or terms immediately over them in the upper row; and, 3 dly, that the terms in the lower row confift of the very fame factors as the correfponding terms in the upper row, excepting that they want the laft factors of the faid terms in the upper row. And hence it follows, that, in order to reduce the terms in the lower row to the fame denomination as the terms in the upper row, we muft multiply them by factors that thall have the fame denominators as the laft, or additional factors in the upper row, and which muft have their numerators equal to their denominators, fo as to make each of them equal to 1 , to the end that the magnitudes of the faid lower terms may not be altered by the multiplication of them by the faid new factors. Thus, for example, the fecond term of the lower lower row, to wit, \(\frac{\pi}{1}\), mult be multiplied into the faftor \(\frac{2}{2}\), in order to bring it to the fame denomination as the third term in the upper row, to wir, \(\frac{m_{2}}{1} \times \frac{m-1}{2}\), without altering its magnitude ; and the third term in the lower row, to wit, \(\frac{m}{3} \times \frac{m-1}{2}\), mult be multiplied into the factor \(\frac{3 .}{3}\), in order to bring it to the fame denomination as the fourth term of the upper row, to wit, \(\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-1}{3}\), without altering its magnitude; and the fourth term in the lower row, to wit, \(\frac{m}{1} \times \frac{n-1}{2} \times \frac{n-2}{3}\), muft be multiplied into the faitor \(\frac{4}{4}\), in order to bring it to the fame denomination as the fifth term in the upper row; to wit, \(\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4}\), without altering its magnitude; and, for the like reafon, the fifth, and fixth, and feyenth, and other following terms in the lower row mult be multiplied into the feveral factors \(\frac{5}{5}\), and \(\frac{6}{6}\), and \(\frac{7}{7}\), \&c, refpectively ; after which multiplications the two rows of terns that are to be added to each other, will be as follows, to wit,
\[
\begin{aligned}
& 1+\frac{m}{1}+\frac{m}{1} \times \frac{m-1}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4}+8 c \\
& +1+\frac{m}{1} \times \frac{2}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{3}{3}+\frac{m}{1} \times \frac{n-1}{2} \times \frac{m-2}{3} \times \frac{4}{4}+8 c c
\end{aligned}
\]
33. And, if thefe two rows of terms (being now brought to the farme denominations) are added together in the manner above defcribed; that is, every term in the lower row to the term that is immediately above it, the fum thence refulting will be tlte feries \(I+\frac{m+1}{1}+\frac{m}{1} \times \frac{m+1}{2}+\frac{m}{1} \times\) \(\frac{m-1}{2} \times \frac{m+1}{3}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m+1}{4}+\& \& C_{,}\)in which the
the numerator of the laft factor in every term is always \(m+i_{s}\) inftead of \(m-1, m-2, m-3, m-4, \& c\).

And "That this muft be the cafe in all the following "terms of the faid new feries as well as in the few terms of "it that have been here fet down," will be evident from this confideration, to wir, That the denominator of the laft factor of every term in the upper of the tivo rows of terms that are added together is always greater by an unit than the number which is fubtracted from \(m\) in the numerator of the fame factor. For from thence it follows that the denominator of the new multiplying fraction in the correfponding term of the lower row (which is always equal to the denominator of the faid laft factor in the upper row, ) mult always be greater by an unit than the number which is fubtracted from \(m\) in the numerator of the laft factor of the faid upper term. And, therefore, the numerator of the faid new multiplying fraction in the lower row (which is always equal to. its denominator,) mult allo always be greater by an unit than the number which is fubtracied from \(m\) in the numerator of the laft factor of the find upper term ; the confequence of which, in adding the lower term to the upper term, is to convert the numerator of the laft factor in the upper term from \(m-1\), or \(m-2\), or \(m-3\), or the excefs of \(m\) above fome other number, into \(m+1\). \& E. D.

34, And the number of terms in the new feries, arifing from the addition of the two former in the manner that has been defcribed, will be greater by one than the number of the terms in either of the two added feriefes: becaufe the dower row of terms, confifting of the fanie number of terms as the upper row, and being placed one term further to the right-hand, muft extend one term beyond it; and confequently, as the number of terms in each of the two rows of terms is \(m+1\), the number of tetms in the new feries, arifing from the addition of the two rows together, muft be m+2. CE. D.
35. And, laftly, the lant term of the faid new feries mutt be the fame as the lat term of the old feries, or of the lower
row of terms; becaufe, as the lower row of terms extends one term beyond the upper row, the laft term in the lower row will not have any term over it in the upper row to which it is to be added, and confequently will continue the fame in the new ferics \(1+\frac{m+1}{I}+\frac{m}{1} \times \frac{m+1}{2}+\frac{m}{1} \times \frac{m-1}{2}\)
\(\times \frac{m+1}{3}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m+1}{4}+8 \mathrm{c}\), as in the old feries \(I+\frac{m}{1}+\frac{m}{1} \times \frac{m-1}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}+\frac{m}{1} \times\) \(\frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4}+\& c c\). But we have feen above, in art. 30 , that the laft term of the feries \(\mathrm{I}+\frac{m}{1}+\frac{m}{1} \times \frac{m-1}{2}\) \(+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4}+8 \mathrm{c}\),
is I . Therefore the laft term in the new feries \(\mathbf{I}+\frac{m+1}{1}+\) \(\frac{m}{1} \times \frac{m+1}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m+1}{3}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times\) \(\frac{m+1}{4}+\& x c\), will alfo be I . C. E. D.
36. Coroll. I. Now let the order of the numerators \(m\), \(m-1, m-2, m-3, m-4, \& c\), and \(m+1\), of the factors of the third and other following terms of the laft feries \(1+\frac{m+1}{1}+\frac{m}{1} \times \frac{m+1}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m+1}{3}+\frac{m}{1} \times \frac{m-1}{2}\) \(\times \frac{m-2}{3} \times \frac{m+1}{4}+\& \mathrm{c}\), be changed, by making \(m+5\) the numerator of the firf factor of every term inftead of being the numerator of the laft factor. The faid feries will then be as follows, to wit, \(\mathrm{I}+\frac{m+1}{1}+\frac{m+\mathrm{r}}{1} \times \frac{m}{2}+\)
\(\frac{m+1}{1} \times \frac{m}{2} \times \frac{m-1}{3}+\frac{m+1}{1} \times \frac{m}{2} \times \frac{m-1}{3} \times \frac{m-2}{4}+\delta<c_{1}\)
Now this change in the order of the numerators of the fevera! factors of the terms will create no change in the values, \({ }_{3}\) L 2
or magnitudes, of the feveral terms themfclves; becaufe the products arifing from the multiplication of the fame numbers are always the fame, in whatever order the numbers are multiplied. Therefore the foregoing feries, after this change in the order of the numerators of the 'feveral factors of its terms, will ftill be of the fame magnitude as before, and confequently will be equal to the fum that arifes from the addition of the aforefaid two rows of terms in the manner above defcribed; that is, the feries \(1+\frac{m+1}{1}+\frac{m+1}{1} \times\)
\(\frac{m}{2}+\frac{m+1}{1} \times \frac{m}{2} \times \frac{m-1}{3}+\frac{m+1}{1} \times \frac{m}{2} \times \frac{m-1}{3} \times \frac{m-2}{4}+\)
\(\& \mathrm{c},+1\), will be equal to the fum that arifes from the addition of the aforefaid two rows of terms in the manner above defrribed.
37. Corol!. 2. Now let \(n\) be \(=m+1\). Then will \(n-1\) be \(=m\), and \(n-2\) will be \(=n-1\), and \(n-3\) will be \(=\) \(m-2\), and \(n-4\) will be \(=m-3\); and, in like manner, \(n-5, n-6, n-7, \& x\), will be equal to \(n-4, m-5\), \(n_{-}-6, \& \mathrm{c}\), reípectively. And coniequently the feries obtained in the foregoing Corollary, to wit, \(+\frac{m+1}{1}+\frac{m+1}{1}\)
\(\times \frac{m}{2}+\frac{m+1}{I} \times \frac{m}{2} \times \frac{m-1}{3}+\frac{m+1}{1} \times \frac{m}{2} \times \frac{m-1}{3} \times \frac{m-2}{4}\) \(+8 \mathrm{c},+\mathrm{s}\), confiting of \(m+2\) terms, will be equal to the ferics \(1+\frac{n}{1}+\frac{n}{1} \times \frac{n-1}{2}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3}+\frac{n}{1} \times\) \(\frac{\pi-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4}+\varepsilon \% c,+1\), confifting of \(n+1\) terms. Therefore the feries \(1+\frac{n}{1}+\frac{n}{3} \times \frac{n-1}{2}+\frac{n}{1} \times \frac{n-1}{2} \times\) \(\frac{n-2}{3}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4}+8 \mathrm{c},+\mathrm{I}\), confifting of \(n+1\) terms, will be equal to the fum that arifes by adding the two aforefaid rows of terms together in the manner above defrribed.

The Demonfration of the principal Propofition.
38. Thefe things being premifed, the main propofition ftated at the end of art. 30 , to wit, that, if \(m\) denote any whole number whatfoever, the quantity \(\overline{1+1)^{m}}\), or the \(m\) th power of the binomial quantity \(1+1\), will be equal to the feries \(1+\frac{m}{1}+\frac{m}{1} \times \frac{m-1}{2}+\frac{m}{i} \times \frac{m-1}{2} \times \frac{m-2}{3}+\frac{m}{1} \times\) \(\frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{5}\) \(+\& c\) c continued to in +1 terms, or to the term I , may be demonftrated in the manner following.
39. The product that arifes by multiplying the feries \(1+\frac{m}{1}+\frac{m}{I} \times \frac{m-\tau}{2}+\frac{m}{i} \times \frac{m-1}{?} \times \frac{m-2}{3}+\frac{m}{1} \times \frac{m-r}{2} \times\) \(\frac{m-2}{3}+\frac{m-3}{4}+8 c\), into \(\mathrm{I}+\mathrm{I}\) is the fum that arifes by fetting down the faid feries twice following in two parallel rows, one under the other, with the terms in the lower row advanced one term further to the right-hand than the terms in the upper row, in the manner above defcribed, and then adding the terns in the lower row to the correfponding terms in the upper row. And the \(m+1\) th power of \(1+1\) is the product of the multiplication of the \(m\) th power of \(I+I\) into \(I+I\). Therefore, if in any particular value of in the \(m\) th power of \(I+I\) is equal to the feries \(I+\frac{m}{1}+\frac{m z}{1}\) \(\times \frac{m-1}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4}\) \(+\& \mathrm{c},+\mathrm{I}\), confifting of \(m+\mathrm{I}\) terms, the \(m+\mathrm{Ith}\) power of \(1+1\) will be equal to the fum that arifes by fetting down the faid feries twice following in two parallel rows in the manner above defcribed, and adding the faid two rows of termes

262 Inveftigation of Sir I. Newton's Binomial Thbeorem,
terms together: But, by the fecond Corollary of the foregoing Lemma, if \(n\) be \(=n+1\), the fum arifing from the addition of the faid two rows of terms is the feries \(1+\)
\(\frac{n}{3}+\frac{n}{1} \times \frac{n-1}{2}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3}\)
\(\times \frac{n-3}{4}+\& \mathrm{c},+1\), confifting of \(n+1\) terms. Therefore, if in any particular value of \(m\) the \(m\) th power of \(\mathbf{I}+\mathbf{I}\) is equal to the feries \(I+\frac{m}{1}+\frac{m}{1} \times \frac{m-1}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}\) \(+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4}+\& c,+1\), confifting of \(m+1\) terms, it will follow that the \(m+1\) th, or \(n\) th, or nex: higher power, of \(1+1\) will be equal to the feries \(I\) \(+\frac{n}{1}+\frac{n}{1} \times \frac{n-1}{2}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3}+\frac{n}{1} \times \frac{n-1}{2} \times\) \(\frac{n-2}{3} \times \frac{n-3}{4}+8: \mathrm{c}+\mathrm{I}\), confifing of \(n+1\) terms. But it has been thewn in art. 17, 18, 19, \(8 \mathrm{c}, \cdots 26\), that when 3 is equal either to 2 , or to 3 , or to 4 , or to 5 , or to 6 , or to 72 or to \(S\), or to 9 , the m th power of \(\mathrm{I}+\mathrm{I}\) is equai to the feries \(1+\frac{m}{1}+\frac{m}{1} \times \frac{m-1}{2}+\frac{m}{1} \times \frac{m-1}{2} \times\) \(\frac{m-2}{3}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{n-3}{4}+\varepsilon c c+1\), confifting of \(m+\mathrm{r}\) terms, 7 herefore, if \(n\) be equal to \(9+1\), or r 0 , the \(9+\) hth power, or 10 h power, or \(n\) h power, of \(I+1\) will be equal to the feriẹs \(1+\frac{n}{1}+\frac{n}{1} \times \frac{n-1}{2}+\frac{n}{1} \times \frac{n-1}{2} \times\) \(\frac{y-2}{3}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4}+8 c+1\), confifting of \(n+1\), or \(10+1\), or 1 , terms. And in the fame manner it may be proved that, fince, when \(m\) is \(=10\), the mith power u) \(1+1\) is cqual to the feries \(I+\frac{m}{1}+\frac{m}{1} \times \frac{m-1}{m}+\frac{m}{1} \times\) \(\frac{n-1}{2} \times \frac{m-2}{3}+\frac{m}{1} \times \frac{m-1}{n} \times \frac{m-2}{3} \times \frac{m-3}{4}+\delta \cdot c_{0}+r_{4}\) scuriling of \(m+1\), or \(10+1\), or 1 , terms, the \(m+1\), 1 ,
or \(10+1\) ph, or 1 th, or (putting \(n=m+1=10+1=11\) ) the \(n\), power of \(I+1\) will be equal to the fries \(1+\) \(\frac{n}{1}+\frac{n}{1} \times \frac{n-1}{2}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} \times\) \(\frac{n-3}{4}+\delta c+1\), confining of \(n+1\), or \(I x+1\), or 12 , terms. And fo we may proceed from number to number ad infintum. And confequently, whatever be the whole number denoted by \(m\), it will always be true that \(\overline{1+1}{ }^{m}\) is equal to the Series \(I+\frac{m}{1}+\frac{m}{1} \times \frac{m-1}{2}+\frac{m}{1} \times \frac{m-1}{3} \times \frac{m-2}{3}+\frac{m}{1}\) \(\times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{2} \times \frac{m-3}{4} \times\) \(\frac{m-4}{5}+\delta C+1\), confining of \(m+1\) terms. Q. E. D.

The foregoing Demonfration erpreffed in a more concife Mimer.
40. The foregoing reafonings may be expreffed in a more concife manner as follows. If \(n\) be \(=m+1\), and it be true in any particular value of m that \(\overline{1+1}]^{\prime \prime}\) is the fe . res \(1+\frac{m}{1}+\frac{m}{1} \times \frac{m-1}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}+\frac{m}{1} \times\) \(\frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4}+8 \mathrm{c}\), it will aldo be true that \(\overline{1+11^{2}}\) will be \(=1+\frac{n}{1}+\frac{n}{1} \times \frac{n-1}{2}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3}+\frac{n}{1}\) \(\times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4}+8 c\).
For \(\overline{1+1} 1^{n}\) is \(=\overline{1+1} \overline{1}^{m+1}=\overline{I+1} 1^{n} \times \overline{1+1}=\) the Series \(I+\frac{m}{1}+\frac{m}{1} \times \frac{m-1}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}+\frac{m}{1} \times \frac{m-1}{2}\)

264 Inveftigation of Sir I. Newtoin's Binomial Tbeorems
\(\times \frac{m-2}{3} \times \frac{m-3}{4}+\& c\), multiplied into \(1+1=\) \(1+\frac{m}{1}+\frac{m}{1} \times \frac{m-1}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4}+\) \& C C \(^{2}\). \(+1+\frac{m}{1}+\frac{m}{1} \times \frac{m-1}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}+\& C_{i}\) \(=1+\frac{m}{1}+\frac{m}{1} \times \frac{m-1}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4}+8 \mathrm{c}_{\text {。 }}\)
\(+1+\frac{m}{1} \times \frac{2}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{3}{3}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m i-2}{3} \times \frac{4}{4}+\& \mathrm{c}\). \(=1+\frac{m+1}{1}+\frac{m}{1} \times \frac{m+1}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m+1}{3}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m+\mathrm{r}}{4}+\delta \mathrm{CC}\) \(=1+\frac{m+1}{1}+\frac{m+1}{1} \times \frac{m}{2}+\frac{m+1}{1}-\frac{m}{2} \times \frac{m-1}{3}+\frac{m+1}{1} \times \frac{m}{2} \times \frac{m-1}{3} \times \frac{m-2}{4}+\& c\) \(=1+\frac{n}{1}+\frac{n}{1} \times \frac{n-1}{2}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4}+8 \mathrm{cc}\). But it has been fhewn in art. 17, 18, 19, \&c, \(-\cdots 26\), that, when \(m\) is equal either to 2 , or to 3 , or to 4 , or to 5 ; or to 6 , or to 7 , or to 8 , or to \(9, \overline{1+1}^{m t}\) is equal to the feries \(1+\frac{m}{1}+\frac{m}{1} \times \frac{m-1}{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3}+\frac{m}{1} \times\) \(\frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4}+\) Scc. Therefore, if \(n\) be \(=9+I_{j}\) or \(10, \overline{1+1}^{n}\), or \(\overline{1+1} 1^{10}\), will be \(=\) the feries \(1+\frac{n}{1}+\) \(\frac{n}{1} \times \frac{n-1}{2}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3} \times \frac{n-3}{4}\) + \&ic. And it may be hewn in like manner, that, if \(n\) be put for \(11,12,13,14,8 i c\), ad infinitum fucceffively, \(1+1\) will, in all thefe fuppofitions, be always equal to the feries \(1+\frac{n}{1}+\frac{n}{1} \times \frac{n-1}{2}+\frac{n}{1} \times \frac{n-1}{2} \times \frac{n-2}{3}+\frac{n}{1} \times \frac{n-1}{2} \times\) \(\frac{n-2}{3} \times \frac{n-3}{4}+8 x c\); and therefore the propofition is univerlally true, whatever be the whole number denoted by the letter \(n\).
41. This demonfration of the binomial theorem in the cafe of integral powers, is nearly the fame with that given by Mr. John Stewart, of Aberdeen, in the 6th Section of his Commentary on Sir Ifaac Newton's curious little Tract, intitled, Analyfis ly Equations of an infinite number of Terms. See his edition of Newton's Treatife on the Quadrature of Curves, and of the faid Tract intitled Analyis, EFc , with his learned Comments on both, in one volume, quarto, publifhed at London, in the year \(1745^{\circ}\), page 47 I, Art. \(155^{\circ}\)

\section*{Of the Powers of a Refidual Quantity \(a-b\), when their Indexes are avbole Numbers.}
42. We have hitherto been confidering the integral powers of a binomial quantity \(a+b\), or of the fum of two fingle guantities \(a\) and \(b\); and we have feen that, if the faid binomial quancity \(a+b\) be rarled to any power of which a whole number denoted by \(s\), is the index, the quantity \(\left.\overline{a+b}\right|^{m}\), or the faid \(m\) th power of \(a+b\), will be equal to the feries
\[
\begin{aligned}
& a^{m}+\frac{m 1}{1} a^{m-1} b+\frac{m}{i} \times \frac{m-1}{2} a^{m-2} b^{2}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \\
& a^{m-3} b^{3}+\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} a^{m-4} i^{4}+\frac{m}{1} \times
\end{aligned}
\]
\[
\frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{5} a^{m-5} z^{5}+\& c,+b^{m} \text {, or (if }
\]
\[
\text { we put } \mathrm{A}=1, \mathrm{~B}=\frac{m}{1} \mathrm{~A}, \mathrm{C}=\frac{m-1}{2} \mathrm{~B}, \mathrm{D}=\frac{m-2}{3} \mathrm{C}, \mathrm{E}
\]
\[
=\frac{m-3}{4} \mathrm{D}, \mathrm{~F}=\frac{m_{1}-4}{5} \mathrm{E}, \text { and } \mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{~K}, \mathrm{~L}, \& \mathrm{c},=\frac{m-5}{6}
\]
\[
\mathrm{F}, \frac{m-6}{7} \mathrm{G}, \frac{m-7}{8} \mathrm{H}, \frac{m-8}{9} \mathrm{I}, \frac{m-9}{10} \mathrm{~K} \text {, \&xc, refpectively, to }
\]
\[
\text { the feries } a^{m}+\frac{m}{1} \mathrm{~A} a^{m-1} b+\frac{m-1}{2} \mathrm{~B} a^{m-2} b^{2}+\frac{m-2}{3}
\]
\[
\mathrm{C} a^{m-3} b^{3}+\frac{m-3}{2} \mathrm{D} a^{m-4} b^{4}+\frac{m-4}{5} \mathrm{E} a^{m-5} b^{5}+8<\mathrm{c}+b^{m} ;
\]
in which all the terms after the firft term \(a^{m}\) are marked with the fign + , or are added to the faid firft term. We will now proceed to confider the value of \(a-b]^{m}\), or the \(m\) th power of the refidual quantity \(a-b\), or of the difference of the two quantities \(a\) and \(b\), upon a fuppofition that \(a\) is the greater of the two.
43. Now, if a be fuppofed to be greater than \(b\), and \(m\) be any whole number whatiocver, the quantity \(\left.\overline{a-b}\right|^{\prime \prime}\), or the molh power of the refidual quantity, or difference, \(a-b\), will be equal to the feries \(a^{m}-\frac{m}{1} a^{m-1} b+\frac{m}{1} \times \frac{m-1}{2}\) \(a^{m-2} b^{2}-\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} a^{m-3} b^{3}+\frac{m}{1} \times \frac{m-1}{2} \times\)
\(\frac{m-2}{3} \times \frac{m-3}{4} a^{m-4} b^{4}-\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{5}\)
\(a^{31-5} b^{3}+\& c c\), of (if we put \(A\), as before, \(=I\), and \(B=\) \(\frac{m}{s} \mathrm{~A}\), and \(\mathrm{C}=\frac{n-1}{2} \mathrm{~B}\), and \(\mathrm{D}=\frac{m-2}{3} \mathrm{C}\), and \(\mathrm{E}=\frac{m-3}{4}\)
D , and \(\mathrm{F}=\frac{m-4}{5} \mathrm{E}\). and \(\mathrm{G}, \mathrm{H}, \mathrm{I}, \mathrm{K}, \mathrm{L}, \& \mathrm{c},=\frac{m-5}{6} \mathrm{~F}\), \(\frac{m-6}{.7} \mathrm{G}, \frac{m-7}{8} \mathrm{H}, \frac{m-8}{2} \mathrm{I}, \frac{m-9}{10} \mathrm{~K}\), \&c, refpectively,) to the feries \(a^{m}-{ }_{\mathrm{I}}^{m}-\mathrm{A} a^{m-1} b+\frac{m-1}{2} \mathrm{~B} \cdot a^{m-2} b^{2}-\sqrt{\frac{m-2}{3}} \mathrm{C} a^{m-3} b^{3}\) \(+\frac{m-3}{4} \mathrm{D} a^{m-4} b^{4}-\frac{\sqrt{m-4}}{5} \mathrm{E} a^{m-5} b^{5}+\& \varepsilon\), which confifts of exactly the fame terms as the feries that is equal to \(a+2)^{n}\), or the fame power of the binomial quantity \(a+b\), but with the fign - prefixed to the fecond, and fourth, and fixth, and every following even term in the feries, which denotes that the faid tems are not to be added to the firft term \(a^{n z}\), and to the third, and fifth, and other following odd terms, (as they were in the former leries, which was equal to \(\overline{a+\ell^{m}}\),) but to be fabtraeted from them.
44. That
44. That this muft lie fo, will be evident from confidering the manner in which the feveral powers of the refidual quantity \(a-b\) are generated from each other by the continual multiplication of \(a-b\), of which we will now exhibit a fpecimen with refpect to a few of its lowelt powers. The fecond, third, fourth, and fifth powers of \(a-b\) are derived from \(a-b\) itfelf by the following multiplications.
\[
\begin{aligned}
& \begin{array}{l}
a-b \\
a-b \\
a-a b
\end{array} \\
& -a b+b \vec{b} \\
& a a-2 a b+b b=\overline{a-b} a^{2} \text {. } \\
& a-b \\
& a^{3}-2 a^{2} b+a b^{=} \\
& -a^{2} b+2 a b^{2}-b^{3} \\
& \begin{array}{r}
\overline{a^{3}-3 a^{2} b+3 a b^{2}-b^{3}} \\
a-b
\end{array}=a-2 ; \\
& a^{4}-3 a^{3} b+3 a^{2} b^{2}-a b^{3} \\
& -a^{3} b+3 a^{2} b^{2}-3 a b^{3}+b^{4} \\
& \left.\overline{a^{2}-4 a^{3} b+6 a^{2} b^{2}-4 a b^{3}+b^{4}}=a-b\right)^{4} \\
& \begin{array}{l}
a^{5}-4 a^{4} b+6 a^{3} b^{2}-4 a^{2} b^{3}+a b^{4} \\
-a^{4} b+4 a^{3} b^{2}-6 a^{2} b^{3}+4 a b^{4}-b^{5}
\end{array} \\
& \overline{a^{5}-5 a^{4} b+10 a^{3} b^{2}-10 a^{2} b^{3}+5 a b^{4}-b^{5}}=\bar{a} b^{3} .
\end{aligned}
\]
45. From thefe operations it is evident that, wherever the odd powers of \(b\) occur in the faid powers of \(a-b\), the terms are marked with the fign -, and that, wherever the even powers of \(b\) occur in the faid powers of \(a-b\), the terms are marked with the fign + . And the fame thing, it is evident, muft happen in all higher powers of \(a-b\) whatfoever, as well in thofe that have been here fer down, becaufe
2. M 2
b is
\(b\) is marked with the fign - in the two original factors \(a-b\) and \(a-b\); whence it follows, from the nature of algebraick multiplication, that, whenever \(b\) is multiplied into iffelf an even number of tinies, the product will be marked with the fign + ; and, whenever it is multiplied into itfelf an odd number of times, the product will be marked with the fign -. And it is further evident, from the foregoing multiplications, that the odd powers of \(b\) occur in the fecond, and fourth, and fixth, terms of the foregoing products, and that the even powers of \(b\) occur in the third and fifth terms of them. And it is eafy to fee that the odd powers of \(b\) will occur in like manner in the eighth, and tenth, and twelfth; and other following even terms of all higher powers of \(a-b\) whatfoever, and that the even powers of \(b\) will occur in like manner in the feventh, and ninth, and eleventh, and other following odd terms of the faid higher powers of \(a-b\). And it is alfo evident, from the foregoing multiplications, that the terms themfelves of which the feveral powers of \(a-b\) will be compofed, are exactly the fame with the terms of which the fame powers of \(a+b\) are compofed. And hence it follows that the feries which is equal to \(\left.\overline{a-b}\right|^{n / 2}\) will be the fame with the feries which is equal to \(a+b^{m}\), when the fign - has been prefixed to the fecond, and fourth, and fixth, and other folluwing even terms of it, inftead of the fign + , or that \(\overline{a-t^{m}}\), or the \(m\) th power of the refidual quantity \(a-b\), will be equal to the feries \(a^{m}-\frac{m}{1} a^{m-1} b+\frac{m}{1} \times\) \(\frac{m-1}{2} a^{m-2} b^{2}-\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} a^{m-3} b^{3}+\frac{m}{1} \times \frac{m-1}{2} \times\)
\(\frac{m-2}{3} \times \frac{m-3}{4} a^{m-4} b^{4}-\frac{m}{1} \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{5}\)
\(a^{m-5} b^{5}+8 c \mathrm{c}\), or \(a^{m}-\frac{m}{1} \mathrm{~A} a^{m-1} b+\frac{m-1}{2} \mathrm{~B} a^{m-2} b^{2}-\) \(\frac{m-2}{3} \mathrm{C} a^{m-3} b^{3}+\frac{m-3}{4} \mathrm{D} a^{m-4} b^{4}-\frac{\sqrt{m-4}}{5} \mathrm{E} a^{m-5} b^{5}+8 \mathrm{c}\). Q. E. D.

\section*{A}

\section*{DISCOURSE}

OF

\section*{C O M B I NATIO N S}

ALTERNATIONS,

A \(N \mathrm{D}\)

ALIQUOT PARTS.

BY JOHN WALLIS, D.D.
PROFESSOR OF GEOMETRY IN THE UNIVERSITY OF OXFORD, AND A MEMBER OF THE ROYAL SOCIETY, LONDON.

PRINTED AT LONDON IN THE YEAR 1685, AND PUBLISHED WITH THE AUTHOR'S TREATISE OF ALGEBRA.
\(1\)
OF

\section*{C O M B I N A TIONS,}

\author{
ALTERNATIONS,
}
\[
A N D
\]

\section*{ALIQUOT PARTS.}

\section*{C H A P. I.}

Of the variely of Elections, or Cboice, in taking or leaving Ons or more, out of a certain Nuwber of things propofed.

FOR the better underftanding of what is propofed ; fuppofe we a certain number of counters or other things expofed; as, for inftance, \(7 ; a b c d\) ef \(g\) : The quettion is, what variety, or how many cafes there may be, of taking from thence one, or two of them; as \(a, b, c, d, \& c c\). Or, \(a b\), \(a c, a d, b c, b d, \& c\). Or, three's, as \(a b c, a b d, a c d, b d c\), \&r. Or, fours, fives, \&zc. Or all, or none? And the like if any other number of things were fo expofed.

In order to the folution whereof, I thall here infert a table, borrowed from my Arithmetick of Infinites, Prop, \(132,169,183,189\), \& c , (becaufe there will be often occafion of having recourfe to it.) And then proceed to pro.pofitions thereunto relating.


Now, as to the conftruction of this table, we are to obferve, that, (the firt line being all units,) the following numbers are, in every place, the aggregate of all thofe in the line next above it, fo far. As for example; for the shree firt in the uppermoft line, \(1,1,1\), we have in the fecond line (under the laft of them) the number 3 , which is the aggregate of them. And, in like manner, we have in the next place \(t\), which is the aggregate of 1, I, I, 1 . (And fo of the reft.) And, in the lines following, likewife: So for \(1,2,3\), (the three foremoft of the fecond line,) we have in the third line (under the laft of them) the number 0 , equal to all of them : and fo every where. This premifed, the propofitions follow.
1. It is manifet, that, if we would take none, that is, if we would leave all, there can be but one cafe thereof, whatever be the number of things expofed. (For this admits of no varicty.) Which (in the table) is expreffed in the firft (tranfverfe) line, where the numbers are all Monadicks, or units.
2. The fame happens, if we would take all, (or leave none.) For here alfo there can be no variety of choice, whatever be the number of things expofed, \(a, b, c, \& c\). And this, in the table, we exprefs in the firt (erect) colunn, where alfo the numbers are all Monadicks.
3. If we would take One, it is manifeft, that there are as many cales or varieties of choice, as is the number of things. For that One may be any one of them, as \(a, b, c, d, e, f, f\); which is exprefel in the fecond line, where the numbers are in their natural order or confecution, \(1,2,3, \& \& c\), which I call Laterals.
4. The fame happens, if, taking all the reft, we leave One; that is, if we take All but One. For it is manifeft, there is the fame variety of leaving One as of toking One, as \(a b c d e f, a b c d e g, a b c d f g\), abcefg, abdefg, acdefg, bcdefg, which is fignified in the fecond column, where the numbers are alfo Laterals.
5. If we would take Two; It is manifert, that we may firtt take \(a\), combined with any other of the reft; as \(a b, a c\), \(a d, a e, a f, a g\); the number of which combinations are therefore as many as the number of things wanting one. We may then take \(b\) (omitting its combination with \(a\), as being already taken,) combined with every of thofe which follow it; as \(b c, b d, b e, b f, b g\); the number of which combinations are therefore as many as the number of things expofed, wanting Two. In like manner, \(c\), (omitting its combinations with \(a\) and \(b_{a}\), be- \(a b\) ac ad ae of ag| 6 caufe \(c a, c b\), are but the fame with \(a c, \quad b c\) bd be of \(b g{ }_{5}\) \(b c\), already taken,) may be further com- id ce of cg 4 bined with every of thofe which follow it, (which are fo many as is the number of things expofed wanting Three,) as \(c d\), \(c e, c f, c g\); and the fourth \(d\), (omitting \(d a, d b, d c\), as being the fame with ad, \(b d, c d\), already taken,) may be further combined with every of thofe which follow, (which are as many as the number of things wanting Four,) as de, df, dg. And in like manner for the fifth, fixth, \&ec ; each of which affords new combinations fewer by one than that next before it, till at length we come to I , as ef, eg, and \(f g\). So that the number of all thefe combinations, is the aggregate of all the numbers in the fame line fo far; that is, in the prefent care, (the num-
ber of things expofed being 7, ) the combinations are, \(6+5+4+3+2+1=21\). To which anfwers (in the third tranfverfe, or horizontal line of the foregoing Table of the Figurate numbers,) the Triangular number 2r, juft under the number 6 , (which is lefs by one than the number of things expofed.) Such Triangular numbers, being the aggregate of all the Laterals fo far. And univerfally, (whatcyer be the number of things expofed) the number of Two's, is a Triangular number, whofe fide is lefs by one than the number of things expoped.
6. The fame happens, if we are to take All but Two; for there is the fame variety of leaving Two, as of taking Two; that is, in both cafes, fo many as is the triangular number, whofe fide is lefs by one than the number of things expofed, which (in the table,) is fignified in the third column, whofe numbers are the fame with thofe of the third line,
7. If we would take Tbree, it is manifeft, that firft, \(a b\), (the firft and fecond,) may be combined with every of thofe that follow; the number of which are as many as the things expofed wanting \(T\) wo, (which therefore afford us fo many different Triads, or Three's, as \(a b c, a b d\), \(a b e, a b f, a b g\). Then that ac (the firt and third,) may be combined (omitting \(a c b\), as being the fame with \(a b c\) already taken,) with every of thofe that follow, (which therefore afford us fo many new Tbree's, as is the number of things wanting Three,) as acd, ace, acf, acg. And, in like manner, a coupled with thofe that follow, (as ad, ae, af,) may each of them be further combined with their refpective fubfequents, affording each of them new Triads, fewer by one than that next before it, till at length we come to 1 , as ade, adf, adg, and aef, aeg, and afg. (But ag affords none, be-
\(a b c a b d a b e a b f a b g 5\) \(\left.\begin{array}{r}\text { acd ace acf acg } \\ \text { ade adf } \\ \text { afg } \\ \text { aeg } \\ \text { afg }\end{array} \right\rvert\, \begin{aligned} & 1 \\ & \text { af }\end{aligned}\) 15 caure \(g\) being the laft, there is norie 4 remaining with which it might be combined.) The aggregate of all which, is a Triangular number (as being an aggregate of Laterals, )whofe fide is lefs by two, than the number of things expofed ; that is, in the prefent
prefont cafe, \(5+4+3+2+1=15\); which is a triangular number of the fide 5 , which is lefs by two, than 7 , the number of things expofed, in all which, \(a\) is one of the Ingredients.

In like manner (omitting all the Triads wherein \(a\) is an Ingredient, as being already taken,) bc (the fecond and third) may be further combined with each of thofe that follow \(d, e, f, g\), affording us as many new Triads as did ac, (which was before fo bcd bce bcf bcg 4 compounded,) that is, fo many as is the bde bdf bdg 3 number of things wanting Three. And then again \(b d, b e, b f\), afford as many as \(a d\), ae, af, did before. Which afford us a new Triangular number, whofe fide is lefs by one than that we had before; that is, \(4+3+2\) \(+I=10\), whofe fide is 4 ; in all which Triads \(b\) is the leader.

In the fame manner may be fhewed, that (omitting the combinations of \(a\) and \(b\),) thofe Triads wherein \(c\) is the leader, will give another Triangular number, whofe fide is yet lefs by one, and fo onward continually till we come at 1 : as \(3+2+1=6\), a triangular number whofe fide is 3 ; and \(2+1=3\), a Triangular number, whofe fide is 2 ; and 1 , a Triangular number whofe fide is alfo I .


And then the aggregate of the Te Triangulars is 35 , a Pyramidal number, which (in the fourth line, ftands next under 15 , the greateft of thein, whofe fide is lefs by two, than the number of things expoled; that is, a Pyromidal number whole
\begin{tabular}{|c|}
\hline \multirow[t]{4}{*}{\[
\begin{array}{r}
5,4,3,2, \\
-4,3,2, \\
3,2, \\
3, \\
2, \\
1
\end{array}\left|\begin{array}{l}
1 \\
1
\end{array}\right|
\]} \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular}
\(10+6+3+1=35\), which is reprefented in the fourth line, which is of pyramidal numbers.
8. The fame happens, if inftead of taking Three, we take All but T'brec. For the fame variety of cafes happens, if now we take what were before left, and leave what were then taken. And as that is reprefented in the fourth line, fo this is in the fourth column.
9. Ic we would take four ; then, with \(a\), may be made fo many Fours (or Quaternions,) as may be formed Triads of thofe that follow, (as \(b, c, d, e, f, g\), ) that is, (by art. 7,) a pyramidal number whofe fide is lefs by Two than the number of thefe; that is, lefs by Threc than the number of things expofed ; that is, in the prefent cafe, 20; which is a Pyramidal number of the fide 4 , which is lefs by Threc, than 7.

In like manner, (omitting \(a\),) there may with \(b\), be to many Quaternions formed, as may be Triads of thofe that follow it, (as \(c, d, e, f, g\);) that is, a Pyramidal number whofe fide is lefs by 1 , than that foregoing ; that is, 10 ; whofe fide 3 is lefs by 4 than 7 .

And (omitting \(a, b\), ) there may with \(c\) be formed fo many Quaternions, as may of thofe that follow it \((d, e, f, g\),\() be\) formed Triads; that is, a Pyramidal number whofe fide is yet lefs by 1: that is, 4, whofe fide is 2. And fo onward, till we come at 1 .

And then the aggregate of all theee Pyramidals, that is, the number in the fifth line, next under the greateft of them, is (what they call) a Trianguli-triangular number, 10 whofe fide is lefs by three than the number of things
4 expofed. That is, in the prefent cafe, (where the I number of things is 7, ) \(20+10+4+1=35\), (a trianguli-triangular number, of the fide \(4=7\) - 3 , ) is the number of different Quaternions which may be had when the things expofed are 7 .
(If any like not the name of trianguli-triangular, and to of the reft that follow; 1 am content to change them. For I ani not fond of them, but ufe them becaufe I find them.)

Which number is the fame which before we had for Three's; which hence comes to pals, becaufe, when the number of things is 7 , the number 4 , is the fame with All wanting 3; where the variety is the fame as if 3 were taken; as is fhewed in the prececting article.
10. The fame happens, (for the reafons already hewed,) if we were to take All wanting Four. And as that is to be found in the fifth line, fo this, in the fifth column, whore numbers are the fame with thofe of the fifth line.
11. In the fame manner will be fhewed, that, if we would take Five (or All but Five, the varieties are then fo many as is the aggregate of the numbers in the fifth line, ending with that whofe fide is lefs by Four than the number 15 of things expofed. That is, the number in the fixth line (which is Trianguli-pyramidals) next under the greateft of thofe, whofe fide is lefs by Four than theI oumber of things expofed. Thar is, in the prefent 21 caife, \(15+5+1=21\), a Trianguli-pyramidal number, whofe fide is \(3=7-4\). And fo, if Six are to be taken, (or All but Six,) the varieties are fo many, as is the aggregate of numbers in the fixth line (or the number anfwering thereunto in the feventh,) ending with that whole 6 fide is lefs by Five than the number of things expoled. I And fo for Seven, Eight, \&c, (or all but feven, eight, 7 \(\& z c\),) we are to take the numbers of the following lines, ending with that whofe fide is lefs by one, than that for the line next above. As, in the prefent, (where 7 is the number of things expofed, ) the number of fixes is 7 ; the number of fevens is I .
12. All thefe varicties of choice, for any number of things expofed, are found in the Table foregoing, in a rank of numbers obliquely defcending; in which that number which is the number of things expofed, is to be found in the fecond line, and again in the fecond column, both which are of Laterats. As, in the prefent cafe (where 7 is the number of things expofed, in the oblique defcent paffing
by 7 in the fecond line, and again in the fecond column: we have the numbers \(\mathrm{I}, 7,2 \mathrm{I}, 35,35,2 \mathrm{I}, 7, \mathbf{1}\); which reprefent the variety of cafes for taking, \(0,1,2,3,4,5\), 6, 7. And the like for any other number of things expofed.
13. And there numbers (as appears upon view,) are the fame with thofe which are called uncie, prefixed to the proportionals that conftitute the refpective powers of a binomial root; or, (which is the fame) the refpective powers of \(1+1\) confidered as a binomial root. That is, the root, fquare, cube, fourth, fifth power, \(\& c\), of \(1+1\), according as the number of things expofed are \(1,2,3,4,5,6\), \&c.
14. The table thus begun, is eafily continued as far as there is occafion: for the number of each place, is the aggregate of two numbers, whereof one is next above it, and the other next before it, as \(15=5+10,20=10+10\), \(35=20+15\). And fo every where.
15. Having therefore any number of things expofed, let that number be fought in the fecond line, (which is of Laterals,) and again in the fecond column; and then, in the floping rank of numbers paffing through thefe two, we have the number of cafes for taking \(0,1,2,3,4, \& c\), in fuch order as the index on the fide directs; and likewife for taking All but \(0,1,2,3,4, \& \mathrm{c}\), in fuch order as the index on the top direits.
> 16. And if we would have the fum of all thefe varieties (for any fuch number of things propofed) all together, it is had by adding the numbers of fuch floping rank; as in the prefent cafe, \(1+7+21+35+35+21+7+1=\) 128.
> 17. Which number is always that power of the number 2 , (that is, of \(1+1\) ) which is of fo many dimenfions as is the number of things expofed, (or ehat power whofe exponent
is fuch number,) that is, the product of fo many two's continually multiplied, (as, in the prefent cafe, \(2 \times 2 \times 2 \times 2\) \(\times 2 \times 2 \times 2=128 ;\) ) or, I fo many times doubled as is the number of things expofed. That is, for 0 , it is I . (For here, to take all, or to leave all, is but one and the fame cafe.) For 1 , it is (the fide) \(1+1\). For 2 , (the fquare) \(1+2+1=4\). For 3 , (the cube) \(1+3+3+1\) \(=8\). For 4 , (the biquadrate) \(1+4+6+4+1=16\). And fo of the reft.
18. And thus far we have confidered the variety of cares concerning taking or leaving, None, One, Two, Three, \&c, of any number of things expofed, without regarding the order of them, fo that \(a b c, a c b, b a c, b c a, \& c\), are reputed for one and the fame cafe. But if the different alternations, or changes of order, in the fame things, be accounted as different cafes; this we are to confider in the next Chapter. And if therein, fome two or more are indifferently reputed as one and the fame, or indifferently to be taken each for other; what abatement of the former number will hereupon arife, is confidered in the fame Chapter.
19. If, by Combination, we underftand the taking of two or more, (but not of one, or none;) then, out of the number of cafes before found, we mult abate fo many as is the number of things expofed, and one more. For, of thofe, fo many as is the number of things expofed, ainfwers to the cafes of I. And one more, anfwers to the cafe of taking None. But all the reft are combinations in that fenfe. For though Combination (as coming from Bini,) in its proper fignification extend only to the taking of couples, (or Two's;) yet in common acceptation the word is now ufed of greater numbers. And, in Englifh alfo, we fcruple not to fay, that Three, or Four, (or more than fo, are coupled together, that is, connected.
20. If, out of the former number of cafes, we pleafe to exclude that of taking. None, or o, (becaufe, to take none, is not to take,) then is the number of cafes fewer by one, than
than is above expreffed. And fo we have the cales of taking one or more. And fo many are the number of Divifors of a number compounded of fo many different Prime numbers continually multiplied, as are the cafes of taking one or more of fo many things expofed.
21. And if further we abate one more (which anfwers to the cafe of taking all;) then have we the number of Aliquot Parts of a number fo compofed of different Primes or Incompofite numbers. The number of Aliquot Parts being fewer by one, than is the number of divifors.

I fhall fubjoin to this Chapter (as properly appertaining to this place, ) an Explication of the Rule of Combination, which I find in Buckley's Arithmetick, at the end of Seton's Logick, (in the Cambridge edition;) which (becaufe obfcure,) Mr. George Fairfax (a Teacher of the Mathematicks then in Oxford,) defired me to explain; to whom (Sept. 12, 1674,) I gave the explication under written; Confonant to the doctrine of this Treatife, (which had been long before written, and was the fubject of divers public Lectures in Oxford, in the years 1671,1672 .)

\section*{Regula Combinationis.}

Quot fuerint Numeri, quos Combinare velimus; Iot fint et leries, quibus eft proportia dupla; Quarum principium ducatur Semper ab Uno. Omnes bes Series conjunge per Additionem. Producto, numerum quot Combinatio conftat, Aufer. Quod fupereft, numerum citat; unde patebit, Quot faciant numeros diftinelos, undique fiquis Propoficos numeros velit in fe Mulliplicare.
Si nibil à Jummâ pradiEtá furripiatur; Reftabunt partes Aliquota, quae numerabunt Illum, qui numeros eft inter Maximus omnes, Ex ductu in Jefe numerorum provenientem.

I have taken the liberty, to alter the pointing (fo as to make the fenfe the clearer, ) and to reftore (in the fecond verfe)
verfe) int, for font ; and (in the third verse) principium, for princifio; which had been mifprinted. And (in the fifth verse) I have reftored numerum, for numeros; for it is but one Number that is to be fubducted, namely, the Number of thole Numbers which are to be Combined. My Explication was this:
"Let as many Numbers as you pledfe, be proofed to be "Combined: Suppofe Five, which we will call \(a b c d e\).

"Put, in fo many Lines, Numbers, in duple proportion, " beginning with I .
"The Sum (3 I) is the Number of Sumptions; or Elections; "s wherein, one or more of them, may feveral ways be "s taken.
"Hence fubduct (5) the Number of the Numbers pro" poled ; becaufe each of them may once be taken fingly. "And the Remainder (26) hews how many ways they " may be taken in Combination; (namely, Two or more at "once.)
"And, confequently; how many Products may be had " by the Multiplication of any two or more of them fo st taken.
"But the fame Sum (31) without fuck Subduction, thews " how many Aliquot Parts there are in the greaten of thole "Products, (chat is, in the Number made by the continual " Multiplication of all the Numbers propofed,) abode:
"s For every one of thole Sumptions, are Aliquot Parts of
\[
20
\]
"s abcde, except the laft, (which is the whole, ) and inftead
"thercof, I is alfo an Aliquot Part; which makes the
"s number of Aliquot Parts, the fame with the Number of " Sumptions.
"Only here is to be underfood, (which the Rule fhould " have intimated;) that, all the Numbers propofed, are to " be Prime Numbers, and each diftinct from the other. For " if any of them be Compound Numbers, or any Two of " them be the fame, the Rule for Aliquot Parts will not " hold."

\section*{C H A P. II.}

Of Alternations, or the diffirent Cbange of Order, in any Number of Things propofed.

SUPPOSE wc a certain Number of things expofed, different each from other, as \(a, b, c, d, e, \& c c\). The queftion is, how many ways the order of thefe may be varied? as, for inftance, how many changes may be Rung upon a certain Number of Bells; or, how many ways (by way of Anagram) a certain Number of (different) Letters may be differently ordered?
1. If the thing expofed be but One, as \(a\), it
 is certain, that the order can be but one. That is \(!\).
2. If Two be expored, as \(a, b\), it is alfo manifeft, that they may be taken in a double order, as \(a b, b \Omega\), and no more. That is \(I \times 2=2\).
3. If Three be expofed; as \(a, b, c\) : Then, beginning with \(c\), the other two \(b\), \(c\), may (by art. 2,) be difpoled according to Two different orders, as \(b c, c b\); whence arife Two Changes (or varieties of order) beginning with \(a\), as \(a b c, a c b\) : And, in like manner it may be hewed, that there be as many beginning with \(b\); becaufe the other two, a, c, may be fo varied, as bac, bca. And again as many beginning with \(c\), as cab, cba. And therefore, in all, Three times Two. That is, \(1 \times 2, \times 3=6\).
4. If Four be expofed, as \(a, b, c, d\); Then, beginning with \(a\), the other Three may (by art. preceeding) be difpofed fix feveral ways. And (by the fame reafon) as many beginning with \(b\), and as many beginning with \(c\), and as many beginning with \(d\). And therefore, in all, Four times fix, or 24. That is, the Number anfwering to the cafe next foregoing, fo many times taken as is the Number of things here expofed. That is, \(1 \times 2 \times 3, \times 4=6 \times+=24\).
5. And in like manner it may be thewed, that this Number 24 Multiplied by 5, that is \(120=2+\times 5=1 \times 2 \times 3 \times 4 \times 5\), is the number of alternations (or changes of order) of Five things expofed. Or, the Number of Changes on Tive Bells.) For each of thefe five being put in the firt place, the other four will (by art. preceeding) admit of 24 varieties, that is, in all, five times 24. And, in like manner, this Number \(1 z 0\) Multiplied by 6, fhews the Number of Alternations of 6 things expofed; and fo onyard, by continual Multiplication by the confe. quent Numbers \(7,8,9, \& c\).
\(\left.\begin{array}{l}a b c \\ a c b \\ b c a \\ b a c\end{array}\right\} 2\)
\(\left.\begin{array}{l}a b \\ c b a\end{array}\right\} 2\)
\(2 \times 3=6\)
\(a b c d\)
\(a b d c\)
acbd
acdb
\(a a^{b} c\)
\(a d c b]\)
bacd badc bcad bcda 6 bdac bdca
cabd cadb colad
cbda \(\} 6\) cdab
caba
\begin{tabular}{l}
\(\left.\left.\begin{array}{l}d a b c \\
d a c b \\
d b a c \\
d b c a \\
d c a b \\
d c b a\end{array}\right\}^{1}\right\}^{2}\). \\
\hline
\end{tabular}
\(4 \times 0=14\)
6. That is, how many fo ever of Numbers, in their natural Confecution, beginning from 1 , being continually Mul\({ }_{2} \mathrm{O}_{2}\)
tiplided
tiplied, give us the Number of Alternations (or Change of order) of which fo many things are capable as is the laft of the Numbers fo Multiplied. As for inftance, the Number of Changes in Ringing Five Bells, is \(1 \times 2 \times 3 \times 4 \times 5=120\), In Six Bells, \(1 \times 2 \times 3 \times 4 \times 5 \times 6=120 \times 6=720\). In Seven Bells, \(720 \times 7=5040\). In Eight Bells, \(5040 \times 8\) \(=40320\). And fo onward, as far as we pleafe.

Thus Voffius tells us, (Cap. 7, De Scientiis Mathematicis,) That if an Hoft promife to entertain feven Guefts fo long as they fit every day in a different order, this extendis to 14 . years. He means, almoof fo many years, namely, 5040 days, which of 14 years wants 73 or 74 days, according as the Leap-years may chance to fall.
7. This Number of Alternations, according as the Number of things expofed doth increafe, will proceed to a vaft Multitude beyond what at firft one would expect. As for Example, the 24 Letters will admit of fo many Varieties or Alternations in Changing their order, as that if fo many Bells, were to be Rung according to all thofe Changes, it could not have been difpatched (as the Learned Fobn Gerard loffius, in the place laft cited, doth obferve,) fiom the beginning of the World to this day. I add; no, nor if for every Minute of an hour which hath paffed, there had paffed \(\tau_{\mathrm{e}}\) n Tboufand Thoufand Years; as will appear by the following Computation.
\begin{tabular}{r|r}
1 & \(1 \times\) \\
1 & 2 \\
6 & \(2 \times\) \\
24 & \(3 \times\) \\
\(2 \times\) \\
120 & \(5 \times\) \\
720 & \(6 \times\) \\
5,040 & \(7 \times\) \\
40,320 & \(8 \times\) \\
362,880 & \(9 \times\) \\
\(3,628,800\) & \(10 \times\) \\
\(39,916,800\) & \(11 \times\) \\
\(479,001,600\) & \(12 \times\) \\
\(6,22,1,020,800\) & \(13 \times\) \\
\(87,178,291,200\) & \(14 \times\) \\
\(1,307,674,368,000\) & \(15 \times\) \\
\(20,922,789,888,000\) & \(16 \times\) \\
\(355,587,428,096,000\) & \(17 \times\) \\
\(6,402,373,705,728,000\) & \(18 \times\) \\
\(121,645,100,408,832,000\) & \(19 \times\) \\
\(2,432,902,008,176,640,000\) & \(20 \times\) \\
\(51,090,942,171,709,440,000\) & \(21 \times\) \\
\(1,124,000,727,777,607,680,000\) & \(22 \times\) \\
\(25,852,016,738,884,976,640,000\) & \(23 \times\) \\
\(620,448,401,733,239,439,360,000\) & \(24 \times\)
\end{tabular}

In 1 year.
\(365 \frac{1}{4}\) days.


730
6
8766 hours.
\(\times 60\)
525,960 Minutes In 6000 years.
3,155,760,000 Minutes \(\frac{\times 5}{15,778,800,000}\) Changes. 525,960 Min. in I year. 945728000000 1420092 788940
315576
788940
\(8,299,017,648,000,000\)
10,000,000

For, fuppofing in one year, \(3^{6} 5^{\frac{1}{4}}\) days; and, from the beginning of the World, to have paffed 6000 years; (both of which fuppofitions are at the largeft, ) and therefore the Number of minutes in all that time, \(3,155,760,000\). Suppofe we then, in every Minute of an hour, 5 Changes to be difpatched, that is, (becaufe of 24 Bells) 120 ftrokes fucceffively one after another, (which allowance is alfo at the largeft ;) and therefore, in 6000 years, \(15,778,800,000\) Changes, which Number if we Multiply by 525,960 , (theNum-
ber
\(82,990,176,480,000,000,000,000\)
ber of Minutes in one year, ) we have \(8,299,017,648,000,000\) for the Number of Changes to be difpatched in fo many years as there have been Minutes, which Multiplied by \(10,000,000\), (Ten Thoufand Thoufand, or Ten Millions, ) will be but \(82,990,176,480,000,000,000,000\), which is lefs than \(620,448,401,733,239,439,360,000\), the Number of Changes whereof 24 Bells are capable.

Nay, if we fhould proceed no further than to 14 Bells, and allow io Changes (that is, 140 ftrokes) to every Minute, the Number of Minutes requifite to Ring them all would be \(8,717,829,120\), (a tench part of the Number of Changes, which is more than double (almort treble) the Number of Minutes in 6000 Years; and would require more than 16 Thoufand Years (yca, more than 16,575 Years) to Ring them all.
8. Hence it may appear, how many ways the Letters of a Name or Word, (luppofing them to be all feveral,) may be differently difpofed by way of Anagram, (out of which thofe that are of ufe may be felected, neglecting the reft,) by art. 6. For Example, the Word \(R O M A\), (confifting of four different Letters) may admit of Changes \(24=1 \times 2 \times\) \(3 \times 4\).
\begin{tabular}{llll} 
Roma & orma & mroa & arom \\
ronam & oram & mirao & armo \\
rmoa & omra & mara & arm \\
rmao & omar & moar & aomr \\
raom & oarmi & maro & anlo \\
ramo & oamr & maor & emor
\end{tabular}

Of which (in Latin) thefe feven are only ufeful; Roma, yamo, oram, mora, maro, armo, amor. The orher forms are melefs, as affording no Latin Word of known fignification.
g. But in cafe fome one or more of the Leters do occur mose than once, the Number of Alternations fo found as hefore, mult be divided by fuch Number or Numbers as fuch zepertions do require : Namely, if the fame Letler do lwice occur, we are to divide by 2 ; if thrce times, by 6 ; if four
times, by 24 ; and fo onward, according to the varieties that fuch a Number is capable of. For, if the Letters \(a\) and \(b\) be reputed for the fame; then, whereas (the reft remaining as before) ab and \(b a\) would every where afford two varieties, they are in this cafe to pafs for one, and therefore the Number of cafes will be only half fo many as otherwife they would be. In like manner (the reft remaining as before) abc would every where (according as they may change places one with another) afford fix varieties; but in cafe the three Letters \(a, b, c\) be confidered as being all the fame, or as being \(a\), \(a, a\), thefe Six cafes muft then pafs but for one. And in like manner, if \(a b c d\) be feverals, they afford (the reft remaining as before) 24 varieties; but, if the fame, thefe 24 muft pals but for one: And the like in other cafes. And, if more Letters be fo repeated, there mult be for each of them fuch divifion.

For Example, the Word MESSES having 6 Letters, if they were all different, the Alternations would be \(720=\) \(1 \times 2 \times 3 \times 4 \times 5 \times 6\). But becaufe the Letter e comes twice, that Number is to be divided by 2. (For if inftead of ee, we put \(\varepsilon n\), then messns and mnsses would betwo forms, both which are now Co-incident in messes: And fo every where.) Again, becaufe the Letter \(s\) comes three times, we are (for the like reafon) to divide by 6. (For if thofe three were three different, they would in every pofition of the reft. afford 6 cafes, all which are now Co-incident in sss.) And therefore, (becaule both happen,) 720 being divided by 2 , and again by 6 , the different varieties will be \(\frac{720}{2 \times 6}=60\).
\begin{tabular}{|c|c|c|c|c|c|}
\hline meesss & emesss & esmsse & smeess & & \\
\hline mesess & ems & mss & ses & & \\
\hline masses & em & esesms & smesse & & \\
\hline messse & emss & esessm & smsees & & \\
\hline mseess & eemsss & essmes & smsese & sesemin & \\
\hline & eesmiss & essmse & sm & sesesin & \\
\hline sse & eessms & sem & sem & sessme & ssesem \\
\hline & eess & ses & semses & sessem & ssstmee \\
\hline & est & sssme & 硣 & & \\
\hline & est & esssem & see & & \\
\hline
\end{tabular}

Of all which varieties, there is none befide messes itfelf, that affords an ufeful Anagram.

In like manner we may fhew, that the Letters abbccodddd will admit of \(\frac{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 3 \times 9 \times 10=3628800}{2 \times 6 \times 24=288}=12600\) Teveral varieties: And \(a b b c c d d\), of, \(\frac{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7=5040}{2 \times 2 \times 2=8}\) \(=630:\) And aaabbccc, of \(\frac{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7 \times 8=40320}{6 \times 2 \times 6=7^{2}}=\) 560 . And the like in other cafes however varied.
10. The converfe of this, is of like ufe, when what was confidered but as one and the fame feveral times repeated; comes afterward to be diftinguifhed. For then the Number before found, is to be fo often Multiplied as the Number of things fo diftinguifhed fhall require.

As, in the Word messes before mentioned, where sss are confidered but as one Letter thrice repeated, and \(e e\) as the fame twice repeated, the Number of different pofitions is 60 ; but if sss be diftinguifhed as three feverals, and ee as two feverals, the Number of all will be \(60 \times 6 \times 2=720\).

Thus Voffius, Cap. 7, De Scientiis Mathematicis, tells us that this verfe,

Rex, lex, fol, lux, dux, fons, mons, jpes, pax, petra, Cbrifus.
which (confifting of II Words) may be turned (abfolutely) \(39,916,800\) ways; and fo as to preferve the Rules of an Hexameter verfe, be turned \(3,628,800\) ways, he fhould rather have faid \(3,265,920\). That is, the 9 Monofyllables (which may promifcuourly take each other's place) 362,880 times; and Cbrifus is capable of 9 (not 10) different pofitions; that is, in the firtt; fecond, third, fourth, fifth, fixth, feventh, eighth, (but not in the ninth, and tenth,) and in the laft place; (and petra confined, by the nature of the verfe, to the place next before the lalt fpondee.) That is, \(362 ; 880 \times 0\) \(=3,265,920\) ways:

He fays alfo that the verfe
Tot tibi funt dotes, virgo, quot fidera calo;
may be turned abfolutely 40320 ways; and, fo as to preferve the verfe 1022 ways; which is very true, (and I have been told, of fomebody, who, in praife of the Virgin Mary, had made a Book of that verfe turned fo many ways, which was wont to be reputed the Number of the Fixed Stars, according to the ancient Catalogue of them.) But it is true alfo, that it may be turned many more ways than fo, and yet preferve the verfe true: Namely, 2628, retaining the quancity of the laft Syllables in tibi and virgo as before; and 468, Changing their quantity in virgo tibi. That is, in all 3096 ways. As will appear by the Scheme adjoýned, and the brief Explication, (or Demonftration) of it: which is thus to be underftood.

Tot, funt, quot, which may promifcuounly fupply each other's place, are (in verfe \(1,2,3, \& c\), fet down only in this order, and fo pafs but for one cafe; but are capable of fix varieties; which cafe I call \(a=6\). And the like for \(d o\) tes, virgo, celo; which cafe I call \(b=6\). And again, tot tibi may change place with fidera; which cafe I call \(c=2\) : And, becaufe all thefe happen in verfe I , the varieries thereby reprefented, are \(a b c=72=6 \times 6 \times 2\). And fo of the reft, as the Scheme direats.

II. Virgo tibi tot funt dotes quot fidera ceelo: an = \(3^{6}\)
I2. quot dotes an \(=3^{6}\)

I3. dotes funt quot
14. Tot funt virgo tibi dotes
dotes virgo quot dotes
16. dotes virgo tibi quot

I, 7. Tot dotes funt \(\quad a p=\begin{aligned} & 36 \\ & 12\end{aligned}\)
18. Junt dotes fidera colo virgo tibi quot aq \(=144\)

Tot, funt, quot, \(a=6\). dotes, virgo, celo, \(b=6\). rot tibi, fidera, \(c=2\). tot tibi, virgo, \(\quad d=2\).
Tot tibi, funt quot, dotes, virgo, calo; \(e=120-24=\) \(120 \times \frac{4}{3}=96\).
(Becaufe tot tibi cannot fupply the place of colo, as of the reft.) Tot tibi, dotes, \(f=2\). Tot funt, dotes, virgo, cielo, \(g=24\). Quot tibi, fidera, \(k=1 \frac{1}{4}\).
(Becaufe when tot Junt, or its Equivalent funt quot, comes next before tibi, which is a fourth part of the ca\{es contained in \(g\), then will quot tibi, change with fidera; which adds \(\frac{x}{4}\) of what was before.) Tot funt, (and funt quot,) dotes, virgo, calo, \(i=9\).
(Becaufe dotes, virgo, celo, contained in \(b\), may each of them change with tot funt, which Multiplies by 4, or adds a Triple to what was before, as at \(g\), and \(\frac{1}{3}\) of that Triple, or \(\frac{3}{4}\) of that Quadruple, as at b; that is, it adds a Quadruple or Multiplies by 5: And again, each of them with funt quot, which, for the fame reafon, adds another Quadruple: Therefore both together, add an Octuple, or Multiply by 9.)

Dotes,

Dotes, funt quot, virgo', crelo, \(k=24-6=24 \times \frac{3}{7}=18\). (Becaufe, if funt quot fupply the place of dotes, it will be Co-incident with fome of the cales of ver. 3.)
Quot tibi, fidera, \(e=2\). tot funt, dotes, collo, \(n=6\). dotes, calo, \(p=2\). fidera, calo, \(\quad r=2\). virgo, quot tibi, \(\quad\) n 二 2 .
dotes, funt quot, calo, \(o=6\).
tot funt, , ,otes, fidera, calo, \(q=240\)
I will not be pofitive that there may not be fome other Changes : (and then, thofe may be added to thefe:) Or, that moft of thefe be twice repeated, (and if fo, thofe are to be abated out of the number:) But I do not, at prefent, difcern either the one and other *-

\section*{C H A P. III.}

Of the Divijors, and Aliquot Parts, of a Number propofed.
1. BY Nuinber, I here undertand only Integer Numbers, as \({ }^{1}, 2,3,4,5, \& c\). Not Fractions, as \(\frac{1}{2}, \frac{2}{3}, \frac{2}{4}, \frac{2}{5}\), \&c. Or Mixed, as \(\frac{1}{2}, 2 \frac{1}{\mathrm{~T}}, 3 \frac{2}{5}\), \&c. Much lefs Surds, as \(\sqrt{2}, \sqrt{ } 5\), \(\sqrt{6}, \& c\).
2. By the Divijor of a Number, I here undertand, fuch Integer as doth meafure fuch Number; that is, being once or oftener taken doth equal it. So, of the Number 6, the Divifors are, 1, 2, 3, \(6:\) Becaufe 6, once taken ; and 3, twice taken; and 2, thrice; and 1, fix times taken; do equal 6.
\[
\begin{gathered}
\text { 1) } 6(6 ; 2) 6(3 ; 3) 6(2 ; 6) 6(1.6=1 \times 6=2 \times 3= \\
3 \times 2=6 \times 1 .
\end{gathered}
\]
* The number of all the poffible variations of the words in this Hexameter Verfe, without deftroying the meafure of it, has been inveftigated with greater accuracy by Mr. Fames Bernouilli, in the fecond part of his excellent Treatife, De Aric Conjectandi, and is there found to be 3312. See above, pages 8,9 , and 10 .
\[
{ }_{2} \mathrm{P}_{2}
\]
3. By
3. By Aliquot Part of a Number, 1 undernand fuche a Divifor as is lefs than it. As of 6 , the Aliquot Pats are 1, 2, 3 ; but not 6 . For, though 6 be allo a Divifor of ilfelf; yet not an Aliquot Parr ; becaufe the Word Part implies fomewhat lefs than the whole.
4. The Number of Aliquot Parts, therefore, is always lefs by one than the Number of Divifors. Becaufe all the Divifurs except one, are Aliquot Parts; all the Aliquor Parts are Divifors, and there is likewife one more Divifor of the Number, to wit, the whole Number iffelf.
5. So that, the Number of Divifors being given, the Number of Aliquot Parts is given alfo. And contrarywife; if this, then that. As, of the Number 6, the Divifors being 4, the Aliquot Parts are 3, (that is, \(4-1\). ) And, the e being 3, the Divifors are \(4=3+1\).
6. It is manifeft, that the Number 1 , hath no Aliquot Part, and but one Divifor, that is 1 . Becaufe there is no Number lefs than iffelf that may be a part of it: Bue it meafures itfelf; and therefore is its own Divifor.
7. Any other Prime Numiver hath one Aliquor Part, and Two Divifors. For a Prime Number, we call, fuch as is meafured (beride itfelf) by no arher Number but an Unit. As 2, 3, 5, 7, 11, \&c. Each of which are mealured by 1 , and by itfelf; but not by any other Number. And hath therefore z Divifors, and I Aliquor Part ; but no more.
8. Every Power of a Prime Number (other than of 1 , which here is underftood to be excluded, ) hath fo many Aliquor Parts as are the dimenfions of fuch Power; and one Divifor more than fo. As (fuppoling \(a, b, c, \& c\), to be fo many Prime Numbers;) a hath two divifors (i and \(a ;\) ) \(a^{3}\) or aa hath three, ( \(1, a, a d ;\) ) \(a^{3}\), or aad, hath four, ( \(1, a\), \(a a\), aaa; ) and fo of the reft. That is, the Number of Divifors is one more than the Number of Dimenfions. Becaufe I, and all the Degrees of fuch Power (not higher than itfelf) are Divifors; but not any other Number, if \(a\) be a Prine. That is, one more than the Number of Dimenfions: Of which the greateft Divifor (being the whole) is not an Aliquot Part;
and therefore the Aliquot Parts are juft fo many as are the Dimenfions. Thus of \(S\) (the Cube of 2 ) the Divifors are four, ( \(1,2,4,8\);) the Aliquot Parts are three, ( \(\mathrm{I}, 2,4\);) Of 8 r (the Biquadrate of 3) the Divifors are five, ( \(1,3,9,27\), SI; ; the Aliquot Parts are four, ( \(1,3,9,27\), ) juft fo many as are the Dimenfions. That is, (of fuch Biquadrate) the Divifors are I, \(a, a a, a a a, a a \_a\); the Aliquot Parts \(\mathbf{I}, a, a a\), aaa; and fo every where: For, though the higheft Dimenfion came not into the Number of Aliquot Parts, yet a being fupernumerary, makes the Aliquot 'Parts juft as many as the Dimenfions.
9. If a Prime Number, or any Power thereof, be Multiplied by any other Prime Number, or any Power hereof; the Product hath fo many Divifors, as is the Number of Divifors in That, Multiplied by the Number of Divifors in This; and, therefore, the Aliquot Parts fewer by one than fo.

For Example: Let \(a, b\), be two different Prime Numbers, (fuppofe 2,3 ;) and certain Powers thereof, as \(a^{3}, b^{2}\), (that is 8,9 ,) the Product \(a^{3} b^{2}\), (chat is, \(72=8 \times 9\).) Now for as much as the Divifors of the former \(1, a, a a, a a a\); (that is, \(1,2,4,8\),) divide \(a^{3}\) (that is 8 ;) not only thefe, or (which is the fame) every of thefe Multiplied by 1 ; but alfo every of them Multiplied by \(b\), and by \(b b\), (that is by 3 , and by 9, ) will divide \(a^{3} b^{2}\). That is, every of the Divifors of \(a^{3}\), Multiplied into every of the Divifors of \(b^{2}\); will divide \(a^{3} b^{2}\).


The Number therefore of all; is the Number of \(1, a, a, a\), aan, (that is 4,) fo many times taken as is the Number of I, \(b, b b\), (lhat is, 3 times;) That is, \(4 \times 3=12\) : The Number of Divifors therefore is 12 ; and of Aliquot Parts, 11.
10. If a Product made by the Multiplication of diferent Prime Numbers, or of their Powers by one another, be further Multiplied by another Prime Number different from every of thofe: The Number of Divifors in this new Product, will be fo many as is the Number of Divifors in that firf Product Multiplied by the Number of Divifors in the new Multiplier.

For Example: The Number of Divifors in the Product but now mentioned \(a^{3} b^{2}\), is 12 ; (as is already fhewed:) if therefore this be Multiplied by any other Prime Number, as \(c\) (fuppofe 5,) different from \(a, b\); (whofe Divifors therefore are two, \(I\) and \(c ;\) ) the Divifors of the Product \(a^{3} b^{2} c\) (that is, of \(72 \times 5=360\) ) will be \(12 \times 2=24\). Namely, all thofe (before found) which divided \(a^{3} b^{2}\), will alfo divide \(a^{3} b^{2} c\); or (which is the fame) all thofe Multiplied by i (which is one of the Divifors of \(c\);) and the fame alfo Multiplied by \(c\), (which are as many more;) and therefore both together are twice as many; that is, \(12 \times 2=24\). Namely, I, \(a, a a, a a a ; b, a b, a a b, a a a b ; b b, a b b, a a b b, a a a b b ; c\), \(a c\), aac, acac; bc, \(a b c\), \(a a b c\), caabc; bbc, \(a b b c\), cabbc, anabbc. That is, \(1,2,4,8 ; 3,6,12,24 ; 9,18,3^{6}, 7^{2}: 5\), 10, 20, 40; 15, 30, 60, 120; 45, 90, 180, 360 .

And if, for the new Mulciplier \(c \doteq 5\), where taken \(c c=\) 25 , or \(c c c=125\); (the Number of whofe Divifors are 3 or 4 ;) the Number of Divifors of the Product \(a^{3} b^{2} c^{2}\), or \(a^{3} b^{2} c^{3}\), would (accordingly) be \(12 \times 3=36\), or \(12 \times 4=48\). (And, in like manner, for any other Power of c.) For now not only the Divifors of \(a^{3} b^{2}\) Multiplied, by I , and by \(c\); but the fame alfo Multiplied by \(c c\), (which is a third time fo many,) will be Divifors of \(a^{3} b^{2} c^{2}\); and the fame Multiplied by (cce, (which is as many a fourth time,) will be Divifors of \(a^{3} b^{2} c^{3}\).


The farne will in like manner be frewed, if this new Product \(a^{3} b^{2} c\), (whofe Divifors are 24,) be further Multiplied by \(d\), or \(d d, \& c\). Namely, the Divifors of \(a^{3} b^{2} c d\) will be \(24 \times 2=48\); and, of \(a^{3} b^{2} c d^{2}, 24 \times 3=72\). And fo forward.

Or (which comes to the fame pafs) if \(a^{3} b^{2}\) (whofe Divifors are \(12=4 \times 3\),) be Multiplied by \(c d\), (whofe Divifors are \(4=2 \times 2\), or by cdd; (whofe Divifors are \(2 \times 3=6\);) for then will the Divifors of \(a^{3} b^{2} c d\) be \(12 \times 4=48\); and of \(a^{3} b^{2} c d^{2}, 12 \times 6=72\); as before.

And in like manner, the fame will hold, how many foever Prime Numbers, and what ever Powers of fuch Primes, be fo continually Multiplied; provided always (which is heedfully to be attended, ) that fuch Primes \(a, b, c, d, \& \delta c\), be all different each from other.
II. If any Number however Compounded, be further multiplied by any of thofe Primes of which it was before Compounded, or by any Power of fuch Prime; the Number of Divifors thence arifing, will be fuch as would have been by advarcing that Prime fo many Degrees higher, as is the Degree of fuch Multiplier.

As, for inftance, if \(c, d\), were the fame Prime; then inftead of \(\varepsilon d\), whofc Divifors, if different, would have been
\(4=2 \times 2,(1, c, d, c d\),\() we are to take c c\), whofe Divifors are but \(3,(1, c, c c\), becaufe \(c, d\), which would otherwife have been two different Divifors, are now but one and the fame. And accordingly, the Divifors of \(a^{3} b^{2} c d\), that is, (becaufe \(c=d\), of \(a^{3} b^{3} c^{2}\), will now be (not \(12 \times 4=48\), as before, ) but \(12 \times 3=36\). So if \(a^{3} b^{2} c\) be Multiplied by \(d^{2}\), and \(d=b\). For then \(a^{3} b^{2} c d^{2}\) is the fame with \(a^{3} b^{4} c\); and the number of Divifors (not \(4 \times 3 \times 2 \times 3=72\), but) \(4 \times 5 \times 2=40\). And the like in other cafes, as is of itfelf manifeft.
12. And, univerfally: If a Number be made, by continual Multiplication of how many Soever Prime Numbers, (different each from otber,) or of any Powers of Juch Primes: The Number of Divifors of fucb Compound Number, is Compounded (by continual Multiplication) of the exponents of the Degrees of fuch Primes or their Powers so Compounded, increafed (each of them) by 1. And Juch Number of Divijors, wanting I, is the Number of Aliquot Parts. (Which Theorem contains the main fubftance of the Doctrine of Aliquot Parts.

As, for the Number \(a^{3} b^{2} c d\); the exponents of the Degrees or Dimenfions of the Primes \(a, b, c, d\), are \(3,2,1,1\); and thefe increafed by 1 , are \(4,3,2,2\). Thefe, continually Multiplied, give us the Number of Divifors \(4 \times 3 \times 2 \times 2\) \(=48\); and, of Aliquor Parts \(48-1=47\). (And, in like manner, for any other Number however Compounded.) As is evident by what is before Demonftrated.

Hence we may gather the folution of the following Problems.
13. Any Number being propofed; to find how many Divifors it hath; and, how many Aliquot Parts.

Divide the Number propofed (and the Quotients arifing from fuch Divifion) continually, by Prime Numbers (or the Powers of fuch) according as it is capable, till we come to I. And we fhall thereby find, of how many different Prime Numbers, and what Powers of them, the Number propofed is Compornded: which being done, we have the Number of

Divifors, and of Aliquot Paits, by the propofition foregoing.

As for Example; Let the Number fo propofed be 5940 ; we fhall find, upon Tryal, that it may be divided by 2 , twice ; by 3, three times ; by 5 , once; (by 7 , not at all ;) and by 11 , once.
\[
\text { II } \left.\left.\left.\left.\left.)_{5}\right)_{3}\right)_{3}\right) 3\right)=2\right) 5940(2970(1485(495(165(55(\operatorname{II}(1
\]

And may therefore be thus defigned, \(a^{2} b^{3} c d\); where \(a, b\), \(c\), and \(d\), denote the Numbers \(2,3,5\), and II, refpectively, and the exponents of \(a, b, c, d\), are \(2,3,1,1\); and thefe increafed by 1 , are \(3,4,2,2\); which continually multiplied, are \(3 \times 4 \times 2 \times 2=48\). So many therefore (by the propofition foregoing) are the Number of Divifors; and 47 the Number of Aliquot Parts.
14. Any Number being propofed; to find, what are the Divifors, and the Aliquot Parts thereof.

Firft find (as in the preceeding article) of what Prime Numbers, and what Powers of them, the Number propofed is Compounded. Then, taking any one of thofe Prime Numbers to whatever Degree it be advanced, fet down in order all the Divifors of fuch Degree. Then Multiply every of thefe by every Divifor of fuch Degree as fome other of thofe Primes is advanced to. And every of the Divifors hitherto found, by every Divifor of the Degree, to which a third Prime is advanced. And all thefe, by thofe of a fourth; and fo onward, if yet there be more Primes. (In fuch manner as is to be feen above in art. 10.) And the Number arifing from all thofe Multiplications, is the Number of the Divifors of the Nuniber propofed: And all thefe Divifors, except icfelf, are the Aliquot Parts of it.

Thus for the Number \(360=2 \times 2 \times 2 \times 3 \times 3 \times 5=8\) \(\times 9 \times 5\); fuppofe \(a^{3} b^{2} c\). All the Divifors of \(a^{3}=3\), are \(1, a, a a, a a\); that is, \(1,2,4,8\). Let ihefe be multiplied by all the Divifors of \(b^{2}=9\); which are \(1, b, b b\); that is, 1, 3, 9. And all the refults of thefe, by the Divifors of \(c\); which are \(1, c\); that is, 1,5 . So have we all the Divifors of 360 .
\begin{tabular}{rrrrrrrr}
1 & \(a\) & \(a a\) & \(a a a\) & 1 & 2 & 4 & 8 \\
\(b\) & \(a b\) & \(a \because b\) & \(a a a b\) & 3 & 6 & 12 & 27 \\
\(b b\) & \(a b b\) & \(a a b b\) & \(a a a b b\) & 9 & 18 & \(3^{6}\) & 72 \\
\(c\) & \(a c\) & \(a a c\) & \(a a a c\) & 5 & 10 & 20 & 40 \\
\(b c\) & \(a b c\) & \(a a b c\) & \(a a a b c\) & 15 & 30 & 60 & 120 \\
\(b c\) & \(a b b c\) & \(a a b b c\) & \(a a b b b c\) & 45 & 90 & 180 & 360
\end{tabular}

And in like manner we may proceed, whatever Number be propofed, and howfoever Compounded.

But the fame may alfo be done in divers other methods, (for we are not confined to proceed always in the fame order,) which in the refult will be the fame with chis. Provided always, in whatever order we proceed, that we be fure to take all the Prime Numbers, that are Ingredients of fuch Compound, with all the Degrees of them, and all the poffible Combinations that may be made of them, not exceeding (in any) the Number of Dimenfions which they have in the Compound. And, that we may be fure not to mifs any, it will be convenient to proceed, if not in this, at leaft in fome other regular order, that we may know when we have all. And fome other forms of procefs we may after have occafion to mention.
15. To find a Number, which fhall have jult fo many Divifors, or fo many Aliquot Parts, as is propofed: And, in how many forms the fame may be had; and, the leaft in each form; or the leaft of all, that may have fo many.

The Number of Aliquor Parts propofed, increafed by r, is the Number of Divifors. This Number, we are to confider, how many ways it may be expreffed in Integers; whether by one alone, or by the Multiplication of two or more: ( As is to be after thewed in art. 17, 18.) And, as many way's as this may be done, fo many forms there are of Numbers which have juft fo many Divifors: Namely, for every of the Integers by which fuch Number is to be expreffed, fo many different Prime Numbers are to be affigned; and fuch Degrees or Powers thercof, whofe exponents are lefs by one than the refpective Integers which they reprefent; and
thofe Powers or Degrees, (continually multiplied, if there be more of them, ) will have luch Number of Divifors as is required.

As for Example: If a Number be required which thall have 99 Aliquot Parts, or, (which is the fame) 100 Divifors. This Number roo, may be expreffed by Integers (fingle, or multiplied into one another,) nine feveral ways: 100 \(=5^{0} \times 2=25 \times 4=25 \times 2 \times 2=20 \times 5=10 \times\) \(10=10 \times 5 \times 2=5 \times 5 \times 4=5 \times 5 \times 2 \times 2\) : And fo many feveral forms there are of Numbers which thall have 100 Divifors, or 99 Aliquot Parts, Namely, if (for every of the forms wherein the Number 100 may be fo deffgned) we take fo many different Primes, as there are Integers in fuch defignation; and each of them advanced refpectively to fuch Degree whofe exponent is lefs by one than the Integer it reprefents. As \(a^{99}, a^{49} b, a^{24} b^{3}, a^{24} b c\), \(a^{19} b^{4}, a^{9} b^{9}, a^{9} b^{4} c, a^{4} b^{4} c^{3}, a^{4} b^{4} c d\); whatever be thofe Prime Numbers \(a, b, c, d\), different each from other. (As appears \(5 \times 5 \times 2 \times 2 a^{4} b^{4} c d\) from art. 12.) But not any other forms:
As may be thence fhewed, in cafe any uther form be affigned. As, for inftance, if any form be affigned wherein (whatever be the other Ingredients) there is the bare Square of a Prime Number, (fuch as in none of thefe appears) as \(e^{2}\). For whatever be the Number which the reft of the ingredients defign, that Number (becaufe of \(e^{2}\) ) is to be Tripled (by art. 9.). But 100 is not the Triple of any Integer (as not being divifible by 3 :j And theretore cannot be fo defigned. And in like manner may be mewed, (with fuch variation as the cafe fhall require, ) concerning any other form, different from thole afligned.

Now for finding the leaft Number in each form, that Thall have fo many Divifors; no more is to be done, but for \(a, b, c, d, \& c\), or fo many of them as occur in each form refpectively, to take fo many of the fmallent Primes, \(2,3,5,7, \& x\). And, of thefe, ftill to affign the leffer for that which is to have the greater Number of Dimenfions.
(As is of itfelf manifet.) So for the form \(a^{9} \dot{b}^{4} c\), it is manir feft, that if for \(a, b, c\), we take \(2,3,5\), the number muft needs be lefs, than if we take \(2,3,7\), or 3,7 , II, or any other numbers: And, (fuppofing thofe three to be taken,) it nuuft needs be lefs if we affign \(a=2, b=3, c=5\), than if we affign them any otherwife. Becaufe, in the compofition, \(a\) is oftener to be repeated than \(b\), and \(b\) than \(c\).

Now when it appears, which is the leaft in each form; it is eafily determined upon view, which is the leaft of all. As, in the prefent cafe, puting \(a=2, b=3, c=5\), \(d=7\); it is eafy to judge that \(a^{4} b^{4} c d\), that is, \(16 \times 81 \times\) \(5 \times 7=45360\), is the fmalleft number that can have roo Divifors. For it is, to \(a^{4} b^{4} c^{3}\); as \(d=7\), to \(c c=9\) : And it is, to \(a^{9} b^{4} c\); as \(d=7\), to \(a^{5}=32\) : And, to \(a^{9} b^{9}\); as \(c d\) \(=35\), to \(a^{5} 6^{5}=7776\). And fo of the relt.

And, for the moft part, thofe are the fmaller numbers wherein more Primes be ingredients; than where fewer Primes, but in higher Degrees; as \(a b=2 \times 3=6\), is lets than \(a^{3}=8\); though each of them have four Divifors. But it is not always fo ; for \(a^{3} b=8 \times 3=24\), is lefs than \(a b c=2 \times 3 \times 5=30\); (though the number of Divifors be eight in each.) For here one Degree of a greater Prime \(c=5\) ? doth over balance two Degrees of a leffer \(a a=4\).
16. It appears moreover, That, wherever the number of Divifors is odd, fuch Number is a Square: And, contrarywife, of every Square Number, the number of Divifors is odd. And, of every Non-quadrate Number, the number of Divifors is even: And, wherever the number of Divifors is even, wiuch Number is a Non-quadrate Number.

For every Divifor divides the Number propofed by fome other Divifor, (whereof when one is the Divifor, the other is the Quotient;) except only the Square Root, (where the Divifor and Quotient are the fame.) All other Divifors therefore go by couples, and make an even Number: To which when the Square Root is to be added (which is the
cale of all Square Numbers, and of thefe only;) this being folitary, makes the number of Divifors odd.
\begin{tabular}{cccccccc}
1 & 36 & 1 & \(a a b b\) & 1 & 360 & 1 & \(a a a b b c\) \\
2 & 18 & \(a\) & \(a b b\) & 2 & 180 & \(a\) & \(a a b b c\) \\
3 & 12 & \(b\) & \(a a b\) & 3 & 120 & \(-b\) & \(a a a b c\) \\
4 & 9 & \(a a\) & \(b b\) & 4 & 90 & \(a a\) & \(a b b c\) \\
\multicolumn{2}{c}{6} & & \(a b\) & 5 & 72 & \(c\) & \(a a a b b\) \\
& & & & 6 & 60 & \(a b\) & \(a a b c\) \\
1 & 72 & 1 & \(a a a b b\) & 8 & 45 & \(a a a\) & \(b b c\) \\
2 & 36 & \(a\) & \(a a b b\) & 9 & 40 & \(b b\) & \(a a a c\) \\
3 & 24 & \(b\) & \(a a a b\) & 10 & 36 & \(a c\) & \(a a b b\) \\
4 & 18 & \(a a\) & \(a b b\) & 12 & 30 & \(a a b\) & \(a b c\) \\
6 & 12 & \(a b\) & \(a a b\) & 15 & 24 & \(b c\) & \(a a a b\) \\
8 & 9 & \(a a a\) & \(b b\) & 18 & 20 & \(a b b\) & \(a a c\)
\end{tabular}
17. A Number being propofed; to find, how many different ways it may be defigned by Integers; whether fingly or by the continual Multiplication of more than one.

Firft find out (by art. 14,) what are all the Divifors of fuch propofed Number. Then, confidering them all fingly (beginning at the greateft and fo proceeding to the leffer; that, by keeping fuch order, we may be the more fure not to mils any;) inquire, what Number doth with every of thefe compofe the Number propofed; and if this chance to be a Compound, let this in like manner be refolved into its Components, (and fo onward as 360 long as the Component is itfelf a Compound;) \(180 \times 2\) whereby, having thus run through them all, we \(120 \times 3\) Thall meet with all the ways whereby the Num- \(90 \times 4\) ber propofed may fo be defigned by Integers. \(90 \times 2 \times 2\)

As for Example: Let fuch Number pro- \(72 \times 5\) pofed, be 360 ; whofe Divilors (found by art. \(60 \times 6\) 14,) are \(360,180,120,90,72,60,45,40,36,60 \times 3 \times 2\) \(30,24,20,18,15,12,10,9,8,6,5,4,3,2,45 \times 8\) 1 , where we thall find the firt defignation to be \(45^{\times} \times \times 2\) 360 , (or \(360 \times 1\). ) Then \(180 \times 2,120 \times 3,45 \times 2 \times 2 \times 2\) \(90 \times 4\), and (becaufe \(4=2 \times 2\), \(90 \times 2 \times 2\). \(40 \times 9\) Then \(72 \times 5,60 \times 6\); and (becaufe \(6=3 \times 2\) ) \(40 \times 3 \times 3\)
\(36 \times 10\)
\(3 \times 5 \times 2\)
\(30 \times 12\)
\(30 \times 6 \times 2\)
\(30 \times 4 \times 3\)
\(3 \mathrm{c} \times 3^{x}-\times 2\)
\(24 \times 15\)
\(24 \times 5 \times 3\)
\(20 \times 18\)
\(2 \mathrm{C} \times 9 \times 2\)
\(2 \mathrm{Cx} \times 3\)
\(20 \times j \times 5\)
\(18 \times 1 \mathrm{Cx} 2\)
\(18 \times 5 \times 4\)
\(18 \times 5 \times 2 \times 2\)
\(15 \times 12 \times 2\)
I. \(5 \times 8 \times 3\)
\(15 \times 6 \times 4\)
\(15 \times 6 \times 2 \times 2\)
\(15 \times 4 \times 3 \times 2\)
\(15 \times 3 \times 2 \times 2 \times 2\)
\(12 \times 10 \times 3\)
\(12 \times=5\)
\(12 \times 5 \times 3 \times 2\)
10xyx.
\(1 \mathrm{Cxij} \mathrm{\times 2} \mathrm{\times 2}\)
\(10 \times \overline{0} 6\)
\(10 \times 7 \times 3 \times 2\)
1C \(\times 4 \times 3 \times 3\)
\(10 \times \times 3 \times 2 \times 2\)
\(9 \times 8 \times 5\)
\(9 \times-5 x+2\)
\(9 \times .7 \times 2 \times 2 \times 2\)
\(8 \times 5 \times 3 \times 3\)
\(6 \times 6 \times 5 \times 2\)
\(6 \times 5 \times 4 \times 3\)
\(6 \times 5 \times 3 \times 2 \times 2\)
\(5 \times 4 \times 3 \times 3 \times 2\)
\(5 \times 3 \times 3 \times 2 \times 2 \times 2\)
\(60 \times 3 \times 2\). Then \(45 \times 8\); and (becaufe \(8=4 \times 2=2 \times 2 \times 2\) ) \(45 \times 4 \times 2,45 \times\) \(2 \times 2 \times 2\). Then \(40 \times 9\); and (becaule \(9=\) \(3 \times 3,) 40 \times 3 \times 3\). Then \(36 \times 10\); and (becaule \(10=5 \times 2\), \(36 \times 5 \times 2\). Then \(30 \times 12\); and (becaufe \(12=0 \times 2=4 \times 3\) \(=3 \times 2 \times 2\), ) \(30 \times 6 \times 2,30 \times 4 \times 3,30 \times\) \(3 \times 2 \times 2\). Then \(24 \times 15\), and (becaufe 15 \(=5 \times 3\) ) \(24 \times 5 \times 3\). Then \(20 \times 18\), and (becaufe \(18=9 \times 2=6 \times 3=3 \times 3 \times 2\), ) \(20 \times 9 \times 2,20 \times 6 \times 3,20 \times 3 \times 3 \times 2\). Then, (omitting \(18 \times 20\), as being the fame with \(20 \times 18\); and refolving \(20=10 \times 2=\) \(5 \times 4=5 \times 2 \times 2\); ) \(18 \times 10 \times 2,18 \times 5 \times 4\), \(18 \times 5 \times 2 \times 2\). Then (omitting \(15 \times 24\), as being the fame with \(24 \times 15\); and 10 every where when a greater follows a lefs, as being had before; and refolving \(24=\) \(12 \times 2=8 \times 3=6 \times 4=6 \times 2 \times 2=\) \(4 \times 3 \times 2=3 \times 2 \times 2 \times 2\);) \(15 \times 12 \times 2\), \(15 \times 8 \times 3,15 \times 6 \times 4,15 \times 6 \times 2 \times 2,15\) \(\times 4 \times 3 \times 2,15 \times 3 \times 2 \times 2 \times 2\). In like manner (omitting fuch Combinations of 12 as have been already, \(12 \times(30=15 \times 2\) \(\Rightarrow 10 \times 3,12 \times 6 \times 5,12 \times 5 \times 3 \times 2\). In like manner, \(10 \times\left(3^{6}=18 \times 2=12 \times 3\right.\) \(\Rightarrow 9 \times 4,10 \times 9 \times 2 \times 2,10 \times 6 \times 6,10\) \(\times 6 \times 3 \times 2,10 \times 4 \times 3 \times 3,10 \times 3 \times 3 \times 2\) \(\times 2\). Then \(9 \times(40=20 \times 2=10 \times 4\) \(=8 \times 5,9 \times 5 \times 4 \times 2,9 \times 5 \times 2 \times 2 \times 2\). Then \(8 \times(45=) 5 \times 3 \times 3\). Then \(6 \times\) \((60=) 6 \times 5 \times 2,6 \times 5 \times 4 \times 3,6 \times 5 \times 3\) \(\times 2 \times 2\). Lattly, \(5 \times\left(7^{2} \Rightarrow\right) 4 \times 3 \times 3 \times 2\), \(5 \times 3 \times 3 \times 2 \times 2 \times 2\). (The Divifors 4,3 , 2 , I, afford no new cafes; becaule every of them is lefs than 5 , and cannot without it, or fome greater Number, make up 360 .) Which forms (in Number \(5^{2}\) ) are all the forms in which 360 , may thus be expreffed
by Integers. And how, to every of there forms, we may fir fo many forms of Numbers which fhall have 360 Divilors, is hefore hewed in arr. 15. As, for \(5 \times 3 \times 3 \times 2 \times 2\) \(X_{2}, a^{4} b^{2} c^{2} d e f\) : And fo of the relt.
But, why I have here omitted (for inftance) \(5 \times 72,5 \times\) \({ }_{3} 6 \times 2,5 \times 24 \times 3,5 \times 18 \times 4,5 \times 18 \times 2 \times 2,5 \times 12 \times 6,5 \times\) \(12 \times 3 \times 2,5 \times 9 \times 8,5 \times 9 \times 4 \times 2,5 \times 9 \times 2 \times 2 \times 2,5 \times 8 \times 3\) \(\times 3,5 \times 6 \times 6 \times 2,5 \times 6 \times 4 \times 3,5 \times 6 \times 3 \times 2 \times 2\), and others of like kind; the caufe is evident: Becaufe, the Numbers \(72,36,24,18,12,9,8,6\), being greater than 5 , all the Combinations which have thefe ingredients were had before. For \(5 \times 72\), is but the fame with \(72 \times_{5}\); and fo of the reft. And it is fo ordered all along, that whenever a greater Number comes to follow a leffer, we may know that that cafe was (or thould have been) had before.

But it is no way neceffary that we fhould always obferve this order; for the fame will hold, in whatever method we proceed : provided we be fure to take them all, in whatever order.
18. The fame alfo may be thus had, if the Number itfelf (of Divifors required) or the form thereof, be fo expreffed in Species, as it may thence appear in what form itfelf is Compounded of the ingredient Primes: As if we put \(a^{3} b^{2} c\), for the Number \(360=2 \times 2 \times 2 \times 3 \times 3 \times 5\); or for any other Number which is Compounded of the Third Degree of one Prime, Multiplied by the Second Degree of another Prime, and this by a Third Prime.

For, however we are not by this directed how to proceed (as before) from the greater to the leffer in a continual order, (becaufe the Second or Third Degree of a leffer Prime, may poffibly be greater than the firft of fome greater Prime; ) yet we may thus, though in another order, meet with them all.

And it will be then convenient (beginning with 1 ,) to take the Species or Synibols, firt fingly, one by one, (as \(a\), \(b, c\) ) in fuch order as they follow in the Alphabet. And then by Two's, (as an, ab, ac, bb, \&c,) and here, firft thufe
thofe that begin with \(a\); and here again \(a a\) before \(a b\), and this before \(a c, 1, \& c\), and then thofe that begin with \(b\); and here (omitting ba, as being the fame with \(a b\) which was had before, ) beginning with \(b b\), or (in cafe there be not a fecond \(b^{b}\) ) with \(b c\), and fo onward: And then by Threes, and Fours, and fo onward as there is occafion; obferving all along, as the cafe will permit, the Alphabetical order, (that we may be the more fure not to mifs any.) Placing always, over againft each, the correfpondent Divifor; which doth, with it, conftitute the Number propofed. As, againft aa, putting \(a b b c\), which, with it, compleats \(a a a b b c\).
\begin{tabular}{cccc}
\(\mathbf{1}\) & \(a^{3} b^{2} c\) & \(\mathbf{1}\) & \(a a a b b c\) \\
\(a\) & \(a^{2} b^{2} c\) & \(a\) & \(a a b b c\) \\
\(b\) & \(a^{3} b c\) & \(b\) & \(a a a b c\) \\
\(c\) & \(a^{3} b^{2}\) & \(c\) & \(a a b b b\) \\
\(a^{2}\) & \(a b^{2} c\) & \(a a\) & \(a b b c\) \\
\(a b\) & \(a^{2} b c\) & Or thus rather,,\(a b\) & \(a a b c\) \\
\(a c\) & \(a^{2} b^{2}\) & \(a c\) & \(a b b b\) \\
\(b^{2}\) & \(a^{3} c\) & \(b b\) & \(a a a c\) \\
\(b c\) & \(a^{3} b\) & \(b c\) & \(a a a b\) \\
\(a^{3}\) & \(b^{3} c\) & \(a a a\) & \(b b c\) \\
\(a^{2} b\) & \(a b c\) & \(a a b\) & \(a b c\) \\
\(a^{2} c\) & \(a b^{2}\) & \(a a c\) & \(a b b\)
\end{tabular}

And this we are to purfue fo far, till, in that oppofite rank, we meet with the fame (in the cafe of a Square Number propofed, ) or, (if not a Square Number,) that which was next to follow, in the firt rank. (As here, againft saac, we have abb; which was next to have followed if the firlt rank had proceeded.) For, when we be come fo far, thofe which were to have followed in the continuation of the firt rank, do follow (in the fame order, but going backward, ) in the latter rank, till we come to the greatelt of all.

And having thus difpofed all the Divifors in due order; we may then (beginning with the greatef, and fo proceeding backward to the leaft \(\mathrm{j}_{\text {) }}\) ) compound each with its oppofite,
which ftands againft it. (As cbbaaa, cbbaa \(\times a\), cbaaa×b, \&c.) And when that fecond Component is itfelf a Compound, we are to refolve it into its Components; (as \(c \dot{b} \times \times a a, c b a \times a \times a, \& ; c\), \()\) and fo continually till it be refolved into Primes.

When we have thus difpatched all the Divifors of the latter rank (for till then, there is no danger,) we are to take heed, that fome of the Compofitions already taken, be not taken a fecond time in another order; and when they do fo occur a fecond time, we are to pafs them by. And accordingly, when I come at saa, I do not Compound this with the whole of \(b b a\) which ftands againft it; (becaufe this hath been already confidered, and there joined in all the Compofitions that it is capable of;) but with all thefe Components of \(b b a\), which had not before been fully confidered. And when I come at \(c b\) : I omit, not only the whole of baaa, ('vhich ftands againft it) but all the Components of it which have three Members, (becaufe not only thofe of Four, but even of Three Components, have been fully difpatched, before we come at ob which hath but 2 R
cbbaaa 360
cbbaaxa 180×2
cbaaaxb \(120 \times 3\)
bbaaaxe \(72 \times 5\)
cbbaxaa \(90 \times 4\)
\(\times a \times a \quad 90 \times 2 \times 2\)
cbaceba. \(\quad 60 \times 6\) \(\times b \times a \quad 60 \times 3 \times 2\)
bbaaxca \(36 \times 10\)
\(x c \times a \quad 36 \times 5 \times 2\)
caaaxbb \(40 \times 9\)
\(\times b \times 6 \quad 40 \times 3 \times 3\)
baac \(\times b c \quad 24 \times 15\)
\(\times 6 \times 6 \quad 24 \times 5 \times 3\)
cbbxaaa \(45 \times 8\)
\(\times a \times a \quad 45 \times 4 \times 2\)
\(\times a \times a \times a \quad 45 \times 2 \times 2 \times 2\)
cba×baa \(30 \times 12\)
\(\times b a \times 2 \quad 30 \times 6 \times 2\)
\(\times a \times 6 \quad 30 \times 4 \times 3\)
\(\times b \times a \times a \quad 30 \times 3 \times 2 \times 2\)
bbaxcaa \(18 \times 20\)
\(\times \operatorname{caxa} \quad 18 \times 10 \times 2\)
\(\times a \times c \quad 18 \times 4 \times 5\)
\(\times c \times a \times a \quad 18 \times 5 \times 2 \times 2\)
caaxbbxa \(20 \times 9 \times 2\)
\(\times 6 a \times 6 \quad 20 \times 5 \times 3\)
\(\times 6 \times 6 \times a \quad 20 \times 3 \times 3 \times 2\)
baaxcbab \(\quad 12 \times 15 \times 2\)
\(\times c a \times b \quad 12 \times 10 \times 3\)
\(\times b a \times c \quad 12 \times 6 \times 5\)
\(x<x i \times a \quad 12 \times 5 \times 3 \times 2\)
аa \(a \times c b \times b \quad 8 \times 15 \times 3\)
\(\times b 6 \times c \quad 8 \times 9 \times 5\)
\(\times c \times 6 \times 6 \quad 8 \times 5 \times 3 \times 3\)
cbxbaxaa \(15 \times 6 \times 4\)
\(\times a \times a \quad 15 \times 6 \times 2 \times 2\)
\(\times a \times 1 \times a \quad 15 \times 4 \times 3 \times 2\)
\(\times b \times a \times a \times a \quad 15 \times 3 \times 2 \times 2 \times 2\)
\(66 \times\) caxaa
\begin{tabular}{cl}
\(b l \times a \times a a\) & \(9 \times 10 \times 4\) \\
\(\times a \times a\) & \(9 \times 10 \times 2 \times 2\) \\
\(\times a a \times c \times a\) & \(9 \times 4 \times 5 \times 2\) \\
\(\times c \times a \times a \times a\) & \(9 \times 5 \times 2 \times 2 \times 2\) \\
\(c a \times b a \times b a\) & \(10 \times 6 \times 6\) \\
\(\times b \times a\) & \(10 \times 6 \times 3 \times 2\) \\
\(\times a a \times b \times b\) & \(10 \times 4 \times 3 \times 3\) \\
\(\times b \times b \times a \times a\) & \(10 \times 3 \times 3 \times 2 \times 2\) \\
\(b a \times b a \times c \times a\) & \(6 \times 6 \times 5 \times 2\) \\
\(\times a b \times b\) & \(6 \times 4 \times 5 \times 3\) \\
\(\times c \times b \times a \times a\) & \(6 \times 5 \times 3 \times 2 \times 2\) \\
\(a a \times c \times b \times b \times a\) & \(4 \times 5 \times 3 \times 3 \times 2\) \\
\(c \times b \times b \times a \times a \times a\) & \(5 \times 3 \times 3 \times 2 \times 2 \times 2\)
\end{tabular}
two Components.) And when 1 come at \(c a\), I mit \(c a \times b b \times a a_{3}\) \& c, becaufe 66 had been before confidered. And in like manner, at \(b a\), I omit all the Compofitions wherein \(c b, b b\), \(c a\), were ingredients; becaufe thefe had been before confidered. And in like manner, at \(a a\), and \(c\), I omit all thofe of two Members which might be Compounded with them; becaufe already had. As is to be feen in the order adjoined.
And over againft the forms thus expreffed in Species; I have fet the Numbers anfwering to them; which are the fame with thofe at art. I7, but not in the fame order. Becaufe here I was guided by the forms of Compofition, in directing the order; but, there, by the bignefs of the Numbers.

Having thus laid the Foundation of this Doctrine of Divifors and Aliquot Parts; I thall give fome Examples of Operations concerning them.

\section*{Examples of the foregoing Operations.}
19. Of the Number 110,880: How many are the Divifors, and Aliquot Parts? And which be they?

The Number 110,880 divided, as is directed at art. 13 , is refolved into thefe Primes; \(2,2,2,2,2,3,3,5,7,1 \mathrm{I}\). And is therefore in this form \(a^{5} v^{2} c d e\).
\[
\begin{gathered}
\text { I1 5) 7) 3) 3) 2) 2) 2) 2) 2) 110880 (55440 (27720 (13860 } \\
(6930(3465(1155(385(77(11)(1
\end{gathered}
\]

Or, I might at firft cut off the Cypher ; and, for it, fet down two Divifors 2, 5: And then, becaufe it is obvious to view, that 11,088 is divifible by II; I might next fet down if for another Divifor. (Becaufe by this means we
come the fooner to finall Numbers.) And then divide the Quotient roc8 by 2, and 3, as oft as I can; which done, we Chall have 7 for the laft Divifor. Or, I might have dirided 11,088 by 9 ; (and for it Cet down two Divifors 3, 3 :) For it is obvious alfo to view that it may be fo divided; hecaule the Figures put together without regard had to the places, (as is ufuat in the proofs of Multiplication and Divifion,) may be fo divided; or, cafting away 9 as oft as may be, nothing remains; or, 1 may fo do, for the fame reafon, with 1008 ; or, take any the like advantage for expedition, as the view fhall direct. For it matters not, in what order we find the Component Primes, fo we have them all.

The Number therefore appearing in this form \(a^{5} b^{2} c d e\); it is manifeft (by art. 12,) that the Number of Divifors is \(6 \times 3 \times 2 \times 2 \times 2=144\); and; of Aliquot Parts, 144 - 1 \(=143\). And thofe, (according to the method of art. I8,) are found to be thefe that follow.



Aliquot Parts, by Join Wallis.
\begin{tabular}{|c|c|c|c|}
\hline a 3 ana & 32 & 3465 & \(b b c d e\) \\
\hline a a abb & 48 & 2310 & \(a b c d e\) \\
\hline a aaac & So & 1386 & abbde \\
\hline anaad & 112 & 990 & abbece \\
\hline anaae & 176 & 630 & \(a b b c d\) \\
\hline a a abb & 72 & 1540 & aacde \\
\hline a aabc & 120 & 924 & aabde \\
\hline a anbd & 168 & 660 & a abce \\
\hline a a \({ }^{\text {abe }}\) & 264 & 420 & a abcd \\
\hline anacd & 280 & \(39^{6}\) & aabbe \\
\hline a ance & 440 & 252 & a abbd \\
\hline aande & 616 & 180 & \(a a b b c\) \\
\hline
\end{tabular}

The fame, ordered according to the greatnefs of the Numbers, will ftand thus :
\begin{tabular}{|c|c|c|c|c|c|}
\hline I & I & & 110880 & & aaaaabbcde \\
\hline \(a\) & 2 & & 55440 & & a aaabbcde \\
\hline \(b\) & 3 & & 36960 & & aaaaabcde \\
\hline \(a \cdot\) & 4 & & 27720 & & a a \({ }^{\text {abbcde }}\) \\
\hline \(c\) & 5 & - & 22176 & - & aanaabbde. \\
\hline \(a b\) & 6 & & 18480 & & aaaabcde \\
\hline \(d\) & 7 & & \(15^{840}\) & & aaaaabbce \\
\hline \(a \mathrm{a}\) & S & & 13860 & & a abbcde \\
\hline 63 & 9 & & 12320 & & amaaacde \\
\hline \(a C\) & 10 & - & 11088 & & aaaabbde \\
\hline \(e\) & II & & 10080 & & aaaaabbca \\
\hline \(a a b\) & 12 & & 9240 & & anabcde \\
\hline \(a d\) & 14 & & 7920 & & a aaabbce \\
\hline \(b c\) & 15 & & 7392 & & aaaaabde \\
\hline aana & 16 & - & 6930 & - & abbcde \\
\hline \(a b b\) & 18 & & 6160 & & aaaacde \\
\hline aac & 20 & & 5544 & & aaabbde \\
\hline bd & 2 I & & 5280 & & a aaaabce \\
\hline a.e & 22 & & 5040 & & a aaabbcd \\
\hline \(a a, b\) & 24 & , & 4620 & & aabcde \\
\hline acad & 28 & & 3960 & & a aabbce \\
\hline \(a b c\) & 30 & & 3696 & & aaaabde \\
\hline aaaaa & 32 & & 3465 & & bbcde \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline amaad & 224 & 495 & bbce \\
\hline bde & 23 I & 480 & a aaaabe \\
\hline aamabe & 2.40 & 462 & abde \\
\hline a abbd & 252 & 440 & anace \\
\hline anabe & 264 & 420 & nabcd \\
\hline a accl & 280 & 396 & a abbe \\
\hline acaaabb & 288 & 385 & cde \\
\hline aade & 308 & 360 & acabbc \\
\hline bocd & 315 & \(35^{2}\) & caaaae \\
\hline abce & 330 & 336 & aaaabd \\
\hline
\end{tabular}
20. Of Numbers (for infance) which have 12 Divifors: To exhibit all the forms; and, all the Numbers in each form; not exceeding the Number 2048; (which is the loweft Number of the higheit form ; according to art. 15. 18.

All the ways according to which 12 may be expreffed by Integers (as in art. 17,18,) are \(12=6 \times 2=4 \times 3=3\) \(\times 2 \times 2\) : Which affords us thefe forms, \(a^{11}, a^{5} b, a^{3} b^{2}, a^{2} b c\). And in each of the ef, the Numbers are as follow; being in all 211 .





Thefe digefted according to their natural order, fand thus:


1164

Aliquot Parts, by John Wallis.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline 1164 & 1312 & & 1524 & & I 725 & & 1924 & \\
\hline 1180 & 1314 & & 1550 & & 1734 & - & 1925 & \\
\hline IIS4 & 1316 & & 1564 & - & 1746 & & 1926 & \\
\hline 1196 & 1323 & - & 1572 & & 1748 & & 1935 & \\
\hline 1197 & 1340 & & 1580 & & 1780 & & 1940 & \\
\hline 1204 & 1352 & & 1602 & & 1788 & & 1952 & \\
\hline 1206 & 1356 & & 1612 & & 1804 & * & 1953 & \\
\hline 1210 & 1364 & & 1617 & - & 1812 & & 1956 & \\
\hline 1212 & 1372 & - & 1628 & & 1815 & & 1962 & \\
\hline 1215 & 1376 & & 1644 & & I 818 & & 1972 & \\
\hline 1220 & I 395 & & 1652 & & 1827 & & 1988 & \\
\hline 1236 & 1420 & & 1660 & & 1845 & - & 1989 & \\
\hline 1274 & 1422 & & 1665 & - & 1850 & & 2004 & \\
\hline 1275 & 1425 & - & 1666 & & 1854 & & 2020 & \\
\hline 1276 & 1449 & & 1668 & & 1862 & & 2034 & \\
\hline 1278 & 1450 & & 1683 & & 1876 & & 2044 & \\
\hline 1284 & 1460 & & 1690 & & 1881 & - & 2043 & \\
\hline 1287 & 1484 & & 1694 & - & 1884 & & & \\
\hline 1292 & 1494 & - & 1696 & & 1888 & & & \\
\hline 1305 & 1504 & & 1701 & & 1892 & & & \\
\hline 1308 & 1508 & & 1708 & & IgII & & & \\
\hline
\end{tabular}

Of the Numbers that are moft convenient for the Purpofe of dividing Large Quantities into Leffer equal Parts.
21. Thole Numbers which (for the bignefs of them) have the greateft Number of Divifors, and Aliquot Parts; have been wont to be made choice of, as moft convenient for ufe; efpecially when there may be frequent occafion of dividing things fo defigned.

Hence it is, that the Englif乃 Penny is divided into Four Farthings, (and almoft all things in Four Quarters of a different Name,) becaufe there is often occafion to divide into halves, and then again into halves. Hence alfo the Roman
\[
2 \text { S } 2 \text { Pound }
\]
\begin{tabular}{|c|c|c|}
\hline 1 & I & I \\
\hline 2 & 2 & \(a\) \\
\hline 4 & 3 & \(a^{2}\) \\
\hline 6 & 4 & \(a b\) \\
\hline 12 & 6 & \(a^{2} b\) \\
\hline 24 & 8 & \(a^{3} b\) \\
\hline 36 & 9 & \(a^{2}<c\) \\
\hline 48 & 10 & \(a^{4} b\) \\
\hline 60 & 12 & \(a^{2} b c\) \\
\hline 120 & 16 & \(a^{3} b c\) \\
\hline 180 & 18 & \(a^{2} b^{2} c\) \\
\hline 240 & 20 & \(a^{4} b c\) \\
\hline 360 & 24 & \(a^{3} b^{2} c\) \\
\hline 720 & 30 & \(a^{4} b^{2} c\) \\
\hline 840 & 32 & \(a^{3} b c d\) \\
\hline 1260 & 36 & \(a^{2} b^{2} c d\) \\
\hline 1680 & 40 & \(a^{4} b c d\) \\
\hline 2520 & 48 & \(a^{3} b^{2} c d\) \\
\hline 5040 & 60 & \(a^{4} b^{2} c d\) \\
\hline 7560 & 64 & \(a^{3} b^{3} c d\) \\
\hline 10080 & 72 & \(a^{5} b^{2} c d\) \\
\hline 15120 & 80 & \(a^{4} b^{3} c d\) \\
\hline 20160 & 8. & \(a^{6} b^{2} c d\) \\
\hline 25200 & 90 & \(a^{4} b^{2} c^{2} d\) \\
\hline 27720 & 96 & \(a^{3} b^{2} c d e\) \\
\hline 45360 & 100 & \(a^{4} \dot{b}^{4} c d\) \\
\hline 50400 & 108 & \(a^{5} b^{2} c^{2} d\) \\
\hline 55440 & 120 & \(a^{4} b^{2} c d e\) \\
\hline 83160 & 128 & \(a^{3} b^{3} c d e\) \\
\hline 110880 & 144 & \(a^{5} b^{2} c d e\) \\
\hline 166320 & i 60 & \(a^{4} b^{3} c d e\) \\
\hline 221760 & 168 & \(a^{6} b^{2} c^{2} d \varepsilon\) \\
\hline 277200 & 180 & \(a^{4} b^{2} c^{2} d e\) \\
\hline 332640 & 192 & \(a^{5} b^{3} c d e\) \\
\hline 498960 & 200 & \(a^{4} b^{4} c d e\) \\
\hline 554400 & 216 & \(a^{5} b^{2} c^{2} d e\) \\
\hline 665280 & 224 & \(a^{6} b^{3} c d e\) \\
\hline
\end{tabular}

Pound, (and that which we now call the Pound Troy Weight, ) is divided into 12 Ounces; and the Englib Shilling, into 12 pence; 'the Foot, into 12 Inches; the Zodiack, into 12 Signs; the Year, into 12 Months ; becaufe, befide the Divifion into Quarters, it is further divifible by 3. And for a like reafon Plolemy (and others after him) makes ufe of the Sexagenary divifion, of Integers into firft Minutes, or fmall, or minuste, parts of the firf order; and of thele, into Second Minutes, or Seconds, or fimall, or minute, parts of the Second order ; and fo onward: becaufe 60 is divifible by 2 and 3 , and likewife by 5. And the Cbinefes (or Cathaians) Number their Years (and other things) by Revolutions of 60 . After this; 360 is looked on as moft confiderable, becaufe it may be further divided by 2 and 3 once more: Which therefore is made the Number of Degrees in a Circle; admitting of 24 Divifors. And if this be not enough, each of thefe is divided into 60 Minutes; (that is, by \(4,3,5\), once more; ) and thefe into Seconds, and fo forth. And the Englib Pound Sterling, is divided into 20 Shillings: which Number is divifible by 4 and 5, (as 12, the Number of Pence in a Shilling, is divifible by 4 and \(3:\) ) which was accounted
counted more convenient than to make another Collection of Shillings by 12 ; becaufe this would not afford a divifion by 5. So that now 960 the Number of Farthings in a Pound Sterling, is for the firtt ftep (from Farthings to Pence) divifible by 4 ; for the fecond ftep (from Pence to Shillings) by 4 and 3 ; for the third Itep (from Shillings to Pounds) by 4 and 5 . And (without taking norice of the divifion of Pence iuto Farthings) the Number of Pence in a Pound Sterling, 240, is capable of 20 Divifors; and, of more than fo many, no Number is capable which is not greater than it.

\section*{Of the foregoing Table of Numbers in page 316.}

In purfuance of which notion, I have here Collected a Table of all thofe Numbers, which (of all not greater than themfelves) have the greateft Number of Divifors; (together with the Number of Divifors in each of them, and the Form of their Compofition;) as far as 665,280 , which hath 224 Divifors. All which (except I,) are made by the Compofition of \(2,3,5,7,11\), (which I call \(a, b, c, d, e\), and the Powers of thefe, without admitting any other Prime. (But, if we would proceed to a greater Number of Divifors, we mult further take in \(f=13\).) And, of thefe, fome are of that nature, that none can have a greater Number of Divifors, which is not at leaft the double of them. Such are \(1,2,6,12,60,360,2520\) : But not any after thefe for a great way.

\section*{Of the UJe of a Table of Prime Numbers.}
22. For refolution of fome of the Queftions above mentioned, (as in arr. \(13,14,17,18, \& \mathrm{c}\), ) it is very convenient to have at hand a Table of Prime Numbers: That we may know, by what Numbers to make trial of the Divifions therein directed. And, becaufe, in great Numbers, it would be tedious to make trial of all the Prime Numbers in order, it is convenient alfo to know, by what Prime fuch greater Numbers may be divided.

In order to which, it is evident, in the firft place, that all even Numbers may be divided by 2 ; and, if the Quotient of fuch divifion be even allo, it may be again divided by 2, and fo continually as long as the Quotient is an even Number.

It is alfo evident, in the fecond place, that all Numbers ending in 5 , are divifible by 5 ; and, if they end in 0 , then by 2 and 5. And fo continually, as long as the Quotient of fuch divifion ends in 0 , or 5 .

It is known alfo, in the 3d place, that, if the Figures of any Number being added promifcuoully (without regarding the places wherein they ftand) are divifible by 9 , (or, calting away 9 as oft as may be, nothing remains,) fuch Number is alfo divifible by 9. As in 29097; when (the Nines being left out, and) \(2+7=9\) being caft away, nothing remains; whence we may conclude, 'tis divifible by \(9=3 \times 3\). And I add further, as a fourth obfervation, (though I do not find that others have taken notice of it,) that the fame holds alfo as to the Number 3: That is, from the Figures fo promifcuouly added, if 3 being caft away as oft as may be, nothing remain, fuch Number is divifible by 3 ; Otherwife, it is not. As in \(530,96 \%\); where, all the threes, nines and fixes being left out (as manifefly divinble by 3 ,) the reft \(5+7=12\), is fo alfo,
(or, which is the fame, \(1+2=3\);) fo that all the threes being caft away, nothing remains; whence we may conclude, that the whole Number is divifible (though not by 9) at laft by 3 .

The ground of this and the former Obfervation is one and the fame: Becaufe, the places increafing in decuple proportion, if from 1o, or any Number of tens, we caft away all the nines or all the threes, there remains I , or fo many ones. So that, in cafe of fuch cafting away of nines and threes, I and io, have the fame remainders; and fo 2 and 20; 3 and 30, \&c. And confequently \(1,10,100\), \(1000, \& c, 2,20,200,2000\), \&c. So that the fame Figure, as to this, is of the fame influence in whatever place it ftand.

\section*{Of Dr. Pell's Table of Prime Numbers.}
23. Befide this, we have at the end of Dr. Pell's Algebra, (Tranflated and Publifhed by Thomas Branker, in the Year 1668, with Dr. Pell's directions \({ }_{2}\) ) a Compendious Table of all odd Numbers (not ending in 5) as far as 100,000; fhewing not only, which of them are Prime Numbers; but alfo by what fmalleft Prime Number every other of them may be divided.

So that, whatever Number be propofed, having divided it firlt by 2 and 5, (and if you will by 3 alfo, ) as oft as may be, if it be capable of fuch divifion: If the refult of fuch divifion do not exceed 100,000, we have direction in that Table, by what Prime it may be next divided; and then, by what Prime to divide the Quotient of fuch Divifion; and fo continually, 'till we come to a Prime Number.

The reafon why, in that Table, he omits all even Numpers, and all Numbers ending in 5 , is obvious: to wit, Becauf

Becaufe it appears to view (without the help of a Table) that fuch are accordingly divifible by 2 , or 5 .

He might, for a like reafon, have omitted alfo all that are divifible by 3 , (becaufe this would prefently appear upon fuch promifcuous adding of the Figures as was but now mentioned; ;) but that he could not well omit thefe, without difordering the Form of the Table.

Now, becaure, in fuch Tables, it is of great moment that they be carefully Computed, and exactly Printed, (becaufe miltakes therein are not eafily obferved and Corrected by the Readers Eye,) I have taken care to examine that whole Table very exactly, (in the fame method and with the fame pains as if I were to compute it anew;) and find that, though it had been Computed and Printed with great care, yet fome few miftakes (and but a few) have efcaped the Corrector's Eye. Moft of which are noted in the Table of Errata, Printed with it. Befide which 1 have obferved thefe that follow : Which (to fave another Reader the like labour) I have thought fit (for his eafe and fatisfaction) here to note. And, thefe being alfo amended as is here directed (befide thofe noted in the Printed Errata,) the Table will then be very accurate; and (I think,) without any Error.
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline Pag. & Numb. & For & Set & Pag. & Numb. & For & Sct \\
\hline 3 & 5579 & P & 7 & 28 & 55609 & 3 & P \\
\hline 5 & 9287 & 19 & 37 & 31 & 60,01 & 01 & 101 \\
\hline 8 & 14873 & 73 & 107 & & 60799 & 63 & 163 \\
\hline 11 & 20983 & 3 & P & 33 & 64499 & 13 & P \\
\hline 16 & 30167 & 71 & 97 & & 65479 & 3 & P \\
\hline & 31001 & -29 & \(\stackrel{29}{P}\) & 34 & 67993 & 1 & P \\
\hline 17 & 33409 & 47 & P & 38 & 75753 & 151 & P \\
\hline 19 & 37583 & 13 & 7 & 41 & 8056 I & 17 & 13 \\
\hline 21 & 40049 & 19 & 29 & 43 & 85909 & 137 & P \\
\hline & 40599 & P & \({ }^{3}\) & 44 & 86993 & 79 & P \\
\hline & 40759
41581 & \({ }_{4}^{3}\) & & 47 & 93719 & 7 & P \\
\hline 24 & 46199 & 73 & \(\stackrel{4}{P}\) & 49 & 94769 & 41 & 13 \\
\hline 27 & 53941 & 13 & 17 & & 97487 & 3 & 13 \\
\hline 28 & 54449 & 71 & P & & 9748 & 3 & 1 \\
\hline
\end{tabular}

Pag. 7 , in the margin (after 43) for 37 fet \(4 \%\)

By the help of this Table, if we had the Number propofed \(539,454,600\), it is eafy to refolve it into the Primes of which it is Compofed. For firt, (becaule of two Cyphers at the end) it is manifeft that it may be divided twice by 2 , and swice by 5. And then (becaufe thefe Cyphers being cut off, the Remainder is yet an even Nimber) it may bee a third time divided by 2 ; and the refult wi.l be \(2,697,273\). And, if this Number were not beyond the reach of the Table, I hould feek it there; to fee by what Prime it may be next divided. But, becaufe it is too big for it ; I find, upon confideration, that, the Figures being promifcuoufly added, and 9 caft away as oft as may be, nothing remains; and therefore that it may be divided by 9 : Which being done, the next Quotient 299,697, may (for a like reafon) be again divided (not by 9, buit) by.3. And the Quotient 99899 , is now come within the reach of this Ta bie. And (without affaying the Prime Numbers 7, II, I3, \&ic, in their order, till I come to a Prime Number by which it may be divided,) I find, by the Table, that it may be divided by 283, but not by any fmaller Prime; and the Quotient of fuch divifion will be 353 , another Prime. And therefore the Number propofed \(539,454,600\) is \(=2 \times 2 \times 2 \times 3\) \(\times 3 \times 3 \times 5 \times 5 \times 283 \times 353\).

But if, inftead of 99,899 , I had come to a Number greater than this Table, and yet not divifible by 2,5 , or 3 ; I muft then (for want of fuch Table large enough) have been fain to make tryal of the confequent Prime Numbers \(7,11,13, \& c c\), 'till by help of fuch I had brought it within the Compafs of the Table; And, if no fuch can be found, before I come at a Prime as great as the Square Root. of fuch Number; I may then conclude fuch Number to be a Prime.

\section*{С HAP. IV.}

> Monjeur Fermat's Problems concerining Divifors and Aliquot Parts.

IT is here proper to confider of fuch Quettions (concerning Aliquot Parts) as thofe on account of which Monfieur Fermat and Monfieur Frenicle did value themfelves; as is to be feen in my Commercium Epifolicum, Epit. I, 11, 12, \(22,25,26,31,33\). And in a Treatife purpofely Pub. lifhed on this occafion by Monfieur Frenicle, intituled, Solutio duorum Problematum, circà numeros Cubos E Q Quadratos, qua tanquam injolubilia univerjes Europe Mabbematicis à Clariflmo Viro D. Fermat junt propofita, \&c, à D. B. F. D. B. inventa, \&c, (that is, è Domino Beruardo Frenicle de Beffy.) Parifiis apud Jacobum Langlois, \&c, 1657, in which he glories much that he was able to folve them. And amongft Monfieur Fermat's poftbumous Works, (Publified fince his death) the Publifher is pleafed to infert his formal Challenge of me to folve them (with fome others Letters to and from Monfeur Fiermat, concerning the faine) in thefe Words:

\section*{Problemata propofila à D. Fermat.}

Proponatur ( \(\delta\) placet) Wallifio, \& reliquis Anglice Matbema. ticis, fequens Quaftio Numerica.

Invenire Cubum, qui, additus omnibus juis paribus nliquotis, conficiat Quadratum. Exempli gratia, Numerus 343 eft Cubus à latere 7. Omnes ipfius partes aliquotie funt \(1,7,49\), qua, adjunctec ipfl 343, conficiunt numerum 400, qui eft Quadratus à latere 20. Quceritur alius Cubus nunterus ejusdem nature.

Qucritur etiam numerus Quadratus, qui, additus Juis partibus aliquotis, conficiat numerum Cubum.

Has Solutiones expectamus: 2uas, \(\sqrt{2}\) Anglia aut Gallice Belgica E Celtica non dederint, Dabit Gallia Narbonenfis; eáfque, in pignus nafcentis amicitice, Donino Digby offeret © dicabit.

But was not fo kind (though he there infert alfo divers Letters to and from Monfieur Fermat, concerning the fame) as to infert thofe of mine, wherein I folved thefe (and others of) his Problems: Nor thofe of Monfieur Fermat, wherein he acknowledgeth that I had fo done. Which are to be feen in my Commercium Epifolicum, in Epif. 23, 28, 29, 47, and elfewhere.

To thofe two Problems, I added a third of a like nature:
Invenire duos humeros Quadratos, qui, partibus fuis aliquotis additi, eandem efficiant fummam. Exempli gratia, \(16+8+\) \(4+2+1=31=25+5+1\). Inveniantur infiummodi ahii duo.

The whole Myftery of folving thefe (and fuch like) Queftions, I there difcover in Epift. 23, which depends on what is here delivered in art. 8, 9, 10, 11, 1.2, of the Chapter here next preceeding.

For, I. A Number added to all its Aliquot Parts, is all one as the Aggregate of its Divifors. 2. The Divifors of any Power of a Prime Number, (as of \(a\) ) is a Geometrical Progreffion from i to fuch Power; as, for inftance, of \(a^{5}\), the Divifors are \(1, a, a a, a^{3}, a^{4}, a^{5} .3\). And therefore the fum of fuch Geometrical Progreffion is the Aggregate of thofe Divifors. 4. This Aggregate is conveniently expreffed by the Primes which Compure it. 5. The Divifors of any Power, or Degree, of one fuch Prime, feverally Multiplied into all thofe of any Power, or Degree, of any other Prime, give all the Divifors of the Compound of thofe Powers. 6. And therefore the Aggregate of thofe firt into the Ag gregate of thofe fecond, give the Aggregate of the Divifors of fuch Compound. (For, by the common practice of Multiplication, all the Members of one Number, or Aggregate, Multiplied feverally into all the Members of another, are equivalent to the whole of the one, multiplied into the whole of the other.) 7. And therefore the Primes Compofing this
laft Aggregate, are the fame with thofe of both the Aggregates which Compoie it. 8. And the fame is in like manneri to be argued, in cale any Power, or Degree, of a third, fourth; or further, Prime, be continually Multiplied with thofe forcgoing: provided always, that they be all feveral Primes, and not any of che former Primes repeated; for, in fuch cale we are to follow the direction of art. II, Chap. preceeding.

As, for intance; fuppofing \(a=2\), and therefore \(a^{5}=\) 32: All the Divifors hereof (or the Aggregate of fuch Divifors) are \(1+c+a a+a^{3}+a^{4}+a^{5}=1+2+4+\) \(8+16+32=63=3 \times 3 \times 7\). And fuppofing \(b=\) 3 , and therefore \(b^{4}=81\) : The Aggregate of the Divifors hereof are \(1+b+b b+b^{3}+b^{4}=1+3+9+27\) \(+81=121=11 \times 11\) : And therefore; of \(a^{5} b^{4}\), the Aggregare of Divifors is \(63 \times 121=3 \times 3 \times 7, \times\) II \(\times\) 11. And fuppofing further \(c=5\), and therefore \(c^{3}=\) 125: The Aggregate of the Divifors hereof are \(1+c+\) \(c+c^{3}=1+5+25+125=156=2 \times 2 \times 3 \times\) 13 : And therefore, of \(a^{5} b 4 c^{3}\), the Aggregate of Divifors is \(63 \times 121 \times 156=3 \times 3 \times 7, \times 11 \times 11, \times 2 \times 2\) \(\times 3 \times 13\), or \(2 \times 2 \times 3 \times 3 \times 3 \times 7 \times 11 \times 11 \times 13\). And fo onwards, in cale of further Compofitions.

Now, this being univerfal ; it will be enfy to make application thereof, to the particular cales propoled; or to any c. her of like nature.

> As for Example.
1. The firft Queftion, is, To find a Cube Number, w'ich added to all its Alipuot Parts will make a Square; (that is, the Aggregate of whofe Divifors Chall be a Square Number.)

Here it is manifut, that fuch Cube Number mult be cither the Cube of fome Plime, (or ar leait the fecond, third, fourth, of further Cabe of fuch Prime; that is, fome Power there of whofe exponent is divitible by 3 ;) or elle Compounded by the continual Multiplication of fuch Cubes (firft, fecond, third, and fo forth,) of two or more fuch Prime Numbers. (For all fuch; will be Cube Numbers, and no orher but fuch.)

Now, if we can find any fuch Cube (firft, fecond, third, \(\&<\dot{c}\),) of any one Prime Number, whereof the Aggregate of Divifors being exprefled in Primes, thofe Primes will be all Pairs, (that is, each of them occurring an even Number of times;) fuch Aggregate ('ris manifeft) will be a Square Number; and therefore fuch Cube, will be fuch as is required.

And fuch Cube is \(343=7 \times 7 \times 7\); whofe Divifors are \(1 \times 7 \times 49 \times 343=400=2 \times 2 \times 2 \times 2 \times 5 \times 5\); which is the Square of \(2 \times 2 \times 5=20\).

When the Cubes (firft, fecond, third, or others,) of feveral Primes, have not their Aggregate of Divifors expreffable by Pairs of Primes; yer may the Compound of Two, Three, or more of fuch Cubes continually Multiplied (which will alfo be a Cube Number,) have irs Aggregate of Divifors (which is the Compound of the feveral Aggregates continually Multiplied) fo expreffed: Namely, if the Cubes fo to be Compounded be fo chofen as that, what Primes in expreffing fome of the Aggregates be fingle, may be Paired by like fingle Primes in fome other of them.

Thus, for the Cube of 47, the Aggregate of Divifors (expreffed in Primes) is \(2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 5 \times 13 \times\) 17; where (befide Pairs) we have \(2,3,5,13,17\); fingly: And, for the Cube of 5, the Aggregate is \(2 \times 2 \times 3 \times 13\), where (befide Pairs) we have 3,13 , folitary; which (joined to thofe before) ferve to Pair 3, 13, but leave 2, 5, \({ }^{1} 7\), yet folitary: And, for the Cube of 13, the Aggregate is \(2 \times 2\) \(\times 5 \times 7 \times 17\), which afford fellows to 5,17 , but leayes us 2,7 , yet folitary: And, for the Cube of 4 T , the Aggregate is \(2 \times 2 \times 3 \times 7 \times 29 \times 29\); where (befide Pairs) we have 3,7 ; folitary; which afford a fellow to 7 , but leave 2 , 3. folitary. So that for the Cube of \(47 \times 5 \times 13 \times 4\), we have. (befide Pairs) 2, 3, foliary. Which may thus be Paired.

For the Cube of in, the Aggregate of Divifors is, \(2 \times 2\) \(\times 2 \times 3 \times 61\), where (befide Pairs) we have 2, 3, 61, folitary; which afford fellows to 2,3 , but leave 6I, folitary: And, for the Cube of 27 (or the third Cube of 3, the Aggregate is \(2 \times 2 \times 11 \times 11 \times 61\); which (befide Pairs) affords a fellow to 61 . So that, for the Cube of \(47 \times 5 \times 13\)
\(\times 41 \times 11 \times 27\), (or \(27 \times 5 \times 11 \times 13 \times 41 \times 47\) ) the Aggre gate of Divifors, is \(2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 5 \times 13 \times 17, \times 2\) \(\times 2 \times 3 \times 13, \times 2 \times 2 \times 5 \times 7 \times 17, \times 2 \times 2 \times 3 \times 7 \times 29 \times\) \(29, \times 2 \times 2 \times 2 \times 3 \times 61, \times 2 \times 2 \times 11 \times 11 \times 61:\) Or (putting the Primes in order) \(2 \times 2 \times 2\) \(\times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 3 \times 3 \times 5 \times 5 \times 7 \times 7 \times 11 \times 11\) \(\times 13 \times 13 \times 17 \times 17 \times 29 \times 29 \times 61 \times 61\); where we have 2 , fixteen times; 3 , four times; and \(5,7,11,13,17,29,61\), twice; which therefore (being all continually Multiplied) mutt needs afford a Square Number. Which was the thing required to be found in Monfieur Fermat's firt Queftion.

In like manner; if with the Cube of \(47 \times 5 \times 13 \times 41\) (as before) we Compound the Cubes of 2 , and of 3 , where we have the Aggregates \(3 \times 5\), and \(2 \times 2 \times 2 \times 5\), which (befide Pairs) a ttord us 2, 3, folitary; which afford fellows to 2,3 , that were folitary before. And therefore for the Compound Cube of \(47 \times 5 \times 13 \times 41 \times 2 \times 3\) (or \(2 \times 3 \times\) \(5 \times 13 \times 41 \times 47\) ) we flatl have (in the Compound Aggregate of Divifors) thefe Primes Components, 2, fourteen: times; 3 and 5 , four times; \(7,13,17\), and 29, twice: Which being all continually Multiplied will alfo make a Square Number. Which was the thing required to be found in Monfieur Fermat's firft Queftion.

Thefe two Compound Cubes, if they be further Compounded with the Cube of 7 (which is no ingredient in either of them) will afford two more; whofe Aggregate of Divifors will (befide the Primes in each of them refpectively) have thefe farther Primes Components, 2, four times; and 5, twice: Which, being Compounded with the fore-mentioned Squares, will ftill afford Square Numbers.

So have we five Cubes, whofe Aggregate of Divifors are Squares.

Roots of the Cubes.
7.
\begin{tabular}{|c|}
\hline \multirow[b]{3}{*}{} \\
\hline \\
\hline \\
\hline
\end{tabular}

Roots

Roots of the Squares.
\(2 \times 2 \times 5\).
\(2 \times\) (Eight-times) \(\times 3 \times 3 \times 5 \times 7 \times 1 \times 13 \times 17 \times 29 \times 6\).
\(2 \times\) (Seven-times) \(\times 3 \times 3 \times 5 \times 5 \times 7 \times 13 \times 17 \times 29\).
\(2 \times\) (Ten-times) \(\times 3 \times 3 \times 5 \times 5 \times 7 \times 1 \times 13 \times 17 \times 29 \times 6{ }_{5}\) 。
\(2 \times\) (Nine-times) \(\times 3 \times 3 \times 5 \times 5 \times 5 \times 7 \times 13 \times 17 \times 29\).
In all which I make ufe of no Cube of a Prime which is not lefs than 100 . And, in like manner, may other fuck Cubes be found; as is there llewed in Epift. 23, and 28. Such as thefe :

Roots of the Cubes.
```

2\times3\times5\times13\times17\times3IX4I\timesIgI.
2\times3\times5\times7\times13\times17\times3I\times4I\timesI91.
3\times3\times3\times5\times1IX13\times17\times3I\times4IXIgI.
3\times3\times3\times5\times7\times11年3\times17\times3!\times41\times19I.
17\times31\times47\times191.
7\times17\times3I\times47\timesI9I.

```

Roots of the Squares.
\(2 \times\) (Twelve-times) \(3 \times 3 \times 3 \times 5 \times 5 \times 7 \times 13 \times 1.7 \times 29 \times 29 \times 37\). \(2 \times\) (Fourteen-times) \(3 \times 3 \times 3 \times 5 \times 5 \times 5 \times 7 \times 13 \times 17 \times 29 \times 29 \times 37\). \(2 \times\) (Thirteen-times) \(3 \times 3 \times 3 \times 5 \times 7 \times 1 \times 13 \times 17 \times 29 \times 29 \times 37 \times 61\). \(2 \times\) (Fifteen-times) \(3 \times 3 \times 3 \times 5 \times 5 \times 7 \times 11 \times 13 \times 17 \times 29 \times 29 \times 37 \times 61\). \(2 \times\) (Ten-times ) \(3 \times 3 \times 5 \times 13 \times 17 \times 2 \xi \times 37^{\prime}\).
\(2 \times\) (Twelve-times) \(3 \times 3 \times 5 \times 5 \times 13 \times 17 \times 29 \times 37\).
In all which I make ufe of no Cube of a Prime Number which is not lefs than 200 .

But, in order to make thefe Inquiries for fuch Cubes; it is expedient to have at hand a Table of the Cubes of Prime Numbers (and of the fecond, third, or further Cubes, of the leffer of them, ) or of the Roots of fuch Cubes; with the preffed in Primes.

And, to fave the Reader the labour of computing fuch a-new, I here fubjoin what I have at hand.

Roots of the Cubes.
\begin{tabular}{r|l}
1 & 1 \\
2 & \(3 \times 5\) \\
4 & 127 \\
8 & \(3 \times 11 \times 31\) \\
16 & 8191 \\
32 & \(3 \times 5 \times 17 \times 257\) \\
3 & \(2 \times 2 \times 2 \times 5\) \\
9 & 1093 \\
27 & \(2 \times 2 \times 11 \times 11 \times 61\) \\
81 & 797.161 \\
243 & \(2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 17 \times 41 \times 193\) \\
5 & \(2 \times 2 \times 3 \times 13\) \\
25 & 19531 \\
125 & \(2 \times 3 \times 11 \times 71 \times 521\) \\
7 & \(2 \times 2 \times 2 \times 2 \times 5 \times 5\) \\
11 & \(2 \times 2 \times 2 \times 3 \times 61\) \\
13 & \(2 \times 2 \times 5 \times 7 \times 17\) \\
17 & \(2 \times 2 \times 3 \times 3 \times 5 \times 29\) \\
19 & \(2 \times 2 \times 2 \times 5 \times 181\) \\
23 & \(2 \times 2 \times 2 \times 2 \times 3 \times 5 \times 53\) \\
29 & \(2 \times 2 \times 3 \times 5 \times 421\) \\
31 & \(2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 13 \times 37\) \\
37 & \(2 \times 2 \times 5 \times 2603\) \\
41 & \(2 \times 2 \times 3 \times 7 \times 29 \times 29\) \\
43 & \(2 \times 2 \times 2 \times 5 \times 5 \times 11 \times 37\) \\
47 & \(2 \times 2 \times 2 \times 2 \times 2 \times 3 \times 5 \times 13 \times 17\) \\
53 & \(2 \times 2 \times 3 \times 3 \times 3 \times 5 \times 281\) \\
59 & \(2 \times 2 \times 2 \times 3 \times 5 \times 1741\) \\
61 & \(2 \times 2 \times 31 \times 1861\) \\
67 & \(2 \times 2 \times 2 \times 5 \times 17 \times 449\) \\
71 & \(2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 2521\) \\
73 & \(2 \times 2 \times 5 \times 13 \times 37 \times 41\)
\end{tabular}

Roots of she Cubes.

79
83
89
97 Aggregates of their Divifors.
\(2 \times 2 \times 2 \times 2 \times 2 \times 5 \times 3121\)
\(2 \times 2 \times 2 \times 3 \times 5 \times 7 \times 13 \times 53\)
\(2 \times 2 \times 3 \times 3 \times 5 \times 17 \times 233\)
\(2 \times 2 \times 5 \times 7 \times 7 \times 941\)
101
103
\(10 \%\)
109
113
127
13I
\({ }^{1} 37\)
を39
149
151
157
163
167
173
179
181
19 I \(2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 3 \times\) I7 \(\times 29 \times 37\)
193
197
\(1992 \times 2 \times 2 \times 2 \times 5 \times 5 \times 19801\)
If, in the Queftion propofed, it had been required that the Aggregate of Divifors (of the Cube fought) fhould be (not a Square Number, but) the Double, Treble, or orherwife Mul'iple, of a Square Number: The procefs would be jult the fame, (and the fame Table will ferve, fave that, then, the Aggregare is to be divifible by 2, 3, or fuch other Nimber as is the exponent of the propofed Multiple, and the reft of the Primes compofing it to be all Pairs.

Thus, if the Decufle of a Square be required; the Cube of 3 will antwer it; where the Argregate is \(2 \times 2 \times 2 \times 5\); tirat is, befide \(2 \times 5=10\), the other Components are Pairs.

If the Quadruple of a Square (which munt therefore infelf \({ }_{2} \mathrm{U}\)
be a Square;) the Cube 7 Anfwers it ; whofe Aggregate is \(2 \times 2 \times 2 \times 2 \times 5 \times 5\) : Out of which, if we exempt \(2 \times 2=4\), the reft are l’airs. And fo will any other Cube whofe Aggregate of Divifors is an even Square, and therefore divifible by 4 .

If the Sextuple be required: The Cube of \(27 \times 11\) anfwers it; where the Aggregate is \(2 \times 2 \times 11 \times 11 \times 61, \times 2\) \(\times 2 \times 2 \times 3 \times 6\) I. Whance if we exempt \(2 \times 3=6\), the reft are Pairs: And fo will alfo (for the farme reafon) the Cube of \(2 \times 3\); whele the Aggregate is \(3 \times 5, \times 2 \times\) \(2 \times 2 \times 5\). And the like in other cafes.

But if fuch Multiple fhould be required, as that no Ag gregate can be found (or not within certain limits) which, being divided by the Exponent of that Multiple, will leare the reft of the Prime Components Pairs; fuch cafe (at leaft within fuch limits) is an imponible cafe.

As, if we demand a Square's Multiple by 23, 43, or 47 ; and confine ourfelves to the Cubes of the Table foregoing; it is manifert that (without affuming the Cube of fome other Prime, or fome further Cube of fome of thefe, ) it cannot be done. For here, amonglt all the Prime Components of the Aggregates, the Numbers 43, and 47, come not at all ; and though 23 come once (at the Cube of 137) yet it is there joyned with 1877 , which (coming no more) cannot be Paired by any fuch Compolition of the propofed Aggregates. (Remembring always, what was before noted, that the Aggregates for two or more Cubick Powers of the fame Prime, are not here to be Compounded.) So that (within the limits of the Table) the cafe is not poffible. And the like may be fhewed of many others: I fay, not poffible witbin the limits of this Table. But, to fay it is not at all pofible, through the whole extent of all poffible Numbers; is (I think) too bold an affertion for any to make our.

Of the Second Quefico propofed by Nionfieur Fermat. See above, page 322.
II. The Second Queftion is, (To find a Square Number, sobich
qubicb added to all its Aliquot Parts will make a Cube; that is, the Aggregate of whofe Divifors flall be a Cubick Number.)

And here the procefs is much the fame as before; fave that here we flall need a T'able of Square Numbers, (as there of Cubes,) with their Aggregate of Divifors expreffed in Primes: And here we are to find out, or fo to Compound, the Aggregates, as that the Primes expreffing them may be (not Couples or Duplicates, as there, but) Triplicates: That is, that each Prime may occur three, fix, nine, or other Number of times divifible by three.

But, though the procefs be much the fame, yet the fuccefs will not be altogether fo ready as there ; becaufe Triplicates of the Components will not be fo eafily adjufted as Duplicates. (And, for the fame reafons, if Biquadrates, or Surfolids, or fome higher Powers, were required; the procefs would fill be much the fame, but the trouble of finding fuch would ftill be increafed.)

Such Table of Squares (becaufe I have it at hand) I fhall here fubjoin ; to fave the Reader (who fhall think fit to give himfelf the trouble of inquiring into fuch Queftions) the labour of Computing the fame again.
Roots of \(\mid\) Aggregate of their Divifors. the Squares.
\begin{tabular}{r|l}
1 & 1 \\
2 & 7 \\
4 & 31 \\
8 & 127 \\
16 & \(511=7 \times 73\) \\
32 & \(2047=23 \times 89\) \\
64 & 8191 \\
128 & \(32767=7 \times 31 \times 151\) \\
256 & \(13107 I\) \\
3 & 13 \\
9 & \(121=11 \times 11\) \\
27 & 1093 \\
81 & \(9841=13 \times 757\) \\
243 & \(88573=23 \times 3851\)
\end{tabular}
\({ }_{2} \mathrm{U} 2\)
Roots,

Roots of the Squares.

Aggregate of their Divifors.
\[
\begin{array}{r}
5 \\
25
\end{array}
\]
\[
3 \mathrm{I}
\]
\[
3^{31}=11 \times 71
\]
\[
125
\]
\[
625
\]
7

19531
\(488281=19 \times 31 \times 829\)
\(57=3 \times 19\)
\[
\begin{array}{r}
49 \\
343
\end{array}
\]

2801
\(137257=29 \times 4733\)
\[
2401
\]
II
\(6725601=3 \times 3 \times 19 \times 37 \times 1^{106} 3\)
\({ }^{1} 33=7 \times 19\)
\[
121
\]
\(16105=5 \times 3221\)
\[
13
\]
\[
\begin{array}{r}
169 \\
17 \\
289 \\
19 \\
361
\end{array}
\]
\(183=3 \times 61\)
30941
307
. 88741
\(381=3 \times 127\)
\({ }^{137561}=151 \times 911\)
\[
23
\]
\(553=7 \times 79\)
\[
29
\]
\(871=13 \times 67\)
\[
\begin{aligned}
& 31 \\
& 37
\end{aligned}
\]
\(993=3 \times 331\)
\[
37
\]
\({ }_{1407}=3 \times y \times 67\)
\[
41
\]

1723
\[
\begin{aligned}
& 43 \\
& 47
\end{aligned}
\]
\(1893=3 \times 631\)
\[
47
\]
\(22.57=37 \times 61\)
\[
53
\]
\({ }_{2} 86_{3}=7 \times 409\)
\[
\begin{aligned}
& 59 \\
& 61
\end{aligned}
\]

3541
\[
\begin{aligned}
& 61 \\
& 67
\end{aligned}
\]
\(.3783=3 \times 13 \times 97\)
\[
71
\]
\(4557=3 \times 7 \times 7 \times 31\)
5113
\[
73
\]
\(54 c 3=3 \times 1801\)
\[
\begin{array}{l|l}
79 & 6321=3 \times 7 \times 7 \times .43 \\
83 & 6973=19 \times 367 \\
89 & 8011 \\
97 & 9507=3 \times 3169 \\
101 & 10303 \\
103 & 10713=3 \times 3571 \\
107 & 11557=7 \times 13 \times 127 \\
109 & 11391=3 \times 7 \times 571
\end{array}
\]

Roots

Roots of theSquares

I 13
127
131
137
139
149
151
\({ }^{1} 57\)
103
167
173
179
181
191
193
197
\(!99\)
211
223
\[
227
\]

229
233
239
241
251
257
263
269
271
277
281
283
293
307
311
313
317

Aggregare of their Divifors.
\({ }_{12883}=13 \times 991\)
\({ }_{16257}=3 \times 5419\)
17293
\(15907=7 \times 37 \times 73\)
\({ }^{19} 9+61=3 \times 13 \times 499\)
\(22351=7 \times 3193\)
\(22953=3 \times 7 \times 1093\)
\(24807=3 \times 8269\)
\(26733=3 \times 7 \times 19 \times 67\)
29057
30103
\(32221=7 \times 4603\)
\(32943=3 \times 79 \times 139\)
\(36673=7 \times 13 \times 13 \times 31\)
\(37443=3 \times 7 \times 1783\)
\(37007=19 \times 2053\)
\(39801=3 \times 13267\)
\(44733=3 \times 13 \times 31 \times 37\)
\(49953=3 \times 10651\)
\(51757=73 \times 709\)
\(52671=3 \times 97 \times 181\)
\(54523=7 \times 7789\)
\(57361=19 \times 3019\)
\(58323=3 \times 19441\)
\(63253=43 \times 1471\)
6 ก307 \(3061 \times 1087\)
\(69433=7 \times 7 \times 13 \times 109\).
\(72631=13 \times 37 \times 151\)
\(73713=3 \times 24571\)
\(77007=3 \times 7 \times 3667\)
\(79243=109 \times 727\)
\(80373=3 \times 73 \times 367\)
86143
\(94557=3 \times 43 \times 733\)
\(97033=19 \times 5107\)
\(98283=3 \times 181 \times 181\)
\(100807=7 \times 14401\)

Roots of Aggregate of their Divifors. the Squares. 331 337 347 349
353
359
307
373
379 383
359
397
401
409
419
421
431
433
439
443
449
457
461
463
467
479
487
491
499
\(109893=3 \times 7 \times 5233\)
\(113907=3 \times 43 \times 883\)
\(120757=7 \times 13 \times 1327\)
\(122151=3 \times 19 \times 2143\)
\(124963=19 \times 6577\)
\(1292+1=7 \times 37 \times 499\)
\(135037=7 \times 101 \times 191\)
\({ }^{1} 3955_{3}=3 \times 7 \times 7 \times 13 \times 73\)
\(1+4021=3 \times 61 \times 787\)
\(1+7073\)
\(151711=7 \times 21673\)
\(158007=3 \times 31 \times 1699\)
\(161203=7 \times 23.29\)
\(167691=3 \times 55897\)
\(175981=13 \times 13537\)
\(177063=3 \times 59221\)
186193 \(=7 \times 67 \times 397\)
\(187923=3 \times 37 \times 1693\)
\(193161=3 \times 31 \times 31 \times 67\)
196643
\(202051=97 \times 2083\)
\(209307=3 \times 7 \times 9967\)
\(213083=13 \times 37 \times 443\)
\(214833=3 \times 19 \times 3769\)
\(218557=19 \times 11503\)
\(229921=43 \times 5347\)
\(237657=3 \times 7 \times 11317\)
\(241573=37 \times 6529\)
\(249501=3 \times 7 \times 109 \times 109\)

Now it is manifert, upon view, that (if we confine ourfelves to the limits of this Tible) many of thefe Numbers are not of ufe to the prefent purpofe. Becaufe many of the Primes (amongft the Aggregates) come but once; as 5.29. 71.89.101. 139.191.307.331.397.409.443.571.631, \(709 \cdot 727 \cdot 733 \cdot 757 \cdot 787 \cdot 829 \cdot 883 \cdot 911 \cdot 991 \cdot 1063 \cdot 1087 \cdot\) 1327.1471.1693.1699. 1723.1783.1SO1. 2053.2083.
2143.
2143.2801.3019.3169.3193.3221.3541.3571.3667. \(3769 \cdot 3851 \cdot 4603 \cdot 4733 \cdot 51 \mathrm{C7} \cdot 5113 \cdot 5233 \cdot 5347 \cdot 5419 \cdot\) 6529.6577 .7789 . SoII. S191. S269.9967.10303. II 3 I7. 11503. 13267.13537.14401.16651. 17293. 19441. 19531. \(21673 \cdot 23029 \cdot 24571.28057 \cdot 30103 \cdot 30941 \cdot 55897 \cdot 59221\). S6143.S8741. 131071. 147073.196693. Cthers but twice (not thrice) as 23. 79. 367. 499. 1093. And therefore cannot by any Compofition (within thefe limits) make a Cube. And, confequently, all the Squares to which any of them belong, are to be laid aficle as not of ufe. And thofe are, the Squares of \(32,6+, 256,27,81,243,25,125\). \(625.49,343,2401,121,169,17,289,361,23,31\), \(41,43,53,59,7 \mathrm{I}, 73,83,89,97,101,103,109,113\), 127, 131, 139, 149, 151, 157, 167, 173, 179, 191, 193, 197, 149, 223, 227, 233, 239, 241, 251, 257, 271, 277, \(281,283,293,307,311,317,331,337,347,349,353\), \(359,367,379,383,389,397,401,409,419,421,43\) I, \(433,443,449,457,461,463,467,479,487,491\). (And the Square of \(r\), is, in this cafe, infignificant ; becaufe a Multiplication by I makes no alteration.) And, thefe being laid afide, we muft alfo lay afide the Squares of 12 S, 9, 13, 47, 61, 79, 229, 269. Becaufe, in thofe that remain, 43 occurs but once; and \(11,61,97,151\), but twice. And, thofe being laid aride, we mult alfo lay afide the Squares of \(137,211,313\), becaufe, in thofe now remaining, 37, ISI, occur but twice. And (I 37 being laid afide) the Squares of 16,373 , mut alfo be laid afide; becaufe now 73 comes but twice.

So that we have now but the fe few left for confideration, to wir, the Squares of \(2,4,3,3,5,7,11,19,29,37,67,107\), 163 , 191, \(263,439,499\). Which, with their Aggregates, ftand thus :
\begin{tabular}{l|ll|ll|ll|l}
2 & 7 & 5 & 31 & 29 & \(13 \times 6\) & 163 & \(3 \times 7 \times 19 \times 67\) \\
4 & 31 & 7 & \(3 \times 19\) & 37 & \(3 \times 7 \times 67\) & 191 & \(7 \times 13 \times 13 \times 31\) \\
0 & 127 & 1 & \(7 \times 19\) & 67 & \(3 \times 7 \times 7 \times 31\) & 263 & \(7 \times 7 \times 13 \times 109\) \\
3 & 13 & 19 & \(3 \times 127\) & 10 & \(7 \times 13 \times 127\) & 439 & \(3 \times 31 \times 31 \times 67\) \\
& & & & & & &
\end{tabular}

In which there is no Prime (amongtt the Aggregates) which doth not occur at leaft three times. That is, 3 feven times; 7 eleven times; 13 and 31 fix times; 67 four times; 19, 109, 127, three times.

Of thefe I will firft confider 127; which, becaule it comes but thrice, we muft take all or none of them. If all, then this (at 107) brings in 13 ; which muft therefore be trebled. And it mult be done one of thele three ways, either by taking in the Squares of 3 and 29 ; or of 3 and 253 ; or of 191 alone.


If the firft way, this (at 29) brings in 67 . Which (that it may be trebled) brings in two of thefe 3 Squares 37 , 163,439 . Of which, if 163 be one, this (becaufe of 19) brings in the Squares 7 and Ir. And if, for the orher, we take the Square of 37 ; this brings in 3 and 7 a fourth time, and therefore either each of them muft come in twice more (that we may have them fix times) or elfe 37 muft here be laid afide. Now if, for 3 twice, we take (for one of them) the Square of 439 , this brings in a fourth 67 ; which muft not be (unlefs we conld have it fix times, which we cannot.) Therefore, if at all, this 3 twice, muft be fupplied by the Squares of 67 and 499 (for there is no other fupply;) which brings in 109 twice; and this (that it may be tripled) requires the Square of 203 . But, with this; comes in 13 a fourth time; and therefore (that we may have it fix times) we muft take in the Square of 191. But, by this time, we have 7 ten times; which mult not be, unleis we could (which we cannor) have it twelve times. Therefore the Square of 37 mult here be laid afide. If then (retaining that of 163 ) we take (inftead of 37) the Square of 439 ; this brings in 3 a fourth time; which therefore we muft have twice more. But not from the Square of 37 (becaufe alccady laid by, and becaufe it would bring in a fourth 67 ;) therefore,
therefore, if at all, from the Squares of 67 and 499 (as before,) which requires that of \(26_{3}\); and, this, that of 191, as before. Bur now we have 3I a foursh time, which requires it twice more; which is not to be had, fave at the Squares of 4 and 5 ; whereof that of 4 is not to be admitted, as being included in that of 8 already taken. So that the Square of 163 cannot be taken either with that of 37 or of 439 , and muft therefore be laid afide ; (and, with it, the Squares of 7 and Ir.) And confequently (retaining that of 3 and of 29,) we muft (for trebling of 67) take the Squares of 37 and 439. And here we have 3 r twice, and mult therefore have it a third time: But not from the Square of 4 ; (becaure included in that of 8 :) Therefore either from that of 5 , or of 19 I . If from that of 5 ; we fhall want a third 7 (having yet but two;) which we cannot have from the Square of 2 (becaufe included in 8 ;) nor from 163 (becaufe already rejected;) nor from that of in (becaufe already excluded with that of 163 ;) nor from that of 191, becaule this would bring in a fourth 3I, (which may not be, becaufe we cannot have it fix times without the Square of 4 , which is included in that of 8 ;) nor from that of 69 (for the fame reafon;) nor from that of 499 , becaufe this cannot fland without that of 263 ; nor from both thefe together; becaufe then we fhall have it five times, but cannot have it a fixth; (all the reft wherein 7 is found, being already excluded.) Therefore (omitting that of 5) we mult (if at all) have a third 31 from the Square of 19 I . But this brings in a fourth and fifth 13 ; which (for a fixth) will require the Square of 263 ; and this (becaufe of 109) the 2 X
\begin{tabular}{|c|c|}
\hline & 127 \\
\hline 19 & 3, 127 \\
\hline 107 & 7, 13, 127 \\
\hline & \\
\hline 29 & 13, 67 \\
\hline & 3, 7, 67 \\
\hline 439 & \(3,31,31,67\) \\
\hline 191 & 7, 13, 13, 31 \\
\hline 263 & \(7,7,13,109\) \\
\hline & 3, 7, 109, 109 \\
\hline
\end{tabular}

Square of 499. And this (befide Triplicates) brings in a fourth 3 ; (which therefore will afford, not a Cube, but the Triple of a Cube, if that had been required;) we want therefore 3 twice more (to make it up fix times;) but can have neither of them from the Squares of 7 or 163 (as being already excluded,) nor from that of 67 , (as bringing in a fourth 31 ,) and therefore not at all. And, confequently, this firft way (by the Squares of 3 and 29) doth not fucceed.
\begin{tabular}{|c|c|}
\hline & 127 \\
\hline 19 & 3, 127 \\
\hline 107 & \[
\begin{array}{lll}
7, & 13 \\
\hline 13
\end{array}
\] \\
\hline 263 & 7, 7, 13, 109 \\
\hline 499 & 3, 7, 109, 109 \\
\hline & 3, 19 \\
\hline 163 & 313, 7, 19, 67 \\
\hline 11 & 7, 19 \\
\hline 37 & 73, 7, 67 \\
\hline 4.39 & 3, 31, 31, 67 \\
\hline & -3, \(7,7,31\) \\
\hline
\end{tabular}

The fecond way of fupplying 13 twice, (which at the Square of 107 were wanting ;) is, from the Squares of 3 and 263 : Which (becaule of 109) requires that of 499. And, becaufe (amongtt the Aggregates; we have 3 twice; we mult have it a third time. If, for this, we take in the Square of 7 , or of \(16_{3}\); either of thefe (becaule of 19) brings in the vther, and that of 11. And now, becaule of 67 once, we mult have it twice more. But not from the Square of 29 (being already excluded as not to be taken with that of 3 ;) and therefore from the Squares of 37 , and 439 . And, by this time we have 3 fix times (and more than fo, we may not have it, unlefs we could have it nine times; ) and 7 we have 7 times, and therefore mutt have it twice more: But, not from the Square of 2 (as being included in that of 8;) nor from that of 191 , (becaufe this would bring in 13 a fourth and a fifth time, which would require a fixth, from the Square of 29 already rejected; therefore, if at all, from the Square of 67 . But neither can this be, (becatife it brings in a feventh 3 ; which may not be, there being no more to make it up nine times:) And, confequently, the third 3 (vanting at the Square of 499) is not. to be Supplied
fupplied from the Squares of 7 , or of 163 . If then (omitting thefe two) we thould take (for a third 3) the Square of 37 or of 439 , either of thefe (becaufe of 67 ) would bring in the other, and alfo require that of 29 , or of 163 , already rejected. If then (omitring thefe of 37 and 439) we take (for a thiird 3) the Square of 67 ; this brings in 31 , which is therefore to be Tripled. But not from the Square of 4 (as included in that of 8 ;) nor from the Square of 191 (becaufe that would bring in a fourth and fifth 12, which would require a fixth from the Square of 29 already rejected;) nor from the Square of 439 (becaufe of 67 there, which would bring in that of 29 , or 37 , or 163 , already rejected) nor trom the Square of 5 , becaufe (though that would afford a fecond 31,) a third would yet be wanting, and not to be had. And, confequently, (there being no other place from whence to
\begin{tabular}{r|ll}
8 & 127 \\
19 & 3,127 \\
107 & \(7,13,127\) \\
3 & 13 & 10 \\
263 & \(7,7,13,109\) \\
499 & \(3,7,109,109\) \\
37 & \(3,7,67\) \\
439 & \(3,3 r, 31,67\)
\end{tabular}
\[
\left.26\right|_{7,} ^{3} 3,7,13,109
\]
\[
4993,7,109,109
\] fetch a third 3) this fecond way will
\[
6713,7,7,31
\] not fucceed.

The third way for fupplying \({ }^{3} 3\) twice, (which at the Square of 107 were wanting) is (omitting the Squares of \(3,29,263\),) from the Square of 191. And, becaufe here we have 3 I once, this mut be Tripled. But not from the Square of 4 : (as included in 8 ;) And therefore, if at all, either from that of 439 (where it is twice,) or from the Squares of 5 and 67 . If
\[
\begin{array}{r|ll}
8 & 127 \\
19 & 3, & 127 \\
107 & 7, & 13, \\
191 & 7, & 13, \\
19 & 13, & 31 \\
439 & 3, & 31, \\
37 & 31, & 67 \\
163 & 3, & 7, \\
7 & 19, & 67
\end{array}
\] found) muft be Tripled; but not from the Square of 29 (as already excluded,) therefore from thofe of 37 , and 163 ; and this laft (becaufe of 19) calls in thofe of 7 and II. But, by this time, we have 3 five times, and therefore
\[
2 \times 2
\]
fhould
flould have it a fixth time; but not from the Square of 499 (for that would recall that of 263 already rejected;) therefore, if at all, from that of 67 ; but we fhall then have 7 feven times; which is not to be admitted, fince we cannot have it nine times. Therefore (omitting that of 439, and therefore thofe of 37 and 163 ) take we thofe of 5 and 67 . And, by this time; we have 7 four
\begin{tabular}{r|ll}
8 & 127 \\
19 & 3,127 \\
107 & \(7,13,127\) \\
191 & \(7,13,13,31\) \\
5 & 31 & \\
67 & \(3,7,7,31\)
\end{tabular}
of 163 already rejected; ) nor from 499 (which, becaufe of Iog, would bring us back to that of 263 already laid afide;) and therefore not at all. So that this third way fails alfo: And, confequently, the Squares of 8, 19, 107, (where we mect with 127 ,) muft all be laid afide.

We have then but thefe left to be further confidered.
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \(2 \mid 7\) & 5131 & 29113,67 & 163 & 3,7,19,67 & & 13,31,31,67 \\
\hline 431 & 73,19 & \(373,7,67\) & 391 & 7, 13, 13,31 & & 3,7,109,109 \\
\hline 315 & II 7 , 19 & 6713,7,7,35 & 263 & 17,7,13,109 & & \\
\hline
\end{tabular}

And here we will begin with the Prime 109 ; which, becaufe it comes but once at the Square of 263 , and twice at that of 499 ; thefe mult either both be taken, or both omitted.
\begin{tabular}{rl|l}
263 & \(7,7,13,109\) \\
499 & 3, & \(7,109,109\) \\
3 & 13 & \\
29 & 13,67 \\
37 & 3, & 7,67 \\
163 & 3, & \(7,19,67\) \\
7 & 3, & 19 \\
11 & 7, & 19 \\
67 & 3, & \(7,7,31\) \\
\(4+39\) & 3, & 31, \\
\hline
\end{tabular}
\(4393,31,31,67\)

And becaufe, in thefe, we have 13 once; this mutt be taken twice more. And therefore either from the Squares of 3 and 29 , or from that of ig I above; (fince we have it now but five times in all.)

If the firft way; then, becaufe of 67 once, we mult take it twice more ; from two Squares of thefe three, 37 , 163 , 439. Firft, let thofe be the Squares

Squares of 37 and 163 ; therefore (becaufe of 19) we muft rake alfo thofe of 7 and 11. And, by this time, we have 3 four times, (and this affords us, not a Cube, but the Triple of a Cube, if that were required;) we muft therefore take it twice more; which is only to be had at the Squares of 67 and 439, (for now we have it but fix times in all,) but this brings in a fourth 67 which cannot be admitted. Secondly, let it be the Squares of 37 and of 439 : which brings in 31 twice, and we muft therefore have it a third time. Which if we take from the
\(263 \mid 7,7,13,109\)
\(4993,7,109,109\)
313
2913,67
\(373,7,67\)
\(4393,31,31,67\)
\(673,7,7,31\)
73,19
\(1633,7,19,67\) Square of 67 ; this brings in a fourch 3 ; which will require two more, from the Squares of 7 and 163 ; which will bring in a fourth 67 . If from the Square of 191 ; this brings in a fourth and fifth 13, which cannot be admitted, becaule we have not a fixth. If
\begin{tabular}{|c|}
\hline \multirow[t]{7}{*}{\[
\begin{array}{rl}
263 & 7,7,13,109 \\
499 & 3,7,109,109 \\
3 & 13 \\
29 & 13,67 \\
37 & 3,7,67 \\
439 & 3, \\
191 & 3,67 \\
19,13, & 13,31
\end{array}
\]} \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline \\
\hline
\end{tabular} from the Square either of 4 , or of 5 ; either of thefe (befide Triplicates) would leave us 7 four times (which would afford, not a Cube, but the Septuple of a Cube, if that had been required;) but this requires 7 twice more. Neither of which can be lad from the Squares of 67, or 191, (as being already rejected;) nor from that of 163 (as bringing in a fourth 67 ;) and therefore, if ar all, from the Squares of 2 and 11 . But this would bring in 19 ; and therefore (to Triple it) will call in the Squares of 7 and 163; (which laft is already rejected, and would bring in a fourth 67 ;) therefore not at all. Thirdly, (omitting that of 37) let this 67 twice, be taken from the Squares of 163 and 439. But this (becaufe of 19) calls in the Squares of 7 and 11 ; and confequently, (becaufe then we have 3 four times) the Squares of 37 and 67 already rejected. So that this firft way fucceeds not.
\begin{tabular}{r|lll}
263 & \(7,7,13,109\) \\
499 & \(3,7,109\), & 109 \\
3 & 13 & \\
29 & 13,67 \\
37 & 3,7, & 67 \\
439 & 3, & 31, & 31,67 \\
4,5 & 31 & \\
2 & 7 & \\
11 & 7,19 \\
7 & 3,14 & \\
16 & 3, & \(7,19,67\)
\end{tabular}
\begin{tabular}{|c|c|}
\hline & \[
\left\lvert\, \begin{array}{lll}
7,7,13, & 109 \\
3,7, & 109, & 109
\end{array}\right.
\] \\
\hline 3 & 13 \\
\hline 29 & 13, 67 \\
\hline 163 & 3, 7, 19,67 \\
\hline 43 & \(3,31,31,67\) \\
\hline 7 & 3, 19 \\
\hline 11 & 7, 19 \\
\hline 37 & 3, 7, 67 \\
\hline & \(3,7,7,31\) \\
\hline
\end{tabular}

If we take the fecond way of fup-
\(263 \mid 7,7,13,109\) \(4993,7,109,109\) \(1917,13,13,31\) \(43913,31,31,67\) \(373,7,67\)
\(163 \mid 3,7,19,67\)
3, 19
117,19
\(6713,7,7,31\)
\begin{tabular}{l|l}
4 & 31 \\
5 & 31
\end{tabular}
plying 13 twice, (which at the Squares of 263 and 499 were wanting) by the Square of 19 I (omitting thote of 3 and 29;) then, becaufe here we have 31 once, which muft therefore be fupplied twice more: We will firt try whether it may be done by the Square of 439 (where it comes twice;) and then whether it can be done without this.

If we fupply it from the Square of 439 ; this brings in 67 , which mult therefore be Tripled: But not by the Square of 29 (as already rejected, and as bringing in a fourth 13 ;) therefore from thofe of 37 and 163 . Where becaufe we have ig once, we muft have it twice more, from the Squares of 7 and 1. And by this time we have 7 feven times, and muft therefore have it twice more: And we have 3 five times, and muft therefore have it once more. Both which we may have from the Square of 67 (and from thence only, becaife 3 is to be had no where elfe; ) and now we have 31 a fourth time; which requires it twice more (that it may be fix times;) and thefe we have at the Squares of 4 and 5. So that now we have a Cube compleated; whofe Components are, 7 , nine times; 3 and 31 , fix \begin{tabular}{r|ll}
2 & times; 13,67, and 109, three times. And the \\
3 & 13 \\
29 & 13,67 & Square whence it ariferh, is that of \(4 \times 5 \times 7 \times 37 \times 67 \times 163 \times 191 \times 263 \times 439 \times 499\)
\end{tabular}

The remaining Squares which are not ingredients into this, are thofe of \(2,3,29\).

Now it from there (without the other) we could form another Cube, fuch Cube would not only be another fuch Cube as is defired, but (being a Prime to that already found) might be Compounded with that found, to make a third. But this cannot be : Becaufe (for thefe) we have no Prime that comes three times.

It remains to fee, if (omitting the Square of 439) we can otherwife fupply 31 twice, which at the Square of 19 I were wanting. Where, fritt, it is manifeft, that (the Square of 439 being laid afide) thofe of 37 and 163 (becaufe of 67) mult alfo be laid afide, unlefs we
\[
\begin{array}{r|lll}
263 & 7,7,13,109 \\
499 & 3,7,109,109 \\
191 & 7,13,13,31 \\
37 & 3,7,67 \\
163 & 3,7,19,67 \\
29 & 13,67
\end{array}
\] can have a third 67 from the Square of
29. Which cannot be, becaufe this would introduce a fourth 13, and we have not two more to make up fix. Then, having laid by that of 163 , we mult (becaufe of 19) lay by thofe of 7 and II. So that there remain only the Squares of \(2,4,5,67,26317,7,13,109\) to fupply 3 I twice (becaufe we have it \(4993,7,109,109\) once) and 7 twice (becaufe we have it four times) and. 3 twice (becaule we have it once.) Now 31 might be fupplied twice from the Squares of 4 and
5, (but then we could take no more, becaufe that of 2 is included in 4 ; and 67 would bring in a fourth 3 1.) Or it might be fupplied by one of thofe (fuppofe 5 ,) with that of 67 . And thus we fhould have a fupply of 35 twice, and of 7 twice, and of 3 once: But there wants another 3 (which the remaining Squares of 2 and 4 cannot fupply) to compleat the Cube. So that this affords, not a Cube, but \(\frac{1}{3}\) of a Cube. There is therefore no other Cube (but that before affigned) here to be had, retaining (as is hitherto fuppofed) the Numbers 109, 109, log.

Let us therefore now leave out 109, and confequently the Squares of 263 and 499 , where it is found; and fee whether the
the remaining Squares will afford fuch a Cube as is defired. Now thefe are,


Of thefe, we will firt begin with 19 ,
\begin{tabular}{r|ll}
\(7 \mid 3,19\) \\
17 & 7, & 19 \\
163 & 3, & 7,19, \\
\(37 \mid 3\), & 7 & 67 \\
439 & 3, & 31, \\
41 & 31 & 67
\end{tabular} which comes thrice (and but thrice) at the Squares of \(7,11,163\). Where we have 67 once, and therefore mult have it twice more. Now if, for one of thefe, we take the Square of 37 ; we muft, for the other, take either the Square of 439 ,
\begin{tabular}{l|l}
7 & 3,19 \\
11 & 7,19 \\
163 & \(3,7,19\), \\
37 & 3,7 \\
29 & 13,67 \\
3 & 13
\end{tabular} or of 29 . If that of 439 ; this brings in 3 a fourth time; which may not be, becaufe it comes not twice more to make up fix times. Therefore (if at all) it muft be that of 29, (or elfe 37 muft be laid afide;) But this brings in 13 once, for which we may have a fecond at the Square of 3 , but then we cannot have a
\begin{tabular}{|c|c|}
\hline \multicolumn{2}{|r|}{73, 19} \\
\hline 11 & 7, 19 \\
\hline 163 & 3, 7, 19, 67 \\
\hline & 3, 7, 67 \\
\hline & 13, \({ }^{1} \times 13,13,31\) \\
\hline & 3, 7, 7, \\
\hline
\end{tabular}

4, 531 third without a fourth, at the Square of 191. Therefore (waving that at the Square of 3) we mult take both (if at all) at the Square of 19r. Now this brings in 7 a fourth time, which calls for a fifth and fixth: One of thefe we might have at the Square of 2 ; but then we cannot have a fixth without a feventh. - Therefore (waving that at 2) we muft (if at all) take both at the Square of 67 . But
73,19
\(11 \mid 7,19\)
\(163 \mid 3,7,19,67\)
2913,67
\(4393,31,31,67\)
\(19177,13,13,31\) here, befide a fecond 31 (for which we may have a third at the Square of 4 , or of 5 ,) we have 3 a fourth time (which will make up, not a Cube, but the Triple of a Cube,) which is not to be admitted, becaufe we cannot have a fifth and fixth. And confequently, the Square of 37 mult be laid afide, (as not to be joined either with that
that of 439 or 29 ;) but (waving that) we mult have recourfe to the other two (at 29 and 439) for Tripling of 67. Now here we have 13 once; and therefore muft have it twice more; not from the Square of 3, (becaufe, as before, if we take a fecond here, we cannot have a third without a fourth;) but from that of 191. Which doth not only fupply 13 twice; but alfo 7 and 31 which were allo wanting: So that we have now a fecond Cube, fuch as was defired ; whofe Components are, 3, 7, 13, 19, 31, 67, thrice taken. And the Square whence it arifeth, is that of \(7 \times 11 \times 29 \times\) \(163 \times 191 \times 439\).

And if, from the remaining Square of \(2,4,3,5,37,67\), we could forni a third; this, Compounded with the laft foregoing (as Prime to it) would form a fourth. But this cannot be, becaufe no Prime doth here thrice occur, but only \(广\) and 31 : And neither
\[
\begin{array}{r|rl}
2 & 7 \\
4 & 3 \mathrm{E} \\
3 & 13 \\
3 & 13 \\
57 & 3 \mathrm{I} \\
37 & 3,7,67 \\
67 & 3,7,7,3 区
\end{array}
\] of thefe can be thrice taken, without being incumbered with 3, which cannot be Tripled. So that, retaining 19 (as is hitherto fuppofed) ive can have (from thence) no other Cube than what is already founcl.

Let us now therefore lay by 19; and confequently the Squares of \(7,11,163\), wherein it is found. And we have then thefe only left for confideration.

We have here 67 three times, at the Squares of 29, 37, 439. And (with thefe) we have 3 twice; which calls for a third from the Square of 67 . And we have 13 once, for which we might have a fecond at the Square of 3 ; but could not then have a third without a fourth; therefore (waving that) we take both from
\(29 \mid 13,67\)
\(373,7,67\)
\(43931,31,67\)
\(673,7,7,31\)
\(1917,13,13,31\)
431
531
times;
times; yet cannot find it twice more to make it up fix times; nor indeed once more, becaule we cannot here Compound the Square of 2 , as being included in that of 4 . So that, with 67 , we may make up, not a Cube, but a Sextuple of a Cube.

Suppofe, we then that 67 be laid afide ; and therefore the Squares of 29, 37, 439. Thofe that then remain are,
\({ }_{217} \quad 413 \mathrm{I} \quad 3|13 \quad 5| 31 \quad 67 / 3,7,7,31 \quad 191 / 7,13,13,31\)
Of thefe, that of 67 mult be laid afide (becaufe 3 occurs but once,) and confequently (becaufe 7 comes then but twice) that of 2 and 191. And for the other three (of 3, 4,5, ) the Number \(I_{3}\) comes but once; and 31 but twice. So that no further Cube can be hence expected.

We conclude therefore (having
\begin{tabular}{|c|}
\hline \begin{tabular}{l}
\begin{tabular}{l|l}
4 & 3 I \\
5 & 3 I \\
\hline
\end{tabular} \\
5
\end{tabular} \\
\hline 117, 19 \\
\hline \(373,7,67\) \\
\hline \(673,7,7,31\) \\
\hline \(163 / 3,7,19,67\) \\
\hline \({ }^{191} 17,13,13,31\) \\
\hline \(2637,7,13,109\) \\
\hline 43913, 31, 31, 67 \\
\hline \(49913,7,109,109\) \\
\hline
\end{tabular} fully confidered all) that (within the extent of this Table) we may have two Squares (and but two) fuch as are defired; whofe Aggregate of Divifors fhall be a Cube. Namely, the Square of \(7 \times 11 \times 29 \times 163 \times 191 \times\) 439, whofe Aggregate of Divifors is the Cube of \(3 \times 7 \times 13 \times 19 \times 31 \times 67\). And the Square of \(4 \times 5 \times 7 \times 11 \times\) \(37 \times 67 \times 163 \times 191 \times 263 \times 439 \times 499\); whofe Aggregate of Divifors is the Cube of \(3 \times 3 \times 7 \times 7 \times 7 \times 13 \times 19 \times\) \(31 \times 31 \times 67 \times 109\).
And, if any think it worth the pains to feek out more; they muft enlarge the Table, to take in more Primes, or more Quadratick Powers of thefe Primes.

It had been eafy to have rendered
\(\begin{array}{lll}7 & 3, & 19 \\ 11 & 7, & 19 \\ 29 & 13, & 67\end{array}\)
\(163 \mid 3,7,19,67\)
\(1917,13,13,31\)
43913, \({ }_{5}^{31,} 31,67\) this bufinels more ftupendous (as fome other would have done, ) if (concealing the methods whereby I came at them) I would have performed the Multiplications here directed; and then, in thofe great Numbers, exhibited
bited thefe two Squares, with the two Cubes thence arifing; affirming, that (within fuch extent of Numbers) there is no other Square Number (befide thefe two, vaftly great,) which added to all its Aliquor Parts will make a Cube: Or perhaps, having affigned thofe two, propofed a Challenge to all the Mathematicians in France, ) to find a third within thofe limits. But this would ferve only to amufe a Reader, not to inftruct him. And I chufe rather (in what I publifh) to inform my Reader, by what fteps I come at thofe dilcoveries I make, and whereby he may (if he pleafe) attain the like; defigning more, the benefit of others, than oftentation.

I may here add (as is done after the former Quettion,) that the fame method is to be ufed, if (inftead of a Cube) it had been demanded, that fuch Aggregate fhould be the Triple (or other defigned Multiple) of a Cube: (fuppofing luch defigned Multiple to be poffible :) Of which I have given fome in'tances as I paffed along; and might have done more if it had been needful.

But we muif not then demand the Duple, Quadruple, Sextuple of a Cube, or otherwife Multiple thereof by an even. Number: For all fuch are impoffible. For, fince every Quadratick power of a Prime Number (be it the firt, fecond, third, or further Square thereof,) hath, for its Divifors. (beffide I) all its Degrees or Powers fo far ; (as, for inftanct, \(a^{6}\) hath for its Divifors \(\mathrm{I}, a, a, a^{3}, a^{4}, a^{5}, a^{6}\) ) and all thefe (becaufe it is a Quadratick Power) are (excluding I) in Number even; (and every of them either odd or cven according as is the Prime \(a\) whence it arifeth;) and coniequently, the Aggregate of all except I , an even Number; (tor an even Number of odds, as well as an even Number of evens, will ftill make an even Number;) to this even Number, if i be added (which is alfo an Aliquot Part, and therefore a Divifor,) this always makes the whole Aggregate an odd Number: Which therefore cannot be Duple of Cube, or its Multiple by an even Number. And the fame will hold as well for the Quadratick Powers of any Compound Number: For (as was hewed before) the Ag-
gregate of Divifors of fuch Compound Square, is always Compounded of fuch Aggregates of Divifors of fome Quadratick Powers of Primes; which, being (as is now thewed) odd Numbers, their Compound muft be fo too. For an odd Number, Multiplied by an odd Number (and fo continually) will ftill produce an odd Number ; and therefore, not the Duple (or otherwife Multiple by an even Number) of any Number whatfoever.

In the former Queftion, concerning Cubick Powers, whofe Aggregate of Divifors Should be equal to a Square, (or a defigned Multiple of a Square,) this will not hold, For there the Aggregate may be cither an odd or an even Number. Yet with this diverfity: If the Prime \(a\) be 2 , then all the Degrees thereof will be even Numbers, to which when \(I\) is added the Aggregate will be odd. If the Prime \(a\) be 3 (or other odd Prime,) and the Cube thence arifing be the firt, thiird, fifth Cube, (or other in odd places) whofe Number of dimenfions is \(3,9,15\), or orther odd Number; the Number of Divifors, without I, will be odd alfo; and therefore, with I, it will become even. But if fuch Prime \(a\), be odd, and the Cubick Power thereof be the fecond, fourth, fixth, or other in even places, whofe Number of dimenfions will therefore be \(6,12,18\), or other even Number (which will therefore be Qiradratick as well as Cubick;) here the Number of Divifors without I, will be even, and their Aggregate even; and therefore with I , the Aggregate will be odd. And accordingly an eftimate is to be made of the Compounds of fuch Aggregates: For, if all the Compounding Aggregates be odd, the Compound will be alfo odd; but it any one of them be even, the Compound Aggregate will be even. I forbear to purfue this to any nicer detcrmination: But any who pleafe may purfue it further.

Of the Third Quefion mentioned above in pages 322, 323; subich was propofed by Dr. Wallis to Monfeur Fermat.
III. A third Queftion I added to thofe two; not as a new difficulty, but as a trial whether Monfieur Fermat did thoroughly underftand the myftery of his own two Queftions; and did not only by chance light on them: For if he thoroughly underitood thofe, he muft needs be able to folve this with much eafe; which it feems, by Epift. 37, he did not find fo eafy ; and therefore, what folution he did find, he chofe rather to conceal than let us know it. Nor doth any where let us know, whether he were able to folve his own Queftions. Bur Monfieur Frenicle gives folutions both of this and thofe; but without acquainting us by what methods he came at them; which makes me think they are not better than mine.

The Queftion is this: To find two Square Numbers, which added to their Aliquot Parts Ball make the fame Number (or, whofe Aggregate of Divifors fhall be the fame;) As for inFance \(16+8+4+2+1=31=25+5+1\); Let two fuch otber be found.

Now 'tis manifeft (by what hath been before delivered) that any Multiple of thofe two ( 16 and 25) by any other Square which is a Prime to both of them (as 9, 49, 121, \&cc,) will do what is defired. For the Multiple of 31, by the Aggregate of Divifors of any fuch other Square, will be the Aggregate of Divifors, both of 16, and of 25 , Multiplied by fuch Square. As for inftance, becaufe \(9+3\) \(+1=13\); therefore \(31 \times 13=403\), is the Aggregate of the Divifors, as well of \(16 \times 9=144\), as of \(25 \times 9\) \(=225\).
But, if we would have others than the Equimultiples of \({ }^{3} 6\) and 25 ; we may make ufe of the former Table of Squares; wherein (becaufe we do not meet with any fingle Squares,

Squares, (other than thofe of 4 and of 5,) whofe Aggregate of Divifors is the fame) we are fo to Compound two or more of them in feveral parties, as that the Aggregates be the fame. \(\mathrm{As}_{\text {, }}\) the Squares of
\[
\begin{aligned}
& \left.\left.\begin{array}{l}
4 \\
5
\end{array}\right\} \text { 31. } \begin{array}{l}
29 \times 67 \\
2 \times 3 \times 5 \times 37
\end{array}\right\} 3 \times 7 \times 7 \times 13 \times 31 \times 57 . \\
& \left.\begin{array}{l}
2 \times 19 \times 29 \\
3 \times 8 \times 37
\end{array}\right\} 3 \times 7 \times 13 \times 67 \times 127 . \\
& \left.\begin{array}{l}
7 \times 8 \times 29 \times 67 \\
3 \times 4 \times 11 \times 19 \times 37
\end{array}\right\} 3 \times 3 \times 7 \times 7 \times 13 \times 19 \times 31 \times 67 \times 127 . \\
& \left.\begin{array}{l}
7 \times 8 \times 92 \times 76 \\
3 \times 5 \times 1 \times 19 \times 37
\end{array}\right\} 3 \times 3 \times 7 \times 7 \times 13 \times 19 \times 3 \times 67 \times 127 .
\end{aligned}
\]

All which arife from Compounding the Squares of the Primes lefs than 100 , taking into the Number the fecond and third Squares of 2 .

And more Couples than thefe are not to be found within thofe limits, unlefs by Multiplying both the Numbers of fome of thefe Couples by fome common Square which is a Prime to both of them; which may be done at pleafure. But if we extend the limits, to other Primes, and other Powers of thefe Primes, we may have more without fint.

And by the fame means we may have Three or more fuch Squares, whofe Aggregate of Divifors fhall make the fame fum. As (amongtt thefe) we have Three. Namely the Squares of
\[
\left.\begin{array}{l}
7 \times 8 \times 29 \times 07 \\
3 \times 4 \times 11 \times 19 \times 37 \\
3 \times 5 \times 11 \times 19 \times 37
\end{array}\right\} 3 \times 3 \times 7 \times 7 \times 13 \times 19 \times 31 \times 67 \times 127
\]

But if we enlarge the bounds, we may find others (Two's, Threes, Fours, \& \(\mathrm{c}_{2}\) ) in great Mulitudes, whofe Aggregate
of Divifors thall be the fame. As any man by experience, may find, who (without going farther) will give himfelf the trouble of purfuing the whole Table here given, as I have done thofe Primes which are fmaller than 100.

I forbear to purfue more Qucftions of this nature; but, according to the fame method, any others of like kind may be difpatched.
\[
\begin{array}{lllll}
\mathrm{F} & \mathrm{~N} & \mathrm{I}
\end{array}
\]

\section*{A N}

\section*{A P P E N D I X}
Tothe

ENGLISHTRANSLATION
of
RHONIUS'S GERMAN TREATISE OF ALGEBRA,
MADE BY'

Mr. THOMAS BRANCKER, M. A.
And Publifhed by him,
With the Advice and Affiftance of Dr. JOHNPELL,
At London, in the Year 1668;

\section*{CONTAINING}
A TABLE.OF ODD NUMBERS LESS THAN ONE HUNDRED THOUSAND,

\section*{SHEWING,}

Firt, which of them are INCOMPOSIT, or PRIME, NUMBERS, And, Secondly, The FACTORS, or CO-EFFICIENTS, by the Multiplication of which the others are produced ; Supputated, or Computed, by the fame Thomas Brancker.
\[
\begin{aligned}
& 11 \\
& \cdots=\infty \\
& \text { en } 8
\end{aligned}
\]
\[
\begin{aligned}
& 1 \\
& \text { M14 } \\
& \text { - } 1
\end{aligned}
\]

\section*{THE}

\section*{TRANSLATOR'S PREFACE。}

THE Title-Page fays that this Book was a Tranflation, but bath beein mucb altered. If any man defire to know what the alterations are, and why they were made; be may do well to compare it with the Original: A Printed Copy whereof may be bad at Francfort in Germany, by any that inquires there for it by this Title, Algebra Rhonii Germanicè ; Tiguri.* apud Bodmerum, 1659 , in quarto. The Copy which I bave, was given me anno 1662, by a good Friend, who then told we be mucb defired to read it in fome Language that be underftood; I thein promifed bim to Englith it. As foon as my leifure permitted, I corrected it according to the Printed Catalogue of Errata, and then began the Tranifation. When it was finifbed, I defired to fee it Printed, and got it Licenjed May 18, 1665, with the name of An Introduction to Algebra. And So without any alteration either in the Precepts or Examples, fave only the correction of m:ny Mifakes: It was fent to the Prefs, with order to Re-print the fax leaves of His Table of Incompofits precijely as they fland there.

A little after, I beard that there was at that time in London, a Perfon of Note ip very worthy to be made acquainted with niy defign, before I made any farther progrefs in the Imprefion. Being admitted to Jpeak with bim, I found bim not only able to direet me, but alfo very willing fo to do, fo far as bis leifure would permit. He gave me divers cautions concerning the Work. He floerved me the way of making the Table of Incompofits, of examining it, and of continuing it as far as I would. He encouraged me to extend it to 100 thoufand: Telling me that by inat time that I bad Calculated and Printed that Table, be
* That is, at Zurich, in Switzerland.
+ Dr. John Pell.
boped to be at leijure to revicew fome of Monficur Rhonius bis Problemes, and to work them anerw; and that be would fend them to me, with leave to publijh them or to keep them by me.

I bad finifoed and Printed that Table, as alfo Twelve nheets of the Book itfelf, before be Sent me his Alterations. They begin witt Probl. 24, pag. 100. All from thence to the end is bis Work: As alfo pag. 79, 87, 81, 82, which be Sent laft of all: So that infead of the firf 124 pages of Rhonius, this bath juft twice as many: Infead of thofe 8 or 9 Beets remaining in Rhonius, bore mucco foall be bereafter publifped, I will not adventure to forctell, because of the uncertainty of life, bealth, leijure, and of the acceptance wobich this 乃oall find amongt the Lovers of thele Studics, to whom this might bave been more acceptable, if it bad been rvbolly void of Press-faults.

As for the Table of Incompofits, I was very Senfible of the bad effects of perfuncloriness in Supputating, Tranjicibing, or Printing of it. My care therefore was not finall: yet pag. 198, is almoof filled ruith Errata, and, I dare not warrant that none bave efcaped unfeen: But Jecing So ferw are fit to undertake to Supputate it anero, wobofocver 乃ball bappen to difcover any otber fault in that Table, Sbail do weell to fignify it to the Book. Feller, or to any other likely to be concerned in the next Imprefion.

The Errata in the reft of the Book are many, notwithbfanding my care, and the diligence of a good friend, who CorreEzed part of it, after my rennceal to an abode So far from London. Mist of them cannot tiouble the more exercijed fort of Readers. But fear of learing any fumbling-block in the way of Beginners batb coujed this lerger Enumeration of thens in the three next following pages.

White-gate in Chenire, April 22, 1668.
T. B.

> From pages 34 and 35 of Brancier's Tranfation of Rhonius's Algelra.

BUT it is ofentimes very troublefome to find a Square, Cube, \&ic, whereby this Abbreviation may be performed. Find therefore all the Partes aliquote, or juft Dividers, and thele will tell us whether, and how often any Cube, Square, \&ic, is contained in the Quantity affigned.
Forafmuch then as the Difcovery of the Partes aliquoto is many waies ufeful in Vulgar Aritbmetick, I have adjoyned a Table in the End of this Book, which difcovers them in all uneven Numbers as far as 100,000 .

In which Table [p] fands for a Prime Number throughout.

\section*{The UJe of that Table is}

To difcover at view whether any given Quantity be compound or fimple, i.e. be divifible or indivifible, and how many Partes eliquote it hath. On the left fide you fee, run down all the odd Numbers to 99, which mutt be fet after the Numbers in the Head-Row, as Occafion is, thus. Let the Number given be 21449 , feek 49 in the fide, and the other 214 in the head, then run downward, and fide-waies till their Rows meet in a Square, where we find 89, which is a Pars oliquota, which dividing 21449 , gives Quotient 241. With this 24 I do as before (i.e. feek 4 I on the fide, and 2 in the head) and in its Square you find ( P ) which Thews that it is an indivifible or Prime Number. Wherefore the aliquot Parts of this 21449 ftand thus.
\begin{tabular}{c}
\(89 \cdot 241\) \\
21449. \\
\hline
\end{tabular}

If the even Number 21696 were given, fubdivide it con. tinually by 2 till the Quotient be an odd Number (as at the fixth Time you will here find 339.) Seek this 339 in the Table as you are directed above. In its Square we find 3 , which dividing 339 gives Quotient II3, which 113 we find to be a Prime Number. The Partes aliquote of the Number 21696 ftand as follows. Out of \(1,2,3,113\), we may find the reft.


How thofe Primipal Divifors ( \(1,2,3,113\), are multiplied into each other, and into their Products, lies plain before the Eyes without any more words.

Mr. Thomas Brancker's Preface to bis long Table of Incompofit, or Prime, Numbers; from pages 193, 194, 195, 196, 197, and 198, of bis Tranflation of Rionius's Algebra, publifhed in the Year 1663.

This is the Table mentinned page 34, line 8. It fills 50 pages. Its firft page calls it a Table of Incompofit numbers lefs then 100,000; but it contains far more compojit numbers, than inicompofit; For it doth not only give an Orderly enumeration of all odd numbers which are not compogit: but alfo it thews that none of the reft are fo. To every other odd number there exprelled, the Table fors fome incompofit that will dizide it without framtion.

Each page hauh 21 columels, whereof the \(\operatorname{yirft}\) is filled with 40 odd numbers fanding in their natural order. The following twenty columels are diltinguithed on their Tops, by numbers
numbers in their natural order \(0,1,2,3\), to 998 , 999. Thele Top numbers are bundreds; the 40 marginal numbers are Unites adbering to the Centuries. A line running from any marginal crois the page, thews, in any column, the place of the number made up of the Top-number and that marginal. In every fuch place of concourfe you fhal! either find the letter \(p\), or fome incompofit lefs than 317. The letter \(p\) (hews the number to be a prime or incompofit, (See Euclid, VII. def. I I and I3.) If any number lefs than 100,000 , do end in \(1,3,7\), or 9 , you may find its place in one of thofe 50 pagres, and then fee whether it be a prime or no: If it be compofit, you will there find its leaft Divifor. Thus in page r , where the line marked with the marginal 67 , croffeth the columel whofe Top-number is 16 ; there you find \(p\), that is, 1667 is a prime. Where the fame line crofferh the next columel, you find 3 ; That is, 1767 is no prime, and 3 is the leaft Divifor of \(i t\). So in page 25 , you fee 4903 ', 49033, 49037 are primes; but 49039 is a Compofit, and is is its fmalleft Divifor.

It may be of great ufe fometimes to have a complete and orderiy enubizerstion of all incompofits between 0 , and 100,000 , witbout any mixture of Compofits; thus I. 2.3.5.7.11. \({ }^{1} 3\) : \(\& c\), leaving out \(9,2 I\) and all other compofits. The numbers 2 and 5 are primes, though they be left out of the long Table, becaule no other incompofit ends fo. Thefe two prime numbers 2 and 5 being duely placed, all the reft of the primes are taken out of the long Table as they there fand marked with \(p\), from 7 in the firft page to 9999 I in the end of the 50 th page.

If to each of thefe primes you fet the Briggian Logarithm, you may find the Logarithms for all the reft of the numbers in the firt 100 Chiliads, by addition of the Logarithms of their incompofit Factors.

The Refolving of a number into all its incompofit Facturs [as 4620 into \(2.2 .3 \cdot 5.7\). II.] is altogether. neceifary, for the determining bow many Divifors that number hath, and which they be: As in pages 194, 195.
(29) ab. acdelc. aaabdiaac. abbiaa. aaaa|bb. aac|a. abc I.abcdef ac. abded. aaabc (23) aaa. aaa bc. aab b. aac a. bcdef ad. abce aa. abed r.aaaabc (18) \(\overline{(15)}\) c. aab b. actef ac. abcd ab. aacd a, aaabc r. abcde r.aaabcaa. bc c. abdef bc. aade ac. aabdi b. aaaaca. brde a. aabcab. ac d. abceffbd. aacead. aabc c. aaaabb. acde b. aaac (9)
e. abcdf be. aacd bc. aaad aa. aabcc. abdec. aaab i, aabb f. abcde cd. a abe bd. aaac ab, aacd. abceaa. abca. abb ab. cdef ce, aabded. aaablac. aaabe. abcdab. aacb. aab ac. bdefde. aabcaaa. bcdbc. aaaaab. cdcac. aab,ar. bb ad. bcef aab. cdeaab. acd aaa., abcac. bdebc. aaaab. ab ae. bedfaac. bdeaac. abdaab. aacad. bee (14. (8) af. bcde aad. bceaad. abc (22) ae. bed I.aaabbi.aaab bc. adef aae. bcd (25) raaabbbbc. ade a. aabba. aab bd. acef abc. ade 1 , aabbcc a. aabbbbd. ace b. aabb. aaa be. acdt abd. ace a. abbcc b. aaabb be. acd aa. abbaa. ab bf. acde abe. acd b. aabcc aa. abbbed. abeab. aabl (7) cd. abef (27) c. aabbcab. aabbce. abd bb. aaa I. anaa ce. abdf 1.aabbcd aa. bbcc bb. aabb de. abc (I3) a. aaa cf. abde a. abbcd ab. abcc aaa. bbb (17) i. aaaab aa. aa de. abcf b. aabcdac. abbcaab.abb I. aabcd a. aaab (6) df. abce c. aabbd bb. aacc (21) 1. abcd b. aaaa I. abc cf. abcd d. aabbc bc. aabc r.aaaabb b. aacd aa. aaba. bc \(a b c\). def aa. bbcd cc. aiabba, aaabb c. aabd ab. aaa b. ac abd. cef ab. abcd aab. bcc b. aaaab d. aabc \(\frac{\text { (12) }}{\text { c. } a b}\) abe. cdfac. abbdaac. bbc aa. aabbaa. bcd 1. aaaaa (5) abf. cde ad. abbcabb. acc ab. aaab ab. acd aaaaa 1.aab acd. bef bb. aacd abc. abc ace. bdf bc. aabd (24) acf. bde bd. aabc I. \(a \mathrm{aab} b c\) ade. bcf cd. aabb a. aabbc adf. bce aab. bcd b. aaabc aef. bcd aac. bbd c. aabbb
(28) aad. bbc aa. abbc 1.aabcde abb. acd ab. aabc a. abcde abc, abd ac. aabis b. aacde (26) bb. aaac c. aabde i.aaabcdbc. aaab d. aabce a. aabcd aaa. bbc e. aabcd b. aancdlaab. abc
an, bcde


 \(7.429021 .22014 .60|5 \cdot 48 / 3 \cdot 770| 3 \cdot 40 \overline{(9)}\) 11.273033 .140 I5. \(56|4.60| 5 \cdot 4625 \cdot 24\) I. 36


 22.1365 20.231 \(20.42|12.20| 4.165\) (14) (8) \(\left.26.1155{ }^{28.165}\right) \frac{28.30}{(22)} 22.105\) 15.200244 .105 21.143030 .154 33. 91042.110 39. \(77066 \cdot 70\) 35.858 (27) \(55 \cdot 546\) I.1260 \(65 \cdot 462 \quad 2.630\) \(77 \cdot 390\) 91. 330 143.210 30.1001 \begin{tabular}{l|l|l|}
42.715 & 6.210 & 12.75
\end{tabular} \begin{tabular}{ll|l|l|l|}
\hline 66.455 & 10.126 & 20.45 \\
70.48 & 14. &
\end{tabular} 78.38514 .9018 .50 70.429 9. 14030.30 \begin{tabular}{l|ll|l} 
I 10.273 & 15.84 & \((24)\) \\
I 30.231 & 21. & 60 & 1.360
\end{tabular} 15419535.362 .180 182.16512 .105 \(\frac{286.105}{(28)}{ }_{20} 8.63\)
\begin{tabular}{ll|l|l}
\((28)\) & 28 & 45 & \(5 \cdot\) \\
\hline
\end{tabular} 1.4620 I8. \(70 \quad 6.60\) 2.231030 .42 10. 36 \(3.1540 \overline{(26)} \quad 9.40\) \begin{tabular}{c|c|c|}
5.924 & 1.840 & 15.24 \\
7.660 & 2.420 & 8.45
\end{tabular} \begin{tabular}{l|l|l|l|}
11.420 & 3.280 & 12.30
\end{tabular}
\[
\begin{array}{l|l|l}
\hline(25) & 1.216 & 1 \\
1.900 & 2.108 & 2 \\
2.450 & 2.70 & 3
\end{array}
\]

26 aaabcd \(3^{2}\) 25 \begin{tabular}{|c|c|c}
2.1 & \(a a a b b\) & 15 \\
20 & \(a a a a a b\) & 12 \\
19 & aaaao & 1
\end{tabular} \begin{tabular}{c|c|c} 
I \\
18 & \(\frac{7 a a a a a}{a b c d e}\) & \(\frac{7}{32}\) \\
\hline 2 &
\end{tabular} \begin{tabular}{l|l|l|l|l|}
2.450 & 3.72 & \(33 \cdot\) & 70 & 4.18 \\
3.300 & \(4 \cdot 6\) \\
\hline
\end{tabular} \begin{tabular}{l|l|l}
5 & \(a a b b c c\) & 27 \\
4 & \(a a a b b c\) & 24
\end{tabular} 23 aaaabc 20

> UJe of the Long Table of Numbers, ending in \(1,3,7\), or 9.

Every Aliquot part of a Number is one of the juft Divifors of it. The greateft Divifor being equal to the whole Dividend, muft not be called a Part: Wherefore, fubitract a from every number in the laft columel of page 195, you fhall have the number of aliquot parts belonging to every one of thofe 29 forts.

> Having the leaft Divifor of any Number of the long Tabie, to find all its other incompofit Co-efficients.

If that Divifor end in I or 9 , and have a black ftroke under it in the Dividend's place in the long table; or if the Divifor end in 3 or 7 , and bave fuch a ftroke over it in the Dividend's place ; the Dividend is the Square of an incompofit, and the Quotient is given, for it is equal to the Divifor.

If the leaft Divifor have no fuch ftroke by it, let it divide the propofed number, the Quotient fhall be the greatelt aliquot part of that Dividend: Seek that Quotient in the fame long Table; if it be there marked with \(p\), your inquiry is at an end ; the Dividend is of the form AB. If it be not so marked, by the Prime there found, divide your frift Quotient, deal with the fecond Quorient as you had done with the firft, repeating fuch Divifions, till the Quotient be incompofit. Thus 53191 is found in page 27 , with its fmalleet

\section*{UJC of the long Table of Numbers, enaing in 1, 3, 7, or 9. 363} fmalleft Divifor 43. Now 53191 divided by 43 gives 1237. Page I fays, this 1237 is a prime. Inquire no farther.

But, defiring the incompofit factors of 93611 , I find it in page 47 of the long Table, with 7 for its leart Divifor. The Quotient 13373 is found in page 7, with its leaft Divifor 43. This 43 gives a fecond quotient 311. Page 1 fays, this \(3 I I\) is an incompofit. So the prime Co-efficients of 93611 are \(7 \cdot 43 \cdot 3^{11}\). (Hence infer that \(53^{191}\) is to 9361 I , as 1237 to \(2177=7 * 3 \mathrm{II}\), or \(7 \times 3 \mathrm{II}\).

If you divide any odd number by all the primes in order, beginning with 3, The firt Divifor that finds a Quotient without fraction, is the leaft Divifor that the Dividend can have. Thus, 239 is the leaft number that meafures IIIIIII.
 you come to 239. If no fuch Divifor find an Integer Quotient, before the Quotient is lefs than the Divifor, pronounce your Dividend to be incompofit, and that laft Divifor to be greater than the Dividend's fquare root. Frequent occafion of Dividing by Incompofits calls for a Tariffa of as many primes as fhall be needful. For refolving of numbers lefs than 100,000 , it fufficeth if it be extended to 313 , as in the next page.
A Tariffa, or Tabie, of all Incompofit, or Prime, Numbers, lefs than \(\sqrt{\text { by }} \mathbf{1 0 0 , 0 0 0 ,}\) mulitipliad by \(2,3,4,5,6,7,8,9\).

\begin{tabular}{|c|}
\hline  \\
\hline \[
\begin{array}{lll|lll|ll}
\hline-1 & 1 & m & 7 & n & 0 & n & \infty \\
0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0
\end{array}
\] \\
\hline  \\
\hline  \\
\hline  \\
\hline  \\
\hline ッ mjtwo.noo a \\
\hline
\end{tabular}

\(\left|\begin{array}{ccc}N & n & \infty \\ m & 0 & 0 \\ 0 & m & m \\ \cdots & -1 & -1\end{array}\right|\) 1631 4
0
0
0 5
0
0

8481
5951
2527



\begin{tabular}{lll}
\(\infty\) & 0 & 0 \\
\(\infty\) & 7 \\
\(n\) & \(5 \infty\)
\end{tabular}

\[
\begin{aligned}
& 1 \\
& 2 \\
& 0 \\
& 0
\end{aligned}
\]

\section*{Anendments to the following Table.}
P. Guldin fayes, 149 is divifible by 7 , and 229 by 31 . Scbooten leaves 809 out of his Catalogue of Incompofits. Rbonius makes 1209 and 1673 incompofits, and fays 11833 is divifible by 19. But this Table fayes more truly, that 149:229. 809.11833 are Incompofits: and that 1209 is divifible by 3, and 1673 by 7. Yet truft it not, before you have amended thefe faults in it.


\section*{( 367 )}

Mr. THOMAS BRANCKER's TABLE of INCOMPOSIT, of PRIME, NUMBERS, lefs than 100,000.



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & O1 & \({ }^{2}\) & 3 & 6.t & , & ) & 67 & 976 & 09 & 970 & 71 & 72 & 73 & 74 & 75 & 76 & 7 & 78 & \\
\hline 01 & 17 & P & 3 & p & 37 & & & P & 3 & 67 & 7 & ¢ & 9 & 7 & 3 & 3 & 11 & & 29 & \\
\hline 03 & 3 & 17 & p & 3 & 19 & & & P & 1 & 3 & 3.47 & 7 & 3 & 67 & 11 & 3 & ] & P & 3 & \\
\hline \(\bigcirc\) & P & 31 & & & 43 & & P & 19 & , & P & P 7 & 7 & f & p & 3 & P & I & 3 & 37 & \\
\hline \(\bigcirc 9\) & 3 & 41 & 7 & 3 & 13 & 23 & , & P & 11 & - 3 & 343 & 3 & 3 & P & 31 & 3 & 7 & 13 & 3 & \\
\hline 11 & p & 3 & & p & & \(1-\) & 11 & 3 & & & P 3 & 13 & P & 3 & & 7 & & 11 & 73 & \\
\hline 13 & 7 & & & 59 & 11 & 3 & 17 & & , & 31 & 1 & 3 & P & 71 & & 11 & 23 & 3 & 13 & \\
\hline 17 & 11 & 3 & & P & 3 & & 13 & 3 & 17. & P & Pr & 11 & 7 & 3 & & p & 3 & p & P & \\
\hline 19 & 13 & 29 & 3 & 71 & 7 & 3 & F & p & P 3 & I & 1 P & P 3 & P & 13 & 3 & i3 & 19 & 3 & 1 & \\
\hline 31 & 3 & & & & & & & 11 & 10 & & & & & & & & & & \[
3
\] & \\
\hline 23 & 19 & 3 & 7 & & 3 & 11 & \(3 \%\) & & & & & 7 & 31 & 3 & 3 & & 3 & & P & \\
\hline 27 & 3 & 11 & 12 & & p & 61 & 3 & & & 3 & 3 & & 3 & 17 & 7 & & 29 & 8 & 3 & \\
\hline \(\underline{2}\) & P & 3 & p & P & 3 & & 7 & 3 & - & 13 & & 3 P & P & & 17 & P & 3 & 59 & p & \\
\hline 31 & 37 & p & 3 & 13 & 50 & 3 & 19 & 53 & & & 1 & & & & & 17 & 13 & 3 & 41 & \\
\hline 33 & 3 & P & 23 & 3 & 7 & 47 & 3 & & & & 13 & & 3 & & & & 17 & 11 & 3 & \\
\hline 37 & P & 17 & 3 & P & 41 & 3 & P & P & 3 & & 31 & 1 & P & 11 & 3 & & 7 & 3 & 17 & \\
\hline 39 & 3 & 7 & 17 & 3 & 47 & 13 & 3 & 23 & 7 & 3 & 3) P & 11 & 3 & 41 & 43 & 3 & P & 71 & 3 & \\
\hline 41 & 7 & 3 & & 17 & 3 & 31 & 29 & 3 & & 11 & & & 3 & & & P & & & P & \\
\hline 43 & p & p & 3 & & 17 & 3 & & 11 & 3 & 53 & 3 & & p & & 3 & 19 & & 3 & 11 & \\
\hline 47 & p & 3 & 1 & 11 & 3 & & 17 & 3 & 41 & P & p & & p & & 11 & p & 3 & 61 & & \\
\hline 49 & 23 & 11 & 3 & 7 & P & 3 & 61 & 17 & 3 & p & p 7 & 3 & 11 & I & 3 & p & P & 3 & 47 & \\
\hline 5 & 3 & & & & P & & & 3 & 13 & & 11 & & 3 & & P & & & 3 & & \\
\hline 53 & P & 3 & 13 & 1 & 3 & f & p & 3 & 7 & 17 & & 23 & P & & 29 & & 3 & 1 & 1 & \\
\hline 5 & 3 & 47 & P & 3 & 11 & 79 & 3 & 29 & P & 3 & 3 p & 17 & 3 & & & 3 & 13 & & 3 & \\
\hline 59 & 73 & 3 & 11 & P & 3 & & P & 3 & 19 & & 1) 3 & P & 7 & 3 & P & p & & p & 29 & \\
\hline 61 & 11 & 61 & & & & & p & & & & 1) 23 & 3 & 53. & 17 & & & 4 & & & \\
\hline & 3 & P & 1 & 3 & 23 & P & 3 & & & & 37 & 13 & 3 & 37 & 17 & & 79 & & & \\
\hline 67 & & 1 & 3 & p & 29 & & 59 & 67 & 3 & P & 37 & 3 & 13 & 53 & 3 & & 11 & 3 & P & \\
\hline 69 & 3 & 31 & P & 1 & P & p & 3 & 7 & P & 3 & & 67 & 3 & & 7 & 3 & P & \(1)\) & 3 & \\
\hline 7 F & 13 & 3 & P & 23 & 3 & I & 7 & 3 & & p & p 3 & 1 & II & 3 & 1 & 67 & & 9 & 7 & \\
\hline 73 & p & P & 3 & P & p & 3 & p & 13 & 3 & 19 & 11 & 13 & & 73 & 3 & P & & 3 & P & \\
\hline 77 & 59 & 3 & P & & 3 & P & 11 & & 13 & P & & 3 P & 19 & & p & F & - 3 & & P & \\
\hline 79 & p & 37 & 3 & p & 11 & 3 & p & P & 3 & & 1 P & ) 3 & 29 & 47 & 3 & 11 & & 3 & F & \\
\hline 81 & 3 & 7 & 11 & 3 & P & & 3 & & & & 73 & 3 43 & 3 & 11 & p & & & 31 & & \\
\hline \(\mathrm{S}_{3}\) & 7 & 3 & 61 & 13 & 3 & 29 & 41 & 3 & P & p & P 3 & 311 & P & 3 & & P & & 43 & & \\
\hline 87 & 3 & 23 & P & & 13 & & 3 & 1 & 71 & 3 & 319 & & 3 & 83 & p & 3 & P & 13 & & \\
\hline 89 & P & 3 & 19 & P & 3 & 11 & & & 83 & 29 & & & 37 & & & & 3 & I & & \\
\hline 91 & p & 41 & & & & & & & & & & 3 & 3 & 19 & & P & & 3 & 13 & \\
\hline 93 & 3 & 11 & 7 & 3 & 43 & 19 & 3 & & 61 & & & P & & 1 & 59 & 3 & & P & 3 & \\
\hline 91 & & P & 3 & P & 73 & 3 & 37 & & 3 & P & , 47 & 3 & p & 13 & 3 & 71 & 43 & 3 & 53 & \\
\hline 091 & 3 & p & P & 3 & 67 & P & 3 & 13 & F & 3 & 311 & 23 & 3 & 7 & P & 3 & P & 11 & 3 & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 100 & 101 & 10 & \(10^{1}\) & 104 & & \(1{ }^{1} 1\) & 106 & |107 & |108 & 109 & 110 & 111 & 1121 & 113 & |14|1 & 115 & 116 & 117 & & 1 \\
\hline 01 & 73 & 3 & 101 & p & & & P & p & ; & ; 7 & 11 & 13 & 317 & 23 & 3 & 13 & 7 & 3 & p & P & 3 \\
\hline O3 & & & & & 101 & & 3 & 23 & & 3 & P & f & 3 & 17 & 89 & & p & 41 & . 3 & 11 & \\
\hline 07 & P & 3 & 59 & 11 & 3 & & & P & 3 & 3101 & 13 & 3 & 329 & 7 & 3 & 11 & 37 & 3 & 23 & p & \\
\hline 09 & P & 11 & 3 & 13 & 7 & & 3 & 103 & P & 3 & P & 101 & 1 & 11 & 43 & 3 & 17 & 13 & 3 & 7 & \\
\hline 11 & 3 & P & P & 3 & 29 & & 23 & 3 & p & 19 & , & 37 & \(4^{1}\) & & P & P & 3 & 17 & & \[
13
\] & 43 \\
\hline 33 & 17 & 3 & 7 & p & 3 & & P & p & & 311 & & , &  & P & 3 & 101 & 29 & 3 & 13 & P & \\
\hline 17 & 3 & 67 & 17 & 3 & 11 & & 13 & 3 & 7 & 729 & 3 & 323 & 3 & 3 & P & 7 & 3 & P & P & 3 & 17 \\
\hline 10 & 43 & 3 & 11 & 17 & 3 & & 67 & 7 & 3 & \(3{ }^{1}\) & 61 & 1 & j p & 13 & 3 & 19 & P & 3 & P & 53 & \\
\hline 21 & II & 29 & 3 & p & 17 & & 3 & 13 & 71 & 1 & 67 & 103 & 3 & & p & 3 & 41 & P & & P & \\
\hline 23 & 3 & 53 & P & 3 & , & & 17 & 3 & P & P 79 & 9 & 373 & 3 & 3 & 13 & P & 3 & 59 & 19 & 3 & \\
\hline 27 & 37 & 13 & 3 & 23 & p & & 3 & P & 17 & 7 & 3 & P & P 3 & 103 & \(4 \%\) & 3 & p & 7 & 3 & P & \\
\hline 29 & 3 & 7 & 53 & , & P & & \(\underline{1}\) & 3 & P & - 7 & 3 & 41 & 31 & - 3 & 1 & 11 & 3 & 29 & 37 & 3 & 79 \\
\hline 31 & 7 & 3 & 13 & P & 3 & & P & P & 3 & 3 p & 17 & 7 & 3 & 11 & & 7 & 13 & & & & \\
\hline 33 & 79 & p & 3 & p & p & & 3 & 7 & P & 3 & 3.13 & 11 & 1 & 47 & & & 19 & P & 3 & \(p\) & \\
\hline 37 & & 3 & 29 & p & 3 & & 41 & 11 & 3 & 3 p & P & p & 37 & 17 & 3 & P & 83 & & 12 & 7 & \\
\hline 39 & p & P & 3 & 7 & 11 & & 3 & P & P & P 3 & 3 p & P 7 & 3 & P & 17 & 3 & 1 H & 103 & 3 & P & \\
\hline 41 & 3 & P & 7 & 3 & 53 & & 83 & 3 & 23 & 37 & 3 & 31 & 13 & 3 & 11 & 17 & 3 & & 59 & & \\
\hline 43 & 1 I & 3 & P & P & 3 & & 13 & 29 & 3 & & \(7{ }^{1}\) & 1 & 311 & P & 3 & P & 7 & 3 & P & 13 & \\
\hline \(4 \%\) & 3 & 73 & P & 3 & 31 & & 53 & 3 & 11 & P & P 3 & 3 & ) 71 & 3 & & P & 3 & 19 & 17 & 3 & 1 \\
\hline 49 & 13 & 3 & 37 & 79 & 3 & & 7 & 23 & 3 & 19 & & - 3 & P & 7 & 3 & 107 & P & & 31 & 17 & \\
\hline 51 & 19 & P & 3 & 11 & 7 & & 3 & p & 13 & & 47 & 43 & 3 & & p & & & 61 & & & 17 \\
\hline 53 & 3 & 11 & P & 3 & p & & 61 & 3 & P & P & p 3 & & 19 & 3 & P & 13 & 3 & 43 & & 3 & \\
\hline 57 & 89 & 7 & 3 & p & p & & 3 & P & 31 & , & P & - p & P & P & 41 & 3 & & P & 3 & 71 & \\
\hline 59 & 3 & p & P & 3 & , & & p & , & 7 & P & - 3 & p & p & 3 & 37 & 7 & 3 & 89 & 11 & & \\
\hline 61 & p & 3 & 31 & 13 & 3 & & 59 & & & & 97 & 3 & 3 P & P & 3 & 73 & 1. & 3 & 9 & 29 & \\
\hline 63 & 29 & P & 3 & 43 & p & & 3 & P & 47 & , & 19 & I3 & , & 7 & I 1 & 3 & 31 & 107 & 3 & P & \\
\hline 67 & P & 3 & P & & 3 & & P & P & 3 & P & 11 & 3 & 13 & 19 & 3 & P & 4.3 & 3 & & P & \\
\hline 69 & P & p & 3 & P & 19 & & & 47 & 11 & 3 & & P & - \(\hat{3}\) & 59 & P & 3 & 23 & 7 & 3 & 11 & \\
\hline 71 & 3 & 7 & P & 3 & 37 & & 11 & 3 & p & P 7 & & P & & 3 & \(\mathrm{S}_{3}\) & - P & 3 & 11 & 79 & 3 & \\
\hline 73 & 7 & 3 & P & 11 & 3 & & 97 & 13 & 3 & 33 & P & - 3 & 3 P & p & 3 & 7 & 71 & & 61 & 31 & \\
\hline 37 & 3 & P & 43 & 3 & P & & & 3 & 13 & 73 & 3 & 11 & P & 3 & 31 & 23 & 3 & P & P & 3 & \\
\hline 79 & P & 3 & 19 & 97 & 3 & & 1 & 59 & 3 & 11 & P & - & 7 & P & 3 & 13 & P & 3 & & & \\
\hline 81 & 17 & P & 3 & 7 & 47 & & 3 & 11 & p & 3 & 79 & 7 & 3 & 29 & 19 & 3 & 37 & p & & 109 & \\
\hline 83 & 3 & 17 & 7 & 3 & 11 & & 19 & & 41 & P & 3 & P & 53 & 3 & P & P & 3 & 7 & p & 3 & 23 \\
\hline 87 & 7 & 61 & & 13 & P & & 3 & p & & , 3 & P & P & P 3 & P & 59 & 3 & P & 13 & & p & P \\
\hline 89 & 3 & 23 & p & & 17 & & P & 3 & p & P & , & 13 & 67 & 3 & 5 & & 3 & & P & & 19 \\
\hline 9 I & p & 3 & 41 & P & 3 & & 7 & P & 3 & P & 29 & 3 & 19. & & 3 & P & 7 & 3 & 13 & II & \\
\hline 93 & P & P & 3 & 19 & & & 3 & 17 & 43 & , & P & P & 3 & 23 & p & 3 & P & 11 & 3 & 7 & 67 \\
\hline 97 & 23 & 3 & 7 & 37 & 3 & & P & 19 & 3 & 17 & & 3 & P & 11 & 3 & P. & P & 3 & 47 & P & 3 \\
\hline 99 & P & - 7 & 3 & P & p) & & 3 & 13 & P & 31 & I7. & 11 & 3 & p & P & 3 & 7 & P. & 3 & 73. & 13 \\
\hline
\end{tabular}
\(\left.\left|\frac{120}{11}\right| \frac{121}{p}\left|\frac{122}{3}\right| \frac{123}{p}\left|\frac{124}{p}\right| \frac{125}{3}\left|\frac{126}{p}\right| \frac{127}{13}\left|\frac{128}{3}\right| \frac{129}{7}\left|\frac{130131}{p}\right| \frac{132}{43}\left|\frac{133}{47}\right| \frac{134}{3}\left|\frac{135}{23}\right| \frac{136}{7}\left|\frac{137}{3}\right| \frac{138}{37} \right\rvert\, 139\)



Incompofit, or Prime, Numbers, lefs than 100,000.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 180 & 181 & 182 & & 1841 & & 186 & 187 & 188 & 189 & 190 & 191 & 192 & & & 194 & 195 & 896 & 197 & \(19^{8}\) & 199 \\
\hline & 47 & 23 & & P & 'P & & 1 & \(p\) & 3 & 41 & p & 3 & &  & P & 3 & P & 17 & 3 & P & 7 \\
\hline & & 43 & Ió & 3 & 7 & P & 3 & 59 & p & 3 & 31 & 7 & 3 & 3 & 97 & P & 3 & P & 17 & 3 & 13 \\
\hline 07 & I 1 & 19 & & P & 79 & 3 & 23 & 13 & 3 & 7 & 83 & . 3 & P & P 4 & 43 & 3 & P & 7 & 3 & 29 & 17 \\
\hline 09 & & 7 & 131 & 3 & 41 & 83 & 3 & 53 & 7 & 3 & P & 97 & & & P & 13. & 3 & P & P & 3 & 43 \\
\hline 11 & 7 & 3 & P & p & 31 & 107 & 37 & 3 & 13 & p & 3 & 29 & & P & 3 & & 109 & 3 & 23 & 11 & 3 \\
\hline 13 & P & 59 & 3 & P & P & 3 & 7 & P & 3 & p & P & 3 & P & P & 7 & 3 & 13 & 11 & 3 & P & p \\
\hline 17 & 43 & 3 & p & \({ }^{1} 3\) & 3 & p & P & 3 & 31 & p & 3 & 7 & 11 & & 3 & P & 29 & 3 & P & 7 & 3 \\
\hline 19 & 37 & P & 3 & 7 & 113 & 3 & 43 & P & 3 & P & 7 & 3 & P & & P & 3 & 131 & 23 & 3 & P & P \\
\hline 21 & 3 & P & 7 & 3 & 13 & P & 3 & 97 & 11 & 3 & 23 & P & 3 & & & p & 3 & 7 & 13 & 3 & II \\
\hline 23 & 67 & 3 & p & 73 & 3 & P & 11 & 3 & 7 & 127 & 3 & 13 & 47 & & 3 & P & & 3 & 11 & 43 & 3 \\
\hline 27 & 3 & P & 11 & 3 & P & 97 & 3 & 61 & 67 & 3 & 53 & 31 & & 3 & 7 & p & 3 & 19 & P & 3 & P \\
\hline 29 & 11 & 3 & P & P & 3 & 7 & 13 & 3 & 19 & 23 & 3 & 11 & & 7 & 3 & p & 59 & 3 & 109 & 79 & 3 \\
\hline 31 & 13 & & 3 & 23. & -7 & 3 & 31 & P & 3 & 11 & P & 3 & & P & 13 & 3 & p & 67 & 3 & & 19 \\
\hline 33 & 3 & P & p & 3 & P & 43 & & 11 & 37 & 3 & & 10 & & & P & p & 3 & 29 & 7 & & 3 I \\
\hline 37 & 17 & 7 & 3 & 11 & 103 & 3 & p & 41 & 3 & 29 & P & 3 & & & 61 & 3 & 7 & 73 & 3 & 83 & P \\
\hline 39 & & 11 & 13 & 3 & p & P & 3 & 7 & p & 3 & 79 & p & & 38 & 83 & 7 & 3 & 41 & P & 3 & 12 \\
\hline 41 & P & 3 & 17 & p & & P & 7 & 3 & 83 & 13 & 3 & P & 71 & & 3 & p & & & 19 & & 3 \\
\hline 43 & & P & 3 & 13 & P & 3 & 103 & p & 3. & 19 & [37 & 3 & & 7 & 23 & 3 & P & 13 & 3 & P & \\
\hline 47 & P & 3 & 7 & 7 & 3 & 17 & 29 & 3 & 47 & P & 3 & 41 & 19 & & 3 & P & 11 & 3 & 7 & 89 & \\
\hline 49 & P & p & 3 & 59 & 19 & 3 & 17 & P & 3 & 7 & 43 & 3 & & P & 11 & 3 & 113 & 7 & 3 & 23 & \\
\hline 51 & 3 & 7 & P & 3 & P & 13 & 3 & 17 & 7 & 3 & P & 1 & & 3 & 37 & 53 & 3 & 43 & P & & 78 \\
\hline 53 & 7 & 3 & P & p & 3 & p & 23 & 3 & 17 & 11 & 3 & 107 & 13 & & 3 & 7 & P & 3 & P & p & 3 \\
\hline 57 & 3 & 67 & F & 3 & P & & 3 & P & 109 & 3 & 17 & P & 3 & & 13 & P & 3 & 1 I & 23 & 3 & \\
\hline 59 & p & 3 & 10 & 11 & & 67 & 47 & 3 & p & P & - 3 & 7 & & P & 3 & 11 & p & 3 & p & & \\
\hline 6 & P & 11 & 3 & 7 & p & 3 & P & 73 & 3 & 67 & 7 & 3 & II & & 19 & 3 & 31 & & & ; p & P \\
\hline 63 & 3 & 41 & 7 & 3 & 37 & 19 & 3 & 29 & 13 & & 11 & p & & 3 & 17 & P & 3 & 7 & P & 3 & P \\
\hline 67 & 7 & 37 & 3 & P & 59 & 3 & 1 I & & 3 & 13 & 23 & 3 & P & & 107 & 3 & 17 & 71 & 3 & P & 4 \\
\hline 69 & 3 & p & p & 3 & 11 & 31 & 3 & 137 & p & 3 & P & 29 & & 3 & 7 & P & & 13 & 53 & 3 & 19 \\
\hline 71 & 17 & 3 & 11 & P & & & p & & 113 & 61 & & 19 & & & & & & & 7 & 31 & \\
\hline 73 & 11 & 17 & 3 & 19 & 7 & 3 & 71 & P & 3 & 3 & p & & & P & P & & & 103 & & & \\
\hline 77 & P. & 3 & 7 & 17 & 3 & 13 & 19 & 3 & 43 & , & 3 & 127 & 37 & 7 & & P & p & 3 & P & 11 & \\
\hline 79 & 101 & 7 & 3 & P & 7 & 3 & P & 89 & 3 & P & P & 3 & 13 & 3 & P & 3 & & 11 & & 103 & \\
\hline 81 & 3 & & 101 & 3 & P & 17 & 3 & & 79 & 3 & P & & & 3 & P & & 3 & & 131 & 3 & 13 \\
\hline 83 & 13 & & 47 & 31 & 3 & P & 7 & 3 & 23 & 41 & & & 1 & I & 3 & P & p & 3 & 73 & 59 & 9 \\
\hline 87 & , & 13 & P & & 7 & P & 3 & P & 11 & 1 & P & & & & P & 13 & 3 & p & 47 & & I \\
\hline 89 & P & 3 & - & 7 & 3 & 29 & 11 & , & 13 & 17 & \(\hat{3}\) & 31 & & p & 3 & P & 19 & & 7 & P & P 3 \\
\hline 9 I & 79 & & & 53 & I1 & & & 19 & & & 17 & & 10 & & P & 3 & 1 I & & & P & \\
\hline 93 & 3 & & 11 & 3 & & P & 3 & p & & 3 & 61 & 17 & & 3 & 11 & 101 & & 47 & P & P 3 & 3 \\
\hline 97 & P & 31 & & P & 53 & 3 & & p & & 3 I 1 & 13 & & 323 & & & 3 & P & P & P 3 & 101 & \\
\hline 99 & 3 & P & 29 & 3 & 313 & 7 & 3 & 11 & P & P 3 & 71 & 73 & & 3 & 19 & 17 & 3 & P & 13 & 3 & 3 \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 220 & 2 & 2 & 223 & 22.4 & , & 22 & 2 & 228 & 229 & 230 & 231 & \(23^{2}\) & 233 & & 235 & & & & \\
\hline 01 & & & & & 3 & 3 I & 97 &  &  & \[
1
\] & \[
3
\] & 313 & & & & 71 & & & \[
p
\] & 3 \\
\hline & & 23 & & & 43 & 3 & & 73 & 3 & 37 & & & & & & & & & & 11 \\
\hline & 5 & & 53 & & 3 & 371 & 13 & 3 & P & p P & & & 23 & & 89 & 11 & & 151 & & \\
\hline 09 & 13 & & 3 & & P & P & 23 & P & 3 & 3 I & & 3 & & 11 & & & & & 29 & \\
\hline 11 & 3 & & & & 33 & P & & 13 & P & 3 & & & 3 & & 41 & & & 131 & & \\
\hline & & 3 & 97 & 53 & & 47 & P & - 3 & & 11 & & 329 & 139 & 3 & 1 & & & 23 & & \\
\hline & 3 & 17 & 13 & & 29 & 11 & & P & P & ? & 3 P & P & 3 & & P & 3 & 11 & 37 & & \\
\hline 19 & 97 & 3 & 17 & 11 & 3 & 3.7 & P & 3 & 19 & 13 & 3 & 61 & 7 & & 11 & 29 & & p & P & 3 \\
\hline 21 & 19 & 11 & & 13 & 7 & 3 & & P & & & & & & & & 4 & 13 & & & 9 \\
\hline & & & 71 & 3 & 7 & 101 & 3 & 31 & 29 & 9 & 7 & 9 & & 3 & 59 & & P & & & 47 \\
\hline & & & & 83 & 41 & 3 & 11 & P & & 3101 & & & p & P & & & & 3 & & 71 \\
\hline 29 & 3 & P & I & 3 & 11 & 13 & 3 & 7 & 37 & 7 & P & 108 & 3 & 41 & & & \(p\) & 61 & & \\
\hline & & 3 & 11 & 137 & & P & & 3 & 17 & 723 & 3 & & 13 & & & P & & 10 & & \\
\hline & 11 & & & 23 & P & & 13 & 127 & 3 & 3 1 & 31 & 1 & 7 & f & 3 & 101 & & & , & \\
\hline & & 3 & 3 & & 3 & 31 & P & 3 & 41 & 1 p & ค 3 & 7 & 19 & 3 & 23 & p & 3 & & , & \\
\hline 39 & & 13 & 3 & 89 & 19 & 3 & P & P & 3 & 37 & P & P 3 & I & P & 3 & P & 7 & 3 & 31 & 37 \\
\hline & & & & & & & & & & & & 73 & & 7 & 11 & 3 & 47 & & & S9 \\
\hline & & & 13 & & 3 & P & & 3 & 53 & 析 & 3 & 3 1 & 11 & 3 & 7 & 13 & 3 & & 11 & \\
\hline & & & & & P & 7 & 3 & 23 & 11 & 3 & 19 & 79 & 3 & 37 & P & 3 & 13 & P & & \\
\hline & 17 & 3 & 19 & p & - 3 & P & 11 & 3 & 73 & 53 & 3 & 37 & 67 & 3 & 131 & I & 3 & 11 & & \\
\hline & & & & & 11 & 3 & & & & 59 & & & & 9 & 3 & 11 & 67 & & 17 & 43 \\
\hline & & & & 3 & P & 19 & 3 & 61 & & 3 & & 13 & 3 & 11 & 47 & & 7 & & & 17 \\
\hline & & & & 79 & 17 & & I 39 & 7 & & [ 11 & P & p 3 & 13 & & & & 41 & 3 & & P \\
\hline & 3 & P & p & 3 & 37 & 17 & 3 & 11 & P & , & P & P P & 3 & & \(p\) & 3 & 59 & 23 & 3 & 13 \\
\hline & 13 & & 113 & 59 & & & 17 & & & P & & 19 & & & 20 & & & & O7, & 3 \\
\hline & & 37 & & 11 & 7 & & 131 & 13 & & 3 & & & 43 & 61 & 3 & & ¢ & & & 31 \\
\hline & & 3 & & & 3 & 3 & 19 & 3 & 13 & 3 & 3 & 3 & 53 & 3 & 31 & & & & 29 & \\
\hline & 29 & 7 & 3 & & P & 3 & P & P P & 3 & 3103 & 17 & & P & & 3 & & P & 3 & P & 11 \\
\hline & & & & & & & & & & & & & & & & & & 11 & & \\
\hline & & & & 13 & & p & 7 & 3 & 8 & 9 & 3 & 3 & 17 & 3 & P & 11 & 3 & P & p & 3 \\
\hline & & 67 & & & 3 & 107 & 3 & & & P & 47 & 7.7 & 3 & 97 & 17 & 3 & P & 13 & & \\
\hline & P & & p & 7 & 3 & 67 & P & 3 & 137 & 11 & 3 & 13 & P & P & 53 & 17 & & & & 3 \\
\hline & 71 & \(4^{1}\) & 3 & & p & & & I1 & & & & P 3 & 31 & 103 & & & & & 1 & P \\
\hline & & & p & & P & II & & & & 3 & 41 & 197 & & \% 7 & 23 & & 11 & 17 & 3 & 29 \\
\hline & 13 & 11 & 3 & 61 & 113 & & & P & & 3127 & & p 3 & 11 & & & 103 & p & & p & 17 \\
\hline & & P & 31 & 3 & 43 & 7 & 3 & 13 & 47 & \({ }^{\text {a }}\) & , & Pr & & 19 & 83 & 3 & P & & 3 & 7 \\
\hline & & & & & & 19 & P & & & & & & & & & 31 & 3 & 37 & & 3 \\
\hline & F & p & 3 & & & & 11 & 23 & & & & & & 149 & 3 & P & 19 & 3 & P & \\
\hline 7 & 19 & & 11 & & & 50 & P & & & 13 & & 3 P & & & P & 7 & 3 & 53 & 23 & 3 \\
\hline & & 79 & 3 & 13 & 149 & & \(p\) & & & 3109 & p & P 3 & 23 & P & 3 & & 13 & & & 103 \\
\hline & & & & & & & & & & & & & & & & & & &  & \\
\hline
\end{tabular}


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 300 & 301 & 302 & 303 & & 305 & 306 & 30 & & 309 & 3 & 3 II & 312 & & & & & & & 319 \\
\hline 01 & 9 & 31 & & 157 & & & 71 & 11 & & 13 & 29 & 3 & 41 & I 13 & 3 & 17 & & \[
3
\] & & 9 \\
\hline 03 & 3 & & & & P & 11 & 3 & P & P & 3 & \% & 19 & 3 & & 31 & 3 & 11 & & 3 & 61 \\
\hline 07 & 37 & & 3 & & 13 & & 127 & & 3 & 31 & 101 & 3 & 11 & P & 3 & & \[
p
\] & 3 & 17 & P \\
\hline 09 & 3 & p & 17 & & \(4{ }^{\circ}\) & P & - 3 & \% & P & 1 3 & 11 & 13 & 3 & 131 & & 3 & 73 & 37 & 3 & 17 \\
\hline I1 & p & 3 & p & 17 & 3 & 13 & 7 & 3 & 1 I & P & 3 & 53 & 23 & 3 & 101 & P & 3 & 19 & 13 & 3 \\
\hline 13 & P & P & 3 & & 17 & 3 & 11 & P & 3 & 19 & P & & & 173 & 3 & & & 3 & 29 & \\
\hline 17 & 13 & 3 & 11 & & 3 & - P & 17 & 3 & \(p\) & 43 & & 29 & 19 & 3 & 89 & P & & & P & 3 \\
\hline 19 & 11 & P & 3 & & 19 & 3 & 67 & 13 & 3 & 7 & P & 3 & P & P & 3 & 43 & 7 & 3 & 47 & 59 \\
\hline 21 & & & 47 & & 29 & 23 & & 31 & & 3 & 67 & & & P & 13 & 3 & 103 & p & & 7 \\
\hline \[
23
\] & 7 & 3 & P & & 3 & 131 & 113 & 3 & 13 & 17 & 3 & P & & & & 29 & & p & 11 & 3 \\
\hline 27 & 3 & 47 & 167 & 3 & P & 7 & 3 & & 29 & & 19 & 15 & 3 & & 11 & , & p & \(p\) & 3 & 7 \\
\hline 29 & P & 3 & 19 & 13 & 3 & P & 109 & 3 & P & 157 & 3 & 7 & 11 & 3 & 53 & 41 & 3 & 1 & 7 & 3 \\
\hline 31 & 59 & 29 & 3 & & P & 3 & & 79 & 3 & & & 3 & & 17 & & & 47 & & 134 & 37 \\
\hline \[
33
\] & 3 & p & 7 & 3 & 13 & 19 & 3 & 73 & 11 & 3 & 1 & 163 & 3 & P & 17 & 3 & 7 & 13 & & 11 \\
\hline 37 & & p & 3 & 23 & 11 & 3 & & 7 & 3 & p & 41 & 3 & p & & 3 & 11 & 17 & 3 & 13 & 109 \\
\hline 39 & 3 & P & 11 & 3 & 61 & P & 3 & 59 & \(p\) & - 3 & P & p & - 3 & & 149 & 3 & 29 & 17 & 3 & 19 \\
\hline 41 & 11 & 3 & P & P & & 7 & 13 & 3 & P & P & 3 & 11 & 7 & 3 & 23 & P & & & 17 & 3 \\
\hline 43 & 13 & 43 & 3 & 19 & 7 & 3 & P & 71 & 3 & 11 & 37 & & \(15 \%\) & 13 & 3 & & P & 3 & 7 & 17 \\
\hline 47 & P & 3 & 7 & P & & 11 & 19 & & 100 & 7 & 3 & & P & P & 13 & P & 3 & 53 & P & 3 \\
\hline 49 & 151 & 7 & 3 & 11 & P & 3 & P & 97 & 3 & P & 61 & 3 & P & 23 & 3 & 7 & P & 3 & P & 43 \\
\hline 51 & 3 & 1 I & 13 & 3 & 37 & 137 & 3 & & & 3 & & & 3 & 107 & & 3 & 31 & P & & 89 \\
\hline 53 & 41 & 3 & & 127 & 3 & P & & 3 & P & 13 & 3 & P & P & & 71 & 139 & & 113 & 53 & 3 \\
\hline 57 & 3 & 53 & 79 & 3 & & p & 3 & P & 59 & 3 & 13 & & & P & 83 & 3 & & 11 & 3 & \\
\hline 59 & P & 3 & P & \% & 3 & P & 23 & 3 & p & 83 & 3 & P & P & 3 & 163 & II & 3 & & P & 3 \\
\hline 61 & 23 & P & 3 & 9 & 83 & & & 19 & & \% & 89 & 3 & 43 & 11 & 3 & 37 & & & 151 & 31 \\
\hline 63 & 3 & 7 & 53 & 3 & 43 & 13 & 3 & p & & 3 & & 11 & 3 & 79 & 73 & 3 & P & 23 & 3 & P \\
\hline 67 & 107 & 97 & & & & 3 & & 11 & & 173 & 47 & 3 & p & 7 & 3 & & P & 3 & 1 & 13 \\
\hline 69 & 3 & - & p & 3 & F & 7 & 3 & 29 & P & & P & 71 & 3 & 13 & p & 3 & 11 & , & & 7 \\
\hline 71 & P & 3 & p & 11 & 3 & 19 & & & & \(p\) & & & & & 1 & 131 & & P & & \\
\hline 73 & 17 & I 1 & 3 & & 31 & 3 & 37 & P & 3 & 47 & 7 & 3 & 11 & 137 & \[
3
\] & p & 19 & 3 & p & P \\
\hline 7 & 19 & 3 & 13 & 37 & 3 & & & & & P & 3 & P & P & 3 & p & 7 & 3 & 43 & 127 & 3 \\
\hline 79 & & 103 & 3 & 17 & 29 & 3 & 11 & 7 & 3 & 13 & P & & 31 & P & 3 & 23 & 79 & & 71 & 113 \\
\hline 81 & & & 107 & 3 & 11 & 53 & & P & & & P & & & & ? & & 13 & 6 & & p \\
\hline \(8 j\) & 67 & 3 & 1 I & 23 & & 7 & 61 & & 89 & P & 3 & P & P 7 & 3 & 19 & & 3 & 37 & p & \\
\hline 8 & 3 & P & 31 & & 43 & 73 & & 17 & \(6 \%\) & 3 & 7 & 13 & 3 & P & 23 & 3 & & 7 & 3 & 29 \\
\hline 89 & p & 3 & 7 & & , & 13 & & & 17 & 7 & & P & 67 & & & 31 & 3 & 83 & & \\
\hline 91 & & & & & & & & & & & & & & & & & 11 & & & P \\
\hline 93 & 3 & 109 & p & & & & & & & 3 & & & & & \[
7
\] & 3 & & p & & 13 \\
\hline 97 & P & P & & 113 & & 3 & & 13 & & \({ }^{1} 39\) & 11 & & & & 3 & 19 & & & \(16 \%\) & 7 \\
\hline 99 & 3 & 13 & 4.1 & & 7 & 37 & 3 & 19 & 11 & & 137 & 7 & 3 & & & & P & P & 3 & II \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

Incompofit, or Prime, Number's, lefs ithan 100,000.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & \(3+^{2}\) & & 3 & & 340 & 347 & 348 & - & 350 & 351 & 2 & & 354 & 355 & 350 & 357 & & \\
\hline 0. & 11 & & & P & 3 & p & & 3 & 3 & & 3 & 11 & P & 3 & & 131 & 3 & 9 & p & \\
\hline 03 & 37 & 67 & 3 & P & & 3 & P & p & 3 & 11 & 17 & 3 & 7 & 43 & 3. & 13 & P & & , & \\
\hline 07 & 31 & & 79 & 7 & 3 & 1 I & P & 3 & p & 67 & 3 & P & 17 & 3 & P & P & & & 61 & \\
\hline \(\bigcirc 9\) & 71 & 23 & & 1 & 19 & 3 & 53 & 61 & 3 & 7 & 13 & & 137 & 17 & 3 & P & 7 & 3 & P & \\
\hline 11 & 3 & & & & & & & 103 & & & 15 & P & & & 17 & & 49 & 13 & & \\
\hline & & 3 & & & 3 & & & 3 & 31 & P & 3 & 13 & 23 & & & 17 & & 71 & 59 & \\
\hline 17 & 3 & & P & 3 & 127 & 7 & & 149 & 37 & 3 & 9 & P & - 3 & P & 107 & 3 & & 11 & 3 & \\
\hline 19 & P & 3 & 19 & p & 3 & p & 13 & 3 & P & P & 3 & 7 & 4 I & 3 & p & 11 & 3 & 23 & 7 & \\
\hline 21 & 13. & 149 & & & & & 89 & & & 7 & & 3 & & 11 & & & 179 & 3 & 113 & 17 \\
\hline \[
23
\] & & P & & & 29 & 19 & 3 & 13 & 97 & 3 & p & 11 & & p & & & & 139 & & \\
\hline 27 & & & & & 75 & 3 & 31 & 7 & 3 & 53 & P & 3 & P & p & 2 & P & 23 & & 11 & 3 \\
\hline P) & 3 & P & 13 & 3 & & 11 & 3 & P & 29 & 3 & 23 & P & P & 7 & 71 & 3 & 11 & & 3 & \\
\hline & P & 3 & & 11 & & & & & 61 & 13 & & 10 & & & 11 & & & & & \\
\hline & F & I & & 13 & & & 59 & 47 & 31 & 181 & 53 & & 11 & 89 & & & 13 & 3 & & \\
\hline & 101 & & & p & 3 & & 19 & & 1 I & & 3 & 41 & 17 & & & & 3 & 13 & p & \\
\hline & P & 1 & 3 & 23 & p & 3 & II & & & P & 37 & 3 & 131 & P & 3 & & \(15^{\circ}\) & 3 & P & \\
\hline & 3 & & 97 & 3 & 11 & 13 & & & & & & & & 59 & 7 & & 29) & 103 & 3 & \\
\hline & 59 & 3 & & 61 & & P & & & & & & 113 & 13 & 3 & 23 & & & 3 I & 73 & \\
\hline & 3 & & & 3 & & 79 & & & & & 101 & & & 13 & & & 43 & & & \\
\hline & 79 & 3 & 20 & & 3 & P & P & & P & p & 3 & P & 101 & 3 & P & 19 & 3 & & 11 & \\
\hline & 17 & & & P & & & & & & & & & & & & 3 & & & & \\
\hline & & & & 3 & 131 & 109 & 3 & 23 & & & 1 & P & & P & 11 & & 101 & P & & \\
\hline & & & & 17 & & & & 1 & 3 & 13 & 11 & & P & 7 & & 31 & 18 & 3 & 23 & \\
\hline & 3 & P & & 3 & 17 & 7 & 3 & ) & 11 & 3 & P & P & 3 & 19 & 59 & 3 & 13 & P & 3 & \\
\hline & & 3 & & & & & 11 & & & & & & 37 & & & 43 & & II & & \\
\hline & 3 & 127 & & 7 & 11 & 3 & 17 & P & 2 & P & & & 179 & P & 3 & II & 19 & 3 & P & \\
\hline & & & & & & 13 & P & 3 & & 73 & 3 & 11 & & 1 3 & 29 & & 3 & 47 & 3 & \\
\hline 69 & & 47 & & & & & 3. & & 3 & 11 & P & & 13 & 11 & 3 & P & 53 & & & \\
\hline & 3 & p & & 3 & & 181 & & & & & & & & & & & & & & \\
\hline & 13 & & P & 37 & & & & & 43 & 41 & 3 & 7 & & 3 & ) & & 3 & 83 & 29 & \\
\hline & 3 & 11 & 151 & & 23 & 71 & & 83 & P & - 3 & 7 & 29 & 9 & 17 & 13 & 3 & P & & & \\
\hline & 53 & & 7 & 31 & 3 & 151 & 1 P & & 13 & & 3 & 27 & & ) 3 & 17 & 47 & 3 & 37 & & \\
\hline & 173 & & & & & & & & & & & & & P & & & 3 & & 53 & \\
\hline & & & 8 & & & & & 7 & P & & & 151 & & 41 & & & \(1{ }_{7}\) & 11 & & \\
\hline & So) & 17 & & 137 & 1 & & & 43 & 3 & 359 & I3 & , & 37 & 7 II & 3 & 19 & & 3 & 17 & \\
\hline & & 179 & 3 & & & & & 19 & 139 & & & & \(7 \quad 3\) & 43 & 23 & & 89 & 13 & & \\
\hline & 73 & & & & & & & & 3.2 & 11 & & , & 3. & P & & & & & & \\
\hline & \(10_{3}\) & 31 & & & 17 & & & 11 & 13 & 3 & 19 & ) 3 & 329 & 9 & & & & & 11 & \\
\hline & & & & & & & & , & \(3 . \mathrm{P}\) & -9 & 3 & 361 & 14 & 7 & 7 & P & P 3 & P & & \\
\hline 99 & 13 & & 3 & & & 3 & 3 & & & & 1 P & P 3 & 311 & 17 & 3 & 97 & 729 & 3 & P & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}



\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 420 & & & & & & 42 & + & 428 & 429 & & 431 & 432 & 433 & 434 & & 436 & 437 & 438 & \\
\hline -1 & & & & & 109 & 3 & 13 & & & & & & & & & & & & P & \\
\hline 03 & 3 & 7 & & & P & 19 & 3 & P & 23 & 3 & P & P & 3 & 13 & & & & 12 & 3 & \\
\hline 07 & 7 & 13 & 3 & p & & 3 & 137 & 7 & & 107 & 29 & 3 & P & 11 & 3 & \({ }^{1} 39\) & P & & 71 & 23 \\
\hline 09 & 3 & 17 & P & 3 & & P & , & \(p\) & 13 & 3 & 41 & & & & 83 & & & 109 & - 3 & 19 \\
\hline 11 & 43 & 3 & 13 & 29 & 3 & 7 & P & 3 & 31 & 11 & j & 19 & 7 & 3 & P & 13 & & & 193 & \\
\hline 13 & P & 23 & 3 & 17 & & 3 & 43 & II & & 13 & P & 3 & 19 & P & 3 & 5 ? & p & 3 & 7 & \\
\hline 17 & p & 3 & 7 & 11 & 3 & 17 & 19 & 3 & 47 & 7 & , & P & 23 & 3 & 11 & P & 3 & P & 43 & \\
\hline IO & P & 7 & 3 & 101 & 13 & 3 & 17 & p & & 167 & P & 3 & 11 & p & 3 & 7 & 53 & 3 & 20 & 37 \\
\hline 21 & 3 & 73 & p & 3 & 9 & \(10:\) & 3 & 7 & & 3 & 1 & 13 & 3 & P & 7 & 3 & 1 & & 3 & 7 \\
\hline 73 & P & 3 & P & p & & 13 & 7 & 3 & & p & 3 & 29 & P & 3 & 173 & 71 & 3 & 23 & 13 & \\
\hline 27 & 3 & 103 & P & 3 & & 23 & 3 & P & 113 & 3 & 17 & 7. & & 37 & p & 3 & P & 73 & 3 & 1 \\
\hline 29 & 13 & & 11 & 7 & 3 & 71 & 47 & , & p & p & 3 & 17 & 139 & 3 & 137 & 19 & 3 & 7 & 41 & \\
\hline 31 & 11 & P & & p & 151 & 3 & 89 & 13 & 3 & ; & 7 & 3 & 17 & P & 3 & 10 & & 3 & 53 & 9 \\
\hline 33 & 3 & 7 & 157 & - 3 & & p & \[
31
\] & 151 & 7 & 3 & 23 & P & 3 & 19 & 13 & 3 & p & 101 & & P \\
\hline 37 & 127 & 29 & ! 3 & p & & 3 & 7 & P & 3 & p & P & 3 & P & 7 & 3 & 13 & 1 I & 3 & 59 & 5 \\
\hline 39 & 3 & p & P & 3 & 3 I & 7 & 3 & 79 & p & 3 & 193 & 179 & 3 & 19 & 11 & 3 & 17 & 191 & & \\
\hline 41 & 17 & 3 & 53 & 13 & 3 & 19 & p & 3 & P & 23 & 3 & & 1 & & & & & 17 & & 3 \\
\hline 43 & P & 15 & 3 & 7 & p & 3 & p & P & 3 & P & 7 & 3 & 83 & 89 & 3 & p & 19 & & 17 & \\
\hline 47 & 19 & 3 & 83 & 17 & 3 & 157 & 11 & 3 & & 67 & , & 13 & 59 & 3 & 23 & 7 & & 11 & 163 & \\
\hline 49 & 7 & 113 & 3 & p & 11 & & P & & 3 & 29 & & & 61 & 67 & 3 & 11 & p & - 3 & 13 & 7 \\
\hline 51 & c 3 & 61 & II & 3 & p & 17 & 3 & P & 73 & 3 & P & P & & & & & . p & 67 & & \\
\hline 53 & 17 & 3 & 29 & 41 & 3 & 7 & 13 & & & P & 3 & & & 3 & 19 & 97 & 3 & p & P & P \\
\hline 57 & 3 & P & p & 3 & P & P & 3 & 11 & 17 & 3 & , & 103 & & I9: & P & 3 & 349 & & 3 & 1 \\
\hline 59 & 137 & 3 & 7 & P & 3 & 11 & 29 & 3 & p & 7 & 3 & P & 181 & 3 & 13 & 43 & 3 & p & 61 & \\
\hline 61 & p & 7 & 3 & 11 & P & 3 & 37 & 61 & 3 & P & 7 & 3 & & 131 & 3 & & p & 3 & 23 & \\
\hline 6 & 3 & I 1 & 13 & 3 & p & \(3:\) & 3 & 7 & p & 3 & p & 17 & & 103 & & 3 & 47 & 107 & & \\
\hline 67 & 3 & 149 & 3 & 13 & P & 3 & P & & & P & p & & & & & 19 & 13 & 3 & & \\
\hline 69 & 3 & P & 43 & 3 & & p & 3 & 19 & 163 & 3 & 13 & & 3 & 31 & 17 & 3 & p & 11 & & \\
\hline 7 & & & & 7 & & & & & & 9 & & & & & 29 & 1 & & & 9 & \\
\hline 73 & & 81 & & P & & | & 139 & P & & 7 & 19 & & 109 & 11 & 3 & P & & & 73 & \\
\hline 7 & 7 & 3 & 67 & 31 & & P. & P & 3 & 53 & I I & 3 & P & 13 & & 7 & P & 3 & P & 17 & \\
\hline \(\underline{8}\) & 29 & & 3 & & 0 & 3 & - 7 & 11 & & P & 23 & 3 & 113 & & 3 & P & 31 & : 3 & 11 & \\
\hline 81 & & P & & 3 & 23 & 7 & & I79 & 137 & - 3 & 67 & 29 & 3 & 13 & P & 3 & II & & & \\
\hline 83 & p & 3 & P & 11. & - 3 & 97 & P & & 19 & 53 & & & & & 1 & 41 & & & & \\
\hline 87 & 3 & P & P & 3 & & 37 & 3 & & 13. & 3 & & 19 & & & & - 3 & & p & , & \\
\hline 89 & p & 3 & 13 & 19 & 3 & p & P & - 3 & 7 & P & & p & 73 & & \(15 \%\) & & 3 & & & \\
\hline 91 & 7 & 31 & & p & & & 11 & & & & & & & & & & & 3 & & \\
\hline 93 & 3 & & P & 3 & & 191 & & & 59 & & & 47 & & & & & & p & & 329 \\
\hline 97 & 11 & 1 & & & & 4 & & & & & & & & P & & P & & . 3 & & \\
\hline 99 & 3 & 19 & & 3 & & 41 & & 127 & p & & & & & , P & P & 3 & & 7 & 3 & 3 \\
\hline & & & & & & & & & & & & & & , & & & & & & \\
\hline
\end{tabular}

Incompofit, or Prime, Numbers, lefs than 100,000.



Iico:inpghir, or Prime, Nimbers, lefs then 100,000.


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 540 & & 542 & 243 & \(\underline{244}\) & & & \(15+7\) & 5+8 & 549 & & & \(55^{2}\) & 553 & 554 & 555 & & 357 & & jij \\
\hline 01 & & & & 13 & & & & & 3 & 3 & & & & & 3 & 3 & 7 & 3 & 41 & P \\
\hline 03 & 3 & & 67 & 3 & P & p & 3 & 11 & 7 & 73 & 13 & 3 P & 3 & 29 & 17 & 3 & P & 53 & 3 & p \\
\hline 07 & 53 & 61 & & 11 & 41 & 7 & & 22. & , & 3 & 67 & 7 3 & P & 7 & 3 & 34 & 17 & 3 & p & 37 \\
\hline 00 & 3 & 11 & 151 & 3 & P & 3 & 3 & & 23 & 3 & I & r & 3 & 19 & 67 & -3 & P & 17 & 3 & 7 \\
\hline 11 & p & & 23 & P & 3 & 19 & 97 & 3 & ;9 & ) \(4 \hat{3}\) & & 3 & 13 & 3 & 3 P & P \({ }^{\text {P }}\) & 3 & & 7 & 3 \\
\hline 13 & F & 53 & 3 & 7 & P & 3 & 13 & 1 & 3 & 3.89 & & & 3 P & P & - 3 & 34 & 19 & 3 & P & Is \\
\hline 17 & 19 & 3 & p & 29 & , & 1 & P & 3 & 7 & 7 P & 3 & 3 & P & 3 & 151 & I & 3 & P & P & 3 \\
\hline 19 & 7 & 13 & & P & & 3 & 193 & 7 & 3 & P & 37 & 1 & p & 11 & 13 & 59 & P & 3 & P & 199 \\
\hline 21 & 3 & P & 59 & 3 & r & P & 3 & P & 13 & , & P & P & 3 & \[
7
\] & 157 & 3 & 1 & P & 3 & [ \\
\hline 23 & 89 & 3 & 13 & P & 3. & 7 & P & & 73 & 311 & & 3199 & & 3 & 19 & 13 & 3 & 103 & Pr & \(\hat{3}\) \\
\hline 27 & 3 & 113 & 21.1 & 3 & 37 & 1 I & 3 & & 109 & 3 & & 7 P & P & 61 & 43 & 3 & 11 & & 3 & P \\
\hline 29 & 97 & 3 & & 1 I & 3 & 31 & p & 3 & p & P & 3 & 329 & P & 3 & 11 & P1 & 3 & 23 & i & 3 \\
\hline 31 & 71 & 7 & & P & 13 & 3 & P & 229 & 3 & 3.63 & 113 & 3 & 11 & & & & & & 31 & \(p\) \\
\hline 33 & 3 & P & 193 & 3 & 29 & 23 & , & & p & 3 & 11 & 113 & 3 & \(p\) & P & 3 & P & P & 3 & p \\
\hline 37 & p & 43 & 3 & 67 & P & 3 & 1.1 & 127 & 3 & 137 & 47 & 7 & 7 & P & ? 3 & 19 & 23 & 3 & 1 & 7 \\
\hline 39 & 3 & P & 73 & 3 & 7 & 1 & - 3 & 19 & 29 & & 23 & , & 3 & P & p & , & p & 139 & 3 & 13 \\
\hline 41 & I 3 & 3 & 1 I & & 3 & P & 101 & 3 & 173 & 3 & & 67 & 37 & 3 & P & P & & 7 & 19 & 3 \\
\hline 43 & 1 I & 29 & 3 & 31 & 1 & 3 & 53 & 13 & 3 & 3 & 19 & 9 & P & P & P 3 & 367 & 7 & 3 & + & 43 \\
\hline 47 & 7 & 3 & 17 & P & 3 & p & P & 3 & 13 & 23 & 3 & 3 - & 101 & 3 & 7 & P & 3 & 107 & It & 3 \\
\hline 49 & P & 173 & 3 & 17 & P & 3 & 7 & 53 & 3 & P & P & 3 & P & 7 & 3 & 13 & 11 & 3 & P & p \\
\hline 51 & 3 & p & & 3 & 17 & 7 & 3 & P & p & 3 & & 31 & 3 & P & 11 & 3 & 19 & 197 & & 7 \\
\hline 33 & 191 & 3 & 227 & 13 & 3 & 17 & 31 & 3 & 19 & 179 & 3 & 31 & 11 & 3 & 23 & 73 & 3 & 127 & , & 3 \\
\hline 57 & 3 & 3 I & 7 & 3 & 13 & 89 & 3 & 17 & 11 & 3 & P & 12 & 3 & 197 & P & - 3 & 7 & 13 & 3 & 11 \\
\hline 59 & p & 3 & 29 & 19 & & P & 11 & 3 & 7 & ! & - 3 & 13 & & 3 & 3 I & 7 & 3 & 11 & 83 & 3 \\
\hline 61 & & 41 & 3 & & 11 & 3 & 47 & & 3 & 17 & & P & 73 & 23 & 3 & 11 & - & & 13 & 107 \\
\hline 63 & 3 & P & 11 & 3 & 107 & P & 3 & 23 & 83 & 3 & 17 & ? & 3 & 1 & 37 & 3 & P & P & 3 & 191 \\
\hline 67 & 13 & p & 3 & P & & 3 & 1 & & 3 & 11 & 53 & 3 & 17 & 13 & 3 & 181 & \(p\) & 3 & 7 & p \\
\hline 69 & 3 & 19 & P & 3 & & 97 & 3 & 11 & 1 & 13 & 7 & 43 & 3 & 17 & p & 3 & 179 & & 3 & 97 \\
\hline 71 & 139 & 3 & 7 & 1 & 3 & 11 & 23 & & 37 & , & & & 19 & & 12 & 61 & 3 & 43 & p & 3 \\
\hline 73 & 23 & 7 & 3 & 11 & 19 & 3 & 1 & & 3 & f & I & 3 & 31 & - & 3 & 7 & p & 3 & 59 & 22 \\
\hline 77 & 17 & 3 & P & & 3 & P & 7 & 3 & P & 13 & 3 & 323 & 16\% & 3 & 29 & 143 & 3 & 17 & 71 & 3 \\
\hline 79 & 4 I & 17 & 3 & 13 & 157 & 3 & P & & & P & 1 & 12 & -7 & 79 & 3 & P & 13 & 3 & 17 & 7 \\
\hline 8 I & & & 1 & & & & & & \(p\) & P1 & & 3 & 3 & P & 109 & 3 & ? & 11 & 3 & 17 \\
\hline 83 & p & 3 & 19 & 7 & 3 & & 49 & 3 & 71 & P & & 139 & 59 & 3 & 113 & 11 & 3 & & 29 & 3 \\
\hline 87 & 3 & & & 3 & 23 & 13 & 3 & 3 & & 3 & 31 & 11 & 5 & 97 & 1 & 3 & 233 & P & 3 & p \\
\hline 89 & 긴 & 3 & 233 & 137 & & 71 & 17 & & I31 & 11 & & 29 & 3 & 3 & 7 & p & 3 & 47 & & 3 \\
\hline 91 & P & 47 & & 109 & 29 & 3 & & & & 127 & 89 & , & P & & 3 & 23 & P & 3 & I 1 & 13 \\
\hline 93 & 3. & & & 3 & P & & & & 17 & 3 & 37 & 97 & 3 & & & 3 & 11 & P & 3 & 7 \\
\hline 97 & 47 & \({ }^{1}\) & 3 & 7 & P & 3 & 83 & & & 43 & 7 & 3 & 11 & 31 & & 53 & p & 5 & P & P \\
\hline 99 & 3 & 83 & 7 & 3 & P & 71 & 3 & P & 13 & 3 & 1 H & 17 & 3 & p & 19 & 3 & 7 & p & 3 & 29 \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}




\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 01 \\
& 03 \\
& 07
\end{aligned}
\] & 29
3
23 & \[
\begin{aligned}
& \mathrm{P} \\
& \mathrm{p} \\
& \mathrm{P} \\
& 7
\end{aligned}
\] & I 1 & \[
\begin{aligned}
& 47 \\
& 3 \\
& 13
\end{aligned}
\] & \(\begin{array}{r}11 \\ 7 \\ 29 \\ 193 \\ \hline\end{array}\) & 17 & & \[
\begin{array}{r}
101 \\
17 \\
17 \\
11 \\
\hline
\end{array}
\] & 3
4
3 & & \(\begin{array}{r}p \\ 53 \\ P \\ 13 \\ \hline\end{array}\) & & \[
\begin{array}{r}
97 \\
\hline
\end{array}
\] & \begin{tabular}{|r|r|}
\hline 59 \\
3 & 11 \\
101 \\
3 & 37 \\
\hline
\end{tabular} & P & \[
\begin{array}{r}
11 \\
3 \\
p \\
3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29 \\
p \\
7 \\
p
\end{array}
\] & & & \(\begin{array}{r}103 \\ 38 \\ \hline\end{array}\) \\
\hline I I & & 3 & 19 & 41 & & 11 & P & & P & 17 & & \(2 \hat{3}\) & & & & & & \({ }^{1}\) & 1 & 3 \\
\hline 13 & & 47 & 3 & 1 I & P & & & 109 & & P & 17 & 3 & 41 & & & 137 & p & & p & 10 r \\
\hline 17 & & 3 & P & p & 3 & 73 & P & & 61 & P & & & 13 & 3 & P & 227 & & & & 3 \\
\hline IV) & 47 & 79 & 3 & & \(3{ }^{1}\) & 3 & 13 & p & 3 & P & & 3 & 29 & 17 & 3 & P & 43 & & P & If \\
\hline 21 & & 59 & & & 23 & p & & 41 & P & & 1 & P & & 313 & 17 & & & 1 I & 3 & 19 \\
\hline 2 & 193 & 3 & P & 179 & 3 & 29. & P & & & p & & 12 & & & 239 & & & p & 2 II & 3 \\
\hline 7 & & p & 2 & & P & P & 3 & & 13 & 3 & & 11 & & & 19 & 3 & P & 17 & 3 & P \\
\hline 29 & P & 3 & 13 & 23 & 3 & 7 & 19 & 3 & 59 & 1 & 3 & 3 P & 7 & 73 & 47 & 13 & & p & 17 & 3 \\
\hline 31 & 17 & 157 & 3 & P & & & & & & 13 & & & & & & 37 & & & & 17 \\
\hline 33 & & P & 29 & & 223 & 11 & & & & & & 13 & & & 23 & & 1 & & & P \\
\hline 37 & & & 3 & P & 13 & & p & & & P & 67 & & \[
11
\] & 83 & & & & & & 245 \\
\hline 39 & & P & 59 & 3 & 19 & P & 3 & & 83 & 3 & It & 13 & 3 & 3 p & & & & \(10 \%\) & & 23 \\
\hline 41 & p & 3 & 107 & 83 & 3 & 13 & I & & & & & & & & & & & & & \\
\hline 43 & 97 & 137 & & P & P & 3 & 11 & 19 & & & & & & & & & & & & 7 \\
\hline 1 & 13 & & 11 & 7 & & 191 & P & & 71 & 59 & & 47 & 73 & 33 & 34 & & & & 23 & 3 \\
\hline 49 & 11 & P & 3 & 29 & P & & p & 13 & & & 71 & 3 & 23 & 31 & 1 3 & 61 & & & 127 & p \\
\hline 51 & & & P & & 61 & 15 & & 79 & & & & P & & 19 & 13 & & P & P & & I \\
\hline 53 & & 3 & 89 & p & & 9 & 131 & & 13 & P & & P & & & & P & & 37 & 11 & 3 \\
\hline 5 & & 43 & & & & & & P & 19 & & & 23 & & & 11 & & & & 3 & 7 \\
\hline & 19 & & P & 13 & & 23 & & & & 47 & 3 & 3 & 11 & \(1{ }^{1}\) & 41 & P & & 151 & & 3 \\
\hline 61 & 17 & & & & & & & & & & & & & & & & & & & P \\
\hline 6 & & 17 & & & 13 & 7 J & & & 11 & & 227 & 31 & & 3 P & & & & 13 & & 1 I \\
\hline & & P & & 17 & 1 I & & 19 & & & 41 & 79 & & 197 & 109 & & 11 & & & 13 & P \\
\hline \[
69
\] & - 3 & P & 11 & . 3 & 17 & 37 & 3 & 67 & P & 3 & 173 & P & & & & 3 & 83 & 19 & & 3 L \\
\hline 71 & 11 & 3 & & 73 & & & 13 & & & & & 311 & & & & p 23 & & 22 & & \\
\hline 73 & 13 & 19 & & P & 7 & & 17 & P & & & 157 & & 71 & 113 & & & & & & 29 \\
\hline & & 3 & & 173 & & 11 & 47 & 3 & 17 & & & 131 & 29 & & 313 & & 3 & \(16_{3}\) & 43 & 3 \\
\hline & 63 & 7 & 3 & 1 I & 197 & 3 & & , & 3 & 17 & 103 & & 233 & 3 p & P & & 37 & P & & P \\
\hline & & 11 & & & & & & & & & & & & & & & & & & P \\
\hline 83 & & & 23 & P & & 47 & & & & & \[
3
\] & & & & P & P & & 31 & 19 &  \\
\hline & & '39 & 19 & 3 & & 43 & 3 & & & & 13 & & & 17 & P & P 3 & P & 1 I & 3 & P \\
\hline \[
89
\] & P & 3 & I & & & & & & & 71 & & 43 & 167 & & \(31 \%\) & 11 & & & 19 & 3 \\
\hline 1 & & 23 & & 131 & 241 & & 137 & & & & & & & & & & & & 59 & p \\
\hline , & & & & & & 13 & & & 7 & & 199 & I1 & & 29 & P & & 17 & 61 & 3 & 47 \\
\hline 97 & 19 & 17 & & & & 3 & & & 3 & 181 & 7 & 3 & & 7 & 3 & 31 & & 3 & 11 & 13 \\
\hline 99. & , & 37 & 17 & & 101 & & & 163 & P & 3 & P & 19 & 3 & 313 & 89 & 3 & 11 & 29 & 3 & 7 \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & & & & & & & 1632 & & & & & & & \\
\hline & 3 & & p & & P & & & & & & & & 89 & ) & & & 3 & & & & \\
\hline & & & 17 & & 3 & & & & & 3 & & & & & & & 1 & & & & \\
\hline & 3 & 173 & & & 17 & & & 3 & 73 & 181 & & & 11 & 1 & 29 & 3 & 3 & & & 3 & \\
\hline & 59 & 3 & 7 & 13 & 3 & 17 & 137 & & 31 & 107 & 7 & 3 & 223 & 31 & & P & 41 & 3 & P & P & \\
\hline & 3 & 7 & 3 & & 139 & & & & II & & 53 & 13 & & & & & & P & 3 & 11 & 9 \\
\hline & & 79 & & & & 11 & & & 7 & 23 & 3 & 61 & & & P & & , & 11 & 13 & 3 & \\
\hline & & 11 & 3 & 1 & & 3 & & & 59 & & 17 & 29 & & & P & 3 & 9 & p & 3 & 13 & \\
\hline & P & P & P & 3 & T & 101 & & & 19 & P & 3 & 11 & & 3 & 23 & P & 3 & 113 & & 3 & \\
\hline & 109 & 3 & 43 & & & & & & & 11 & & & 7 & 19 & & & P & & & 9 & \\
\hline & & 23 & 3 & & & & & 1 & & & & 19 & & & 13 & & 139 & & & p & 97 \\
\hline & & & 11 & P & & 31 & & & 3 & & p & & & 23 & & & P & 3 & & 3 & 3 \\
\hline & 11 & P & 3 & 157 & 163 & 3 & & & 49 & 3 & P & p & & 53 & 7 & 3 & 17 & p & 3 & 29 & \\
\hline & 3 & & 13 & & & 7 & & & & 83 & 3 & & & & & 137 & & 17 & 101 & & \\
\hline & 17 & & & & 3 & P & & & 3 & 19 & 13 & 3 & & 37 & 3 & 229 & & & & 7 & \\
\hline & & & 7 & & 20 & 23 & & & 43 & \(3^{1}\) & 3 & 13 & 19 & 9 & P & & & & & , 3 & 17 \\
\hline & P & 3 & 109 & 17 & 3 & P & P & p & 3 & 7 & P & 3 & 103 & 11 & 1 & p & & 3 & 13 & 7 I & \\
\hline & & & & & & & & & & & 113 & & & & & & & & & & 3 \\
\hline & & P & 67 & & 41 & 13 & & & \(p\) & 11 & & 3 & 23.3 & & & & 3 & 31 & p & & 1 \\
\hline & & 29 & 3 & & 7 & & & & 17 & 3 & 19 & 7 & & 3 & P & 3 & 11 & & & 7 & 13 \\
\hline & 3 & 19 & 11 & 3 & 97 & P & 2 3 & & 31 & 17 & 3 & 7 & P & P. 3 & 11 & 67 & 3 & P & & - & \\
\hline & II & & & P & & & & & & & & & & 19 & & 107 & 103 & & & 67 & \\
\hline & & & 3 & 23 & 19 & & & & P & 3 & 11 & 17 & & 343 & , & 3 & 7 & 3 & 3 & P & 31 \\
\hline & & & 13 & 127 & & 11 & & & & 239 & 157 & & 137 & 17 & 3 & 23 & 13 & , & 103 & p & \\
\hline 9 & 229 & 61 & 3 & 11 & P & 3 & 3 P & & 9 & 3 & 13 & & - 3 & 37 & 17 & 3 & P & & 3 & 14 & \\
\hline & 3 & & & & & 73 & & 3 & P & P & & & & & & 17 & & 3 & & & \% \\
\hline & 53 & & 19 & & & & 22 & & 3 & 37 & 79 & & 83 & 4 I & & & 17 & 3 & & & \\
\hline & & & 71 & & & & & & 23 & 7 & 3 & & & 3 & 3 & & & & & & \\
\hline & & 3 & 73 & 47 & 3 & 13 & & 0 & 3 & P & P & 3 & 181 & 151 & 13 & & 11 & & 43 & 13 & \\
\hline & & & & & & & & & & & & & & & 7 & & & & & 23 & \\
\hline & 3 & 79 & & & & & & 3 & P & P & 3 & & 11 & 1 & 127 & & & 41 & & & \\
\hline & 23 & 97 & & & & & 233 & & 11 & 3 & 71 & & & 3 p & P & 3 & P & 37 & & 1 & \\
\hline 79 & 2 & 13 & 7 & 3 & 43 & 11 & & & 67 & 2 \% & & & p & p 3 & 61 & 13 & & & & & \\
\hline & P & 3 & 61 & II & & & & & & & & & & & & & & & & & \\
\hline & & 11 & & & & & & & & 3 & & & & & \[
1
\] & & & 3 & & 191 & 108 \\
\hline & 47 & & 199 & 13 & & & \(7 \quad \mathrm{p}\) & & 3 & 11 & & & 179 & & \(2{ }^{1}\) & & & & 227 & , & \\
\hline 89 & 29 & P & 3 & 89 & 7 & 3 & 311 & 1 & 37 & 3 & P & 13 & & 319 & 9 & & P & &  &  & 6 \\
\hline , & & & & & & & & & & & & & & & & & & & & & \\
\hline 93 & 31 & & & 43 & & & & 1 & & 109 & & & & 3167 & & & 19 & & & 181 & \\
\hline & & 37 & & & & & & & & & & & & P 3 & & & & & 13 I & & \\
\hline ) & 3 & & & & 3 & 59 & 9 & & 3 & 31 & 73. & & & & & & & & & 1 I & \\
\hline
\end{tabular}

Incompofit, or Prime, Numbers, lefs than 100,000.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & 662 & & & 565 & 666 & 66:1 & 608 & 669 & 67 & 671 & 672 & 2673 & , 74 & 675 & 076 & 67 & & \\
\hline 01 & & & & & & & & & & 149 & & 3 & 17 & 713 & 3 & . 7 & & & & P \\
\hline 03 & & & 239 & & P & 73 & 3 & & 11 & 3. & P & p & 3 & 317 & 7 & 3 & 67 & 79 & 3 & \\
\hline 07 & 149 & & 3 & 61 & 11 & 3 & 43 & 41 & 3 & 23 & & 3 & & P & 3 & 11 & P & 3 & P & \\
\hline \(\bigcirc\) & 3 & p & 1 I & & 7 & p & 3 & 19 & P & 3 & & 7 & & 311 & P. & 3 & 17 & & & 59 \\
\hline 11 & 11 & 3 & 73 & 7 & 3 & 227 & 59 & 3 & 71 & 13 & & 11 & & & P & P & & & 19 & 3 \\
\hline 13 & 251 & 17 & 3 & 13 & P & 3 & 29 & P & 3 & 7 & 19 & 3 & & 83 & 3 & 181 & & 3 & IT & 113 \\
\hline 17 & 7 & 3 & 23 & 17 & 3 & 11 & p & & 109 & 61 & 3 & 41 & & p 3 & 7 & 107 & & 13 & 73 & 3 \\
\hline 19 & 107 & 37 & 3 & 11 & 17 & 3 & 1 & 137 & - 3 & P & 29 & 3 & P & P & 3 & 251 & P & - 3 & p & 23 \\
\hline 21 & 3 & 11 & p & 3 & 127 & 7 & 3 & p & P & 3 & P & P & 3 & 23 & P & 3 & 19 & \(2+1\) & & 7 \\
\hline 23 & 103 & 3 & 47 & 29 & & p & 17 & 3 & 19 & P & 3 & , & 13 & 3 & 191 & p & . 3 & P & & 3 \\
\hline 27 & & 89 & 7 & 3 & \(18:\) & 71 & 3 & 53 & 17 & & 97 & 19 & 3 & 13 & & 3 & 7 & 11 & 3 & P \\
\hline 29 & & 3 & 103 & 19 & 3 & P & P & 3 & 7 & 17 & 3 & P & 23 & 3 & P & 7 & 3 & 89 & P & 3 \\
\hline 31 & 7 & 13 & 31 & 113 & P & 3 & 23 & & 3 & P & 17 & 3 & & 111 & 3 & & & 3 & 29 & P \\
\hline 33 & 3 & . 41 & 107 & 3 & 31 & P & 3 & P & 13 & 5 & p & 11 & 3 & 37 & P & 3 & 47 & p & 3 & p \\
\hline 37 & P & P & 3 & P & 7 & 3 & 37 & 11 & 3 & 13 & 43 & 3 & 71 & 17 & 3 & p & 239 & 3 & 7 & 41 \\
\hline 39 & 3 & 19 & 19 & 3 & 24 & 11 & 3 & P & 89 & 3 & i & P & 3 & P & 17 & 3 & 11 & 7 & 3 & P \\
\hline 41 & p & 3 & 7 & 11 & 3 & 1 & 103 & 3 & P & 7 & & p & 9 & - & 11 & 17 & & P & 179 & 3 \\
\hline 43 & 211 & 7 & 3 & P & 13 & 3 & P & 31 & 3 & p & P & 3 & 11 & P & 3 & 7 & 17 & 3 & P & P \\
\hline 47 & - & 3 & 31 & P & 3 & 13 & 7 & 3 & 11 & P & 3 & 83 & P & , & P & P & 3 & 37 & 13 & 3 \\
\hline 49 & 257 & 29 & 3 & 43 & p & 3 & 1 & P & 3 & P & P & & & P & - 3 & 31 & 61 & 3 & 19 & 1 \\
\hline 51 & 3 & 83 & 97 & 3 & 7 & 01 & 3 & P & P & 2 & 19 & 7 & 3 & 47 & 37 & -3 & & & 3 & 13 \\
\hline 53 & 13 & 3 & 11 & 7 & 3 & P & P & & P & 23 & 3 & p & 109 & 3 & P & 43 & 3 & & p & 3 \\
\hline 57 & 3 & 7 & 59 & 3 & p & 19 & 32 & 241 & 7 & 3 & P & P & & 193 & 13 & 3 & 29 & P & 3 & P \\
\hline 59 & 7 & 3 & 173 & p & & 1011 & 191 & 3 & 13 & P & 3 & 230 & 103 & ) 3 & 7 & P & 3 & P & 11 & 3 \\
\hline 61 & 31 & 1 & 3 & p & 41 & 7 & 71 & 191 & 3 & 29 & 1 & & & - & 3 & 13 & 11 & & 9 & \\
\hline 63 & 3 & 109 & 23 & 3 & & 3 & 3 & & P & & 199 & 47 & 3 & 311 & 11 & & 71 & P & & \\
\hline 67 & p & 127 & 3 & 7 & p & & 63 & 179 & 31 & 167 & & 3 & 137 & 23 & 3 & P & 157 & 3 & \(P\) & p \\
\hline 69 & 3. & P & & & 13 & 3 & & 23 & 11 & & 4 ? & 3 & & p & 19 & 3 & & 13 & 3 & 11 \\
\hline 71 & p & 3 & p & 31 & 3 & P & 11 & & & 193 & & 13 & & P 3 & 109 & 7 & 3 & 11 & 67 & 3 \\
\hline 73 & 7 & P & & P & 11 & 3 & 61 & 7 & 3 & & P & , & & 89 & 3 & 11 & 31 & 3 & 13 & 101 \\
\hline 77 & 11 & & 191 & I & 3 & 7 & 13 & 3 & p & p & 3 & 11 & & 3 & P & p & 3 & P & 103 & 3 \\
\hline 79 & 13 & p & & 41 & & 1 & 131 & 43 & & 11 & 1 & 3 & 19 & 13 & & - & p & 3 & & P \\
\hline 81 & 3 & 17 & 79 & 3 & 19 & 139 & & 11 & 47 & 3 & 7 & P & & 43 & P & 3 & 53 & & & 157 \\
\hline 83 & P & 3 & & p & & 1 I & P & & p & 7 & j & 23 & 61 & 3 & 13 & 19 & & P & p & 3 \\
\hline 87 & 3 & 11 & \({ }^{1} 3\) & 3 & 17 & P & 3 & & 211 & 3 & 73 & p & & 79 & 7 & 3 & 113 & 53 & 3 & P \\
\hline 89 & & 3 & 151 & 197 & 3 & 17 & , & & & 13 & & , & & 7 & & & & , & 29 & 3 \\
\hline 91 & & & & & & & 7 & & & 31 & 23 & & & P & & 257 & 13 & - & P & 7 \\
\hline 93 & 3 & 37 & & & , & & & & 151 & & & & & 319 & P & & 139 & 11 & 3 & P \\
\hline 97 & \(15 i\) & 53 & & 6\% & 29 & & P & & & & 229 & & 173 & 11 & & 23 & & & 43 & 97 \\
\hline 99 & & & 16\% & 3 & & & 3 & & & & & 1 & 3 & P & P & 3 & & 151 & 3 & 53 \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 7700 & 701 & 702 & 703 & 704 & 705 & & & 708 & 709 & 1710 & 711 & 712 & 7131 & 714 & 715 & & TI7 & 718 & \\
\hline 01 & P & 3 & p & 7 & & & 17 & & 101 & p & P 3 & 97 & 13 & 3 & 1 & 127 & 3 & \[
7
\] & . 19 & \\
\hline 03 & P & 1 I & 3 & 229 & 23 & & 13 & 17 & 3 & 7 & 19 & 3 & 11 & 113 & 3 & P & P & 3 & 59 & \\
\hline 07 & 7 & & p & 167 & 3 & P & p & 3 & 11 & 17 & 3 & 211 & 31 & 3 & 7 & 23 & 3 & P & p & \\
\hline 09 & P & 13 & 3 & P & 181 & 3 & 7 & P & 3 & 23 & 17 & 3 & P & 7 & 3 & 43 & 101 & 3 & P & \\
\hline 11 & 3 & p & 61 & 3 & 11 & & 3 & 31 & 13 & 3 & 3 P & 17 & 3 & 29 & P & 3 & 9 & & & \\
\hline 13 & 53 & 3 & 11 & 167 & 3 & 107 & 241 & 3 & 19 & p & p 3 & 3 & 17 & 7 & p & 13 & 3 & P & & \\
\hline 17 & 3 & & 7 & 3 & 67 & 151 & , & P & 23 & 3 & 47 & 19 & 3 & 3 p & I7 & 3 & 7 & 29 & 3 & \\
\hline 19 & P & 3 & 23 & 19 & 3 & 97 & P & 3 & 7 & P & ) 3 & P & 229 & , & P & 7 & - & P & 11 & \\
\hline 21 & 7 & p & 3 & & 13 & & & & 3 & p & 29 & 3 & 67 & 73 & 3 & 37 & 11 & 3 & & 2 \\
\hline 23 & 3 & p & f & 3 & p & 109 & & 197 & P & 3 & P & P 13 & . & & 11 & 3 & 67 & 17 & 3 & 7 \\
\hline 27 & 239 & 23 & 3 & p & 7 & 3 & P & 107 & 3 & 19 & 11 & 3 & 13 & 3 P & 3 & P & 41 & 3 & & \\
\hline 29 & 3 & 19 & p & 3 & P & p & - 3 & P & 11 & 3 & 37 & T & 13 & , & P & 3 & 8 & & 3 & \\
\hline 3 I & 13 & 3 & 7 & 53 & 3 & 251 & 11 & 3 & 193 & & 73 & 83 & 19 & ) & 61 & 233 & 3 & 1 & 109 & \\
\hline 33 & 59 & 7 & 3 & 61 & 11. & 3 & 23 & 13 & 3 & 89 & 251 & 3 & P & P & 3 & 7 & P & 3 & 29 & \\
\hline 3 & 1 I & 3 & p & 37 & 3 & p & 7 & 3 & 13 & P & P & 11 & P & ) 3 & p & p & 3 & 2.3 & P & \\
\hline 39 & P & p & 3 & 3 I & P & 3 & P & 127 & 3 & 11 & I & , 3 & 7 & P & 3 & 13 & 71 & 3 & 19 & \\
\hline 41 & & p & P & & & 23 & 3 & 11 & & & 19 & 7 & 3 & P & 199 & 3 & 31 & & & \\
\hline 43 & 8 & 3 & 19 & 7 & 3 & 11 & 41 & & P & 61 & 3 & P & IgI & 3 & p & 29 & 3 & 7 & p & \\
\hline  & 3 & 7 & 199 & 3 & 13 & 19 & & 263 & 7 & 3 & 3.23 & P & P 3 & P & 37 & 3 & P & 13 & 3 & \\
\hline 49 & 7 & 3 & - & 103 & 3 & P & 31 & 3 & p) & P & p 3 & 13 & P & - 3 & 7 & & 3 & 157 & P & \\
\hline 5 & P & 29 & & & & & & 139 & & & 227 & & 43 & 7 & & & 137 & 3 & 13 & \\
\hline 53 & 3 & 31 & 153 & 3 & 47 & \% & 3 & & P & 3 & \(3{ }^{1}\) & P & 13 & P & P & 3 & 79 & 11 & 3 & \\
\hline & 13 & P & & 7 & P & 3 & & 73 & , & P & 7 & 3 & P & 11 & 3 & 163 & 131 & 3 & 181 & \\
\hline 59 & 3 & 17 & , & 3 & I & 37 & 3 & 13 & 59 & 3 & P & I 1 & 3 & p & 19 & 3 & 7 & 73 & 3 & 12 \\
\hline & P & , & 17 & 71 & 3 & 41 & 19 & 3 & & 11 & 3 & 1 & ' & 3 & 13 & & & & P & \\
\hline & 7 & P & 3 & 17 & 31 & 3 & P & 7 & 3 & 25 & 179 & 3 & P & P & 3 & , & P & 3 & 11 & \\
\hline 67 & P & 3 & 29 & 11 & I & & 1 & 3 & & \({ }^{1} 3\) & & P & 7 & 3 & I 1 & 59 & 3 & 43 & F & \\
\hline 69 & 41 & 11 & 3 & 13 & 7 & 3 & 17 & P & 3 & 1 & P & 3 & 11 & 23 & 3 & & 13 & 3 & 7 & \\
\hline & 3 & 47 & 1 & 3 & 19 & P & 3 & 17 & 131 & 3 & 7 & & & 149 & p & 3 & P & 7 & 3 & \\
\hline & 79 & 3 & & P & & P & 29 & 3 & 11 & 7 & 3 & 103 & 263 & & P & 19 & 3 & 13 & 41 & \\
\hline & 3 & P & 31 & 3 & 11 & 13 & 3 & & p & 3 & 17 & 109 & & 137 & 7 & 3 & 229 & P & & \\
\hline 79 & p & 3 & 11 & & & 163 & 7 & 3 & p & P & P & 17 & 13 & & P & 31 & 3 & 179 & & \\
\hline & I 1 & & & & & & 13 & & & ז67 & P & 3 & 7 & 4 I & 3 & 47 & 43 & 3 & & \\
\hline \[
03
\] & 3 & 'p & \(6 \%\) & 3 & 7 & 1 & & & 73 & & 31 & 7 & 3 & 13 & J & 3 & 97 & 23 & & \\
\hline 7 & 109 & I 3 & & 59 & P & 3 & P & 71 & & 7 & 67 & 3 & P & P & 3 & 17 & & 3 & p & \\
\hline 89 & & 7 & p & 3 & p & P & 3 & 29 & 7 & 3 & p & 257 & 3 & \(p\) & 11 & 3 & \(1-\) & P & 3 & 19 \\
\hline 9! & & & I3 & 43 & 3 & & 223 & 3 & p & P & P & & 11 & 3 & & 13 & & 17 & 29 & \\
\hline 3 & 29 & 17 & 3 & & 157 & & & & & 13 & II & & & ) 7 & 3 & p & 1 & 3 & 17 & \\
\hline 7 & 19 I & 3 & p & 17 & & 227 & 11 & & 3 r & & P 3 & & \(8_{3}\) & 3 & & H & 3 & 11 & & \\
\hline 9 & P & \(p\) & 3 & 7 & 1 I & & 19 & & 3 & P & 7 & 3 & 37 & p & & 1 I & P & 3 & P & \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\(770741747+37+7457407477457+91501751752753154755750757758759\)


\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & O & & & & & & & & & & & & & & & & & & - & \\
\hline \[
\begin{aligned}
& 07 \\
& 00
\end{aligned}
\] & \[
\begin{aligned}
& \mathrm{P} \\
& 3 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
\mathrm{P} \\
83 \\
37 \\
19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3 \\
p \\
3 \\
197
\end{array}
\] & \[
\begin{aligned}
& 3 \\
& \mathrm{p} \\
& 3
\end{aligned}
\] & \(\begin{array}{r}\text { P } \\ 13 \\ 7 \\ 89 \\ \hline\end{array}\) & \(\begin{array}{r}3 \\ 24 \\ 3 \\ p \\ \hline\end{array}\) & \[
\begin{array}{r}
83 \\
3 \\
p \\
3
\end{array}
\] & 7
11
\(p\)
31 & \[
\begin{aligned}
& \mathrm{p} \\
& 3 \\
& \mathrm{p}
\end{aligned}
\] & \[
\begin{array}{r}
\mathrm{p} \\
3 \\
\mathrm{I} \\
3 \\
\hline
\end{array}
\] & \(\begin{array}{r}13 \\ 199 \\ 41 \\ 7 \\ \hline\end{array}\) & \(\begin{array}{r}3 \\ p \\ 3 \\ 238 \\ \hline\end{array}\) & \begin{tabular}{|r}
\(p\) \\
3 \\
103 \\
3 \\
\hline
\end{tabular} & \(p\)
7
71
\(p\) & 271 \(\begin{array}{r}3 \\ 3 \\ 11\end{array}\) & 07
3
43 & \(\begin{array}{r}\text { P } \\ 23 \\ 11 \\ P \\ \hline\end{array}\) & 3
13
3
7 & 3 & \(p\)
\(p\)
\(p\)
41 \\
\hline \[
\begin{aligned}
& 13 \\
& 17
\end{aligned}
\] & 181
13
\(p\)
61 & 191 \({ }^{3}\) & 7
3
3 & \begin{tabular}{r|r} 
P \\
7 \\
P \\
17
\end{tabular} & 3
19
3
11 & \[
\begin{aligned}
& \mathrm{p} \\
& 3 \\
& \mathrm{p} \\
& 3
\end{aligned}
\] & \[
\begin{array}{r}
13 \\
127 \\
7 \\
29 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3 \\
p \\
3 \\
23
\end{array}
\] & \begin{tabular}{|r|r|r|r|}
53 \\
3 \\
269 \\
\hline 3 \\
\hline
\end{tabular} & \[
\begin{array}{r}
7 \\
23 \\
53 \\
p
\end{array}
\] & \[
\begin{array}{r}
3 \\
11 \\
3 \\
31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\mathrm{p} \\
3 \\
61 \\
3
\end{array}
\] & \[
3 \begin{array}{r|r|}
\hline 11 \\
1 & 1 \\
3 & 3 \\
3 & 1
\end{array}
\] & \[
\begin{array}{r}
3 \\
13 \\
3 \\
\mathrm{p}
\end{array}
\] & 1
3
3 & \(\begin{array}{r}23 \\ 7 \\ 131 \\ 11 \\ \hline\end{array}\) & \(\begin{array}{r}3 \\ 1 \\ 3 \\ 103 \\ \hline\end{array}\) & 3
11 & P & 3
157
3 \\
\hline \[
29
\] & 1 I & \[
31
\] & \[
\begin{array}{r}
19 \\
137 \\
\hline \\
\hline
\end{array}
\] & \(\begin{array}{r}3 \\ 24 \\ \hline 1\end{array}\) & \[
3
\] & \[
\begin{array}{r}
233 \\
17 \\
19 \\
11
\end{array}
\] & \[
\begin{array}{r}
p \\
3 \\
6 \\
6
\end{array}
\] & 3
11 & \[
\begin{array}{r}
23 \\
7 \\
7 \\
17 \\
\hline
\end{array}
\] & \[
\left.\begin{array}{r}
3 \\
13 \\
3 \\
p
\end{array} \right\rvert\,
\] & \[
\begin{array}{r}
19 \\
3 \\
13 \\
13 \\
\hline
\end{array}
\] & \[
\begin{array}{cc}
7 \\
1 & 1 \\
67 \\
53
\end{array}
\] & \[
\left.\begin{array}{|l|l|}
\hline & 3 \\
1 & 2
\end{array} \right\rvert\, \begin{aligned}
& 1 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
3 \\
23 \\
3
\end{array}
\] & \[
\begin{gathered}
45 \\
p
\end{gathered}
\] & \[
\begin{array}{r}
3 \\
281 \\
3 \\
67
\end{array}
\] & \(p\)
3
\(p\)
3 & 61
13 & & \(\begin{array}{r}229 \\ 3 \\ 257 \\ \hline 3 \\ \hline\end{array}\) \\
\hline \[
\begin{aligned}
& 31 \\
& 33 \\
& 37 \\
& 39
\end{aligned}
\] & \[
\begin{array}{r}
3 \\
73
\end{array}
\] & \[
\begin{array}{r}
2.3 \\
14 \\
\mathrm{P}
\end{array}
\] & \[
\begin{aligned}
& \mathrm{p} \\
& 3
\end{aligned}
\] & \[
11
\] & \[
\left.\begin{array}{r}
107 \\
41 \\
p
\end{array} \right\rvert\,
\] & 3
7
3
\(p\) & 3
13
3 & \[
\begin{array}{r}
31 \\
4.3 \\
p \\
71
\end{array}
\] & \[
\begin{array}{r|}
3 \\
3^{1} \\
3 \\
1 \\
\mathrm{P}
\end{array}
\] & \[
\begin{array}{r}
17 \\
3 \\
193 \\
2
\end{array}
\] & \[
\begin{array}{r}
1 \\
1 \\
1
\end{array}
\] & \[
\begin{aligned}
& p \\
& 3 \\
& p
\end{aligned}
\] & \[
\begin{array}{r}
3 \\
1 \\
1
\end{array}
\] & \[
13
\] & \(\begin{array}{r}3 \\ 19 \\ \hline\end{array}\) & 1 & 97 & 71
3
11 & 97
3
29 & 07
7
11 \\
\hline \[
49
\] & \[
\begin{array}{r}
7 \\
1 \\
p
\end{array}
\] & \[
\begin{array}{r}
3 \\
13 \\
3 \\
17
\end{array}
\] & \[
\begin{array}{r}
3 \\
13 \\
3 \\
\hline
\end{array}
\] & \(\begin{array}{r}P \\ 157 \\ P \\ 47 \\ \hline\end{array}\) & 3
47
3 & \(p\)
3
7
3 & \[
\begin{array}{r}
19 \\
\mathrm{p} \\
31 \\
\mathrm{p}
\end{array}
\] & \[
\begin{array}{r}
3 \\
112 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3 \\
37 \\
3
\end{array}
\] & \[
\begin{aligned}
& p \\
& 89 \\
& 11 \\
& 13
\end{aligned}
\] & \[
\begin{array}{r}
3 \\
p \\
3 \\
137
\end{array}
\] & \[
\begin{array}{r}
29 \\
3 \\
\mathrm{p} \\
3
\end{array}
\] & \[
\begin{array}{c|c}
9 & p \\
3 & 100 \\
p & 5 \\
3 & 10 \\
\hline
\end{array}
\] & \[
11
\] & 17
3
53 & \[
\begin{array}{r}
17 \\
13 \\
p \\
\hline
\end{array}
\] & \[
\begin{array}{r}
73 \\
3 \\
23 \\
\hline
\end{array}
\] & 17 & P & \(\begin{array}{r}3 \\ 1 \\ 3 \\ 31 \\ \hline 1\end{array}\) \\
\hline \[
59
\] & \[
\left.\begin{array}{r}
3 \\
89 \\
3 \\
p
\end{array} \right\rvert\,
\] & \[
\begin{aligned}
& 3 \\
& \mathrm{p} \\
& 3
\end{aligned}
\] & \[
\begin{array}{r}
7 \\
139 \\
\mathrm{P}
\end{array}
\] & 3
11
3
127 & \[
\begin{array}{r}
19 \\
63 \\
3 \\
3
\end{array}
\] & \[
\begin{array}{r}
\mathrm{P} \\
17 \\
13
\end{array}
\] & \(\begin{array}{r}3 \\ p \\ 3 \\ 7 \\ \hline\end{array}\) & 61
3
7
3 & \[
\begin{array}{r}
29 \\
p \\
p \\
11
\end{array}
\] & \[
231
\] & \[
11
\] & \[
\left.\begin{array}{r}
p \\
13 \\
p
\end{array} \right\rvert\,
\] & \[
\begin{array}{r}
3 \\
41 \\
3 \\
\mathrm{p} \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3 \\
& p \\
& 3
\end{aligned}
\] & \[
\begin{array}{r}
p \\
11 \\
7 \\
181 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3 \\
19 \\
3 \\
p
\end{array}
\] & \[
\begin{aligned}
& P \\
& 3
\end{aligned}
\] & 7
173
\(P\)
47 & \(\begin{array}{r}47 \\ 3 \\ 13 \\ \hline\end{array}\) & 17
3
37 \\
\hline \[
69
\] & [ 251 & \[
\begin{array}{r}
4 \\
p
\end{array}
\] & 3
61
3
23 & \[
3
\] & \[
\begin{array}{r}
31 \\
7 \\
\mathrm{p} \\
131
\end{array}
\] & 3
251
3 & \[
\begin{array}{|c|r|}
\hline 3 & 97 \\
0 & 3 \\
\hline
\end{array}
\] & \(\begin{array}{r}1 \\ 2 \\ \hline\end{array}\) & 3
1
3 & \[
\begin{array}{|}
281 \\
2088 \\
3 \\
7 \\
3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
173 \\
p \\
17 \\
37 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 3 \\
& 7 \\
& 3
\end{aligned}
\] & \[
\begin{array}{r|r|}
\hline & 7 \\
5 & 3 \\
3 & 3
\end{array}
\] & \begin{tabular}{|r}
61 \\
19 \\
\(p\) \\
139 \\
\hline
\end{tabular} & [ \(\begin{array}{r}3 \\ -29\end{array}\) & \(25^{3}\) & 29
7 & 31
3 & p
3
\(p\)
3 & \(\begin{array}{r}13 \\ p \\ 211 \\ \hline\end{array}\) \\
\hline \[
\begin{aligned}
& 73 \\
& 77 \\
& 79
\end{aligned}
\] & \(\begin{array}{r}101 \\ 163 \\ p \\ \hline\end{array}\) & P & \[
\begin{array}{r}
29 \\
3
\end{array}
\] & 109
181
13 & \[
\begin{array}{r}
5 \\
97 \\
3 \\
\mathrm{p}
\end{array}
\] & \[
\begin{array}{ll}
3 & p \\
& 3 \\
3 & p \\
3 & 3
\end{array}
\] & \[
\begin{array}{r}
51 \\
7 \\
20 \\
19
\end{array}
\] & \[
37
\] &  & \[
\left\lvert\, \begin{array}{rr}
15 & 1 \\
p \\
p
\end{array}\right.
\] & \[
\left|\begin{array}{r}
3 \\
107 \\
3 \\
7
\end{array}\right|
\] & \[
\begin{array}{r}
4 \\
3 \\
7 \\
3 \\
\hline
\end{array}
\] & \begin{tabular}{rrr}
1 & 17 \\
3 & \(p\) \\
& 11 \\
3 & \(p\) \\
\hline
\end{tabular} & \begin{tabular}{l}
3 \\
7 \\
3 \\
\(p\) \\
\hline
\end{tabular} & \[
10
\] & \[
13
\] & \[
\begin{array}{r}
11 \\
3 \\
1 \frac{1}{7}
\end{array}
\] & \[
\begin{array}{r|r}
3 & 24 \\
1 & 3 \\
3 & p
\end{array}
\] & 23 & \(\begin{array}{r}\mathrm{P} \\ 3 \\ \mathrm{p} \\ \hline\end{array}\) \\
\hline \[
\begin{aligned}
& 83 \\
& 87 \\
& 89
\end{aligned}
\] & 3
Ir

3
11 & 37
3
41 & \(\begin{array}{r}\text { P } \\ 11 \\ 79 \\ \hline\end{array}\) & \(\begin{array}{r}3 \\ 103 \\ 3 \\ 43 \\ \hline\end{array}\) & 13
3
p
3 & \[
\begin{array}{r}
179 \\
p \\
89
\end{array}
\] & \[
\begin{array}{r}
3 \\
13 \\
3 \\
3 \\
13 \\
\hline
\end{array}
\] & & P 11 & \(\begin{array}{r}3 \\ 19 \\ 3 \\ \mathrm{p} \\ \hline\end{array}\) & \[
\begin{array}{r}
31 \\
3 \\
\mathrm{p} \\
3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
p \\
13 \\
-19 \\
11 \\
\hline
\end{array}
\] & \[
\begin{array}{l|l|}
\hline 8 & 3 \\
3 & \mathrm{p} \\
\mathrm{p} & 3 \\
1 & 7 \\
\hline
\end{array}
\] & \[
\begin{array}{r|r}
3 & 163 \\
\hline & 3 \\
3 & 7 \\
7 & 3
\end{array}
\] & \begin{tabular}{r|r}
8 \\
6 \\
101 \\
101 \\
29 \\
\hline
\end{tabular} & & & \begin{tabular}{l}
11 \\
23 \\
\hline 73 \\
\hline
\end{tabular} & 7
3
\(p\) & \(\begin{array}{r}11 \\ 3 \\ p \\ 3 \\ \hline\end{array}\) \\
\hline \[
\begin{aligned}
& 98 \\
& 93 \\
& 97 \\
& 99
\end{aligned}
\] & (r3 \(\begin{array}{r}1 \\ 3 \\ 29 \\ 3\end{array}\) & , & |r|r & 277
3
11
3 & 53
\(p\)
23 & \begin{tabular}{|r|r|r}
3 \\
1 \\
3 \\
\hline
\end{tabular} & \begin{tabular}{l|l|}
\hline \\
\\
\\
3 \\
\\
\(p\) \\
\\
&
\end{tabular} & \[
\begin{gathered}
p \\
11 \\
p \\
5 \\
7
\end{gathered}
\] & \[
\begin{array}{r|r|}
\hline p & 3 \\
1 & p \\
p & 3 \\
7 & 257
\end{array}
\] & \(\left|\begin{array}{r}13 \\ 3 \\ 197 \\ 3\end{array}\right|\) & 130 & 3
1
3
29 & \begin{tabular}{|r|r|}
3 & 37 \\
1 & 3 \\
3 & 179 \\
9 & 3
\end{tabular} & \(\begin{array}{r}13 \\ \hline \\ \hline \\ \hline\end{array}\) & (1) & 9
3
7
3 & \(p\)
\(p\)
\(p\) & |r \(\begin{array}{r}3 \\ 7 \\ 3 \\ 199\end{array}\) & & 41
167 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & Soo, & & & & \(80_{4}\) & SO; & & & & \(8 \mathrm{YO9}\) & & 1 & 812 & 813 & 814 & & & 817 & \(8 \pm 8\) & 8 \\
\hline 01 & 3 & 7 & & & 37 & 79 & & P & & & P & P & 3 & & & & 13 & p & 3 & \\
\hline 03 & 7 & 3 & & & 3 & 19 & & 3 & & 17 & 3 & 1. & P & 3 & 7 & ! 49 & & P & 179 & \\
\hline 07 & 3 & P & & & P & 7 & & 11 & 19 & 9 & 59 & 13 & 3 & P & 127 & 3 & 79 & P & 3 & \\
\hline 09 & 9 & 3 & & p & 3 & 11 & \(1+9\) & 3 & & p & , & 7 & 17 & 3 & P & p & 3 & 101 & & \\
\hline 11 & 29 & 1 & & & 191 & & & 43 & 3 & 3 p & Pr & 3 & 13 & 7 & & 37 & P & 3 & 23 & 101 \\
\hline 3 & 3 & II & & 3 & 97 & P & 3 & & 211 & 1 & P & 29 & 3 & 31 & I 4 & 3 & 7 & 41 & 3 & 13 \\
\hline 17 & & 113 & 3 & P & 29 & 3 & 19 & 7 & & \(3 . \mathrm{P}\) & P & & 241 & 233 & 3 & p & 17 & & p & 1 I \\
\hline 19 & 3 & 13 & 9 & 3 & 137 & 73 & 3 & 5.3 & P & P. 3 & P & P & 3 & 7 & 13 & 3 & P & II & 3 & P \\
\hline 2 & & 3 & & 31 & & & p & & 13 & 3 & 3 & 23 & & 3 & & 11 & & 7 I & 17 & 3 \\
\hline 23 & 43 & 19 & & 47 & & 3 & 37 & , & 3 & 3 & P & 3 & P & 11 & 3 & 13 & 31 & 3 & 7 & 7 \\
\hline \(=7\) & 79 & 3 & & 13 & 3 & P & P & 3 & 13 I & & 3 & 31 & 43 & 3 & 107 & P & - 3 & P & 47 & 3 \\
\hline 29 & 191 & 7 & 3 & P & p & 3 & p & 11 & 3 & 3 p & 13 & 3 & 29 & 167 & - & 7 & p & 3 & 1 I & P \\
\hline 31 & & 1227 & & 3 & 13 & 11 & & 7 & & p & 3 P & P & & & & & It & 13 & 3 & \\
\hline \[
33
\] & 163 & 3 & & 67 & 3 & 29 & & 3 & P & p & 3 & 13 & 1 & & I & P & 3 & 37 & 19 & \\
\hline \[
37
\] & & 127 & 19 & 3 & & P & 3 & & 229 & 9 & 11 & 7 & & 163 & 3 I & 3 & P & - P & 3 & I \\
\hline 39 & P & & P & ? & 3 & 43 & 13 & 3 & 1 & 129 & 3 & 41 & p & & P & 67 & 3 & 37 & P & \\
\hline 41 & 13 & p & 3 & \[
\mathrm{p} \mid 2
\] & 257 & 3 & 1 & 203 & & & p & & 137 & 13 & 3 & 73 & & & 223 & 67 \\
\hline 43 & 3 & 7 & 29 & 3 & 11 & 239 & 3 & 13 & & 73 & & 53 & 3 & P & 23 & 3 & 19 & 43 & 3 & \\
\hline 47 & 11 & P & 3 & p & & 3 & & p & 3 & 61 & & 3 & 113 & & 3 & P & p & P 3 & P & 19 \\
\hline 49 & 3 & P & 3 & 3 & P & 7 & 3 & P & P & P & + & 19 & -3 & P & 79 & 3 & & ) p & 3 & 7 \\
\hline 1 & P & 3 & & 19 & 3 & 109 & P & 3 & 233 & 13 & & & 31 & 3 & 47 & P & 3 & 9 & & \\
\hline & 17 & - & 3 & 7 & 43 & 3 & 59 & 23 & & 3 p & P & 3 & 193 & P & 3 & P & 11 & 3 & P & P \\
\hline & 223 & 3 & & 107 & 3 & p & p & 3 & & 73 & 3 & p & 11 & 3 & P & 7 & & 13 & 23 & \\
\hline \[
59
\] & 7 & 71 & 3 & I & 61 & 3 & 79 & 7 & 3 & 19 & 1 I & 3 & 23 & P & 3 & P & 37 & 3 & 109 & \\
\hline \[
61
\] & & 19 & 83 & & 17 & 13 & & P & 11 & & 103 & 277 & 3 & & 29 & & 127 & P & 3 & 3 \\
\hline & 23 & & & P & & & & 3 & & & & P & 7 & 3 & & P & & 11 & 71 & \\
\hline , & ; & & & & 67 & \(p\) & 3 & 17 & 193 & & & 23 & 3 & 11 & 41 & - 3 & & P 7 & 3 & \\
\hline 60) & 11 & & & P & & 23 & p & - 3 & 17 & 7 & - 3 & 11 & 181 & & 257 & P & & 3 p & p & \\
\hline 1 & P & 7 & & 79 & & 3 & & 37 & & 3 I1 & P & & 67 & P & & & P & P. 3 & 19 & \\
\hline \[
73
\] & 3 & P & & 3 & & 197 & 3 & 7 & 13 & 3 & 17 & P & & & 7 & 3 & 23 & P & 3 & \\
\hline , & P & - & & 11 & 23 & 3 & P & P & & 313 & & 3 & 7 & 17 & 3 & 29 & P & P 3 & \(4^{1}\) & , \\
\hline 79 & 3 & 11 & p & 3 & 7 & 19 & 3 & p & 31 & 1.3 & 89 & 7 & 3 & 17 & 59 & 3 & 13 & 53 & 3 & 37 \\
\hline \[
81
\] & & & & & & 61 & & & & 47 & & & P & 3 & 17 & 23 & & & 37 & \\
\hline 8 & 53 & 81 & & 3 I & 13 & 3 & & P & & 7 & 7 & 3 & p & 97 & & 17 & & 3 & P & 1 \\
\hline \[
87
\] & & 3 & & & & 13 & P & P 3 & 7 & 109 & 3 & 19 & 29 & , & & & 3 & 17 & 13 & \\
\hline 89 & 283 & 17 & & & & & & & & & 131 & & & & & 83 & & P 3 & 7 & 16 \\
\hline 9 & & p & & 3 & & & & 173 & 23 & 33 & 3.83 & 11 & & & & & 151 & 89 & 3 & 3 \\
\hline 93. & 13 & 3 & & 17 & & 83 & 19 & & \(4^{1}\) & 11 & 1 & 7 & p & 3 & 227 & 139 & & 3253 & & \\
\hline & 3 & 13 & & & 101 & 1 & & 43 & & & 3 P & P & 3 & 23 & 13 & 3 & & 157 & & 3 \\
\hline & 173 & & 59 & 11 & & & 17 & 3 & & 107 & ) & P & P & 3 & II & I & 3 & 3 p & P & 1 \\
\hline & & , 1 & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & 826 & 82718 & & 8298 & 830 & 831 & & & & & & & & 839 \\
\hline 01 & -43 & & & & & 17 & & \(1{ }^{1}\) & 31 & 7 & 3 & & & & & & 3
1
3 & & & 3 \\
\hline 03 & P & & & & 19 & 3 & & 191 & 3 & \(p\) & P & 3 & P & & 3 & & 13 & 3 & & F \\
\hline 07 & P & & & & 3 & P & & 3 & 17 & 1 & 3 & 41 & P & 3 & p & 113 & 3 & 13 & 43 & 3 \\
\hline 09 & P & 47 & 3 & 53 & 23 & 3 & P & 11 & 3 & 17 & P & 3 & 7 & 227 & 3 & 37 & P & - 3 & 11 & 7 \\
\hline 1.1 & & 157 & 229 & 3 & & 11 & 3 & 107 & P & 3 & 17 & 7 & 3 & P & 239 & 3 & II & 97 & & p \\
\hline 1 & I & 3 & 19 & 7 & 3 & 10.) & & 3 & P & P & 3 & 17 & 13 & 3 & 11 & 23 & 3 & 7 & & 3 \\
\hline 57 & , & 7 & P & & 73 & 19 & & 181 & 7 & 3 & 11 & P & 3 & 13 & P & 3 & P & P & 3 & \(3^{1}\) \\
\hline 9 & 7 & 3 & P & 263 & 3 & 179 & P & 3 & 12 & 283 & 3 & 43 & P & 3 & 7 & 47 & 3 & P & 79 & 3 \\
\hline 2 & P & 13 & 3 & 191 & P & 3 & & P & 3 & 101 & 61 & 3 & P & 7 & 3 & 17 & P & 3 & 109 & P \\
\hline 23 & 3 & 41 & P & 3 & 11 & 7 & & P & 13 & 3 & & 103 & 3 & 97 & P & 3 & 17 & 29 & 3 & 7 \\
\hline 27 & 11 & 17 & 3 & & 139 & 3 & 53 & P & 3 & 13 & & 3 & F & 103 & 3 & 101 & 241 & 3 & \(1{ }^{\circ}\) & 23 \\
\hline 29 & 3 & P & 7 & 3 & 31 & 12 & & P & 113 & 3 & 79 & 97 & - & 23 & 19 & 3 & & 101 & 3 & 17 \\
\hline 31 & P & 3 & P & \(1-\) & 3 & P & 19 & 3 & & 127 & 3 & 59 & P & & P & 7 & \[
3
\] & 31 & 11 & 3 \\
\hline & 7 & 23 & 3 & \(=81\) & 13 & 3 & P & 7 & \(3{ }^{2}\) & 239 & 43 & 3 & P & 167 & 3 & 103 & 11 & 3 & P & P \\
\hline 37 & P & 3 & P & 137 & 3 & & 17 & 3 & & 197 & 3 & P & 7 & 3 & p & p & 3 & P & 13 & 3 \\
\hline 39 & p & P & 3 & p & 7 & 3 & 23 & 17 & 3 & p & 11 & 3 & 13 & P & ? & 139 & P & 3 & \% & \\
\hline 4 & 3 & P & P & & 19 & 59 & 3 & 97 & 11 & 3 & 7 & 71 & 3 & \[
\bar{p}
\] & 181 & 3 & P & & & II \\
\hline 43 & 13 & 3 & 7 & 64 & 3 & 197 & 11 & 3 & 37 & 7 & J & 29 & P & 3 & P & 19 & 3 & 11 & P & 3 \\
\hline 47 & 3 & 13 & 11 & 3 & 29 & 23 & 3 & 7 & P & 3 & P & 17 & 3 & 11 & 7 & 3 & 233 & 83 & 3 & 127 \\
\hline 49 & 11 & 3 & 33 & p & 3 & P & 7 & 3 & 131 & 109 & 3 & 11 & 17 & 3 & P & 29 & 3 & 89 & \(19!\) & 3 \\
\hline 51 & P & 113 & 3 & P & 41 & 3 & P & 83 & 3 & 11 & 53 & 3 & & 17 & 3 & 13 & 23 & 3 & 71 & 7 \\
\hline 53 & 3 & P & 83 & 3 & 7 & 31 & 3 & 11 & 29 & 3 & 23 & 7 & 3 & 19 & 17 & 3 & p & 61 & 3 & 37 \\
\hline 5 & 31 & 29 & 3 & 11 & P & 3 & P & P & 3 & 7 & 13 & 3 & p & P & 3 & P & 7 & 3 & p & 59 \\
\hline 5 & 3 & & 43 & 3 & 13 & P & 3 & P & 7 & 3 & P 1 & 137. & 3 & 31 & P & 3 & 269 & 13 & 3 & 113 \\
\hline 61 & & & p & P & & & 131 & 3 & 41 & 23 & 3 & 13 & 139 & 3 & & p & & P & 17 & 3 \\
\hline 63 & 137 & P & 3 & 23 & P & 3 & & P & 3 & P & P & 3 & 53 & 7 & 3 & p & P & 3 & 13 & 11 \\
\hline 67 & P & 3 & P & 31 & & P & 13 & 1 & 1731 & 163 & 3 & 7 & P & 3 & 19 & II & 3 & 211 & 7 & 3 \\
\hline 69 & 13 & 127 & 3 & 7 & p & 3 & 19 & 3 & 3 & 29 & 7 & 3 & P & 11 & 3 & 193 & 3 I & 3 & - & P \\
\hline 31 & 3 & P & 7 & 3 & P & P & 3 & 13 & 79 & 3 & P & 11 & 3 & 263 & P & 3 & & 19 & 3 & 131 \\
\hline 7 & P & 3 & 29 & P & 3 & 71 & \(4{ }^{4}\) & 3 & 7 & 11 & 3 & 31 & P & 3 & 13 & 7 & 3 & P & & 3 \\
\hline 77 & 3 & 37 & 13 & 3 & 67 & 11 & 3 & 231 & [79 & 3 & P & P & 3 & 7 & P & 3 & 11 & p & 3 & 79 \\
\hline 79 & 211 & 3 & p & 11 & 3 & 7 & 29 & - 3 & 67 & 13 & 3 & 223 & 7 & 3 & 11 & P & 3 & 199 & 37 & 3 \\
\hline 81 & 79 & 1 I & 3 & 13 & 7 & & 89 & p & 3 & P \({ }^{2}\) & 251 & 3 & 11 & 199 & & 19 & \({ }^{1} 3\) & 3 & & 137 \\
\hline 8 & - 3 & & 107 & 3 & & 269 & 3. & 19 & & & 71 & 193 & 3 & P & 31 & 3 & 6 & & 3 & p \\
\hline & 23 & & 3 & p & P & & [11 & P & & 31 & 19 & & 37 & 61 & 3 & 7 & 53 & 3 & 149 & P \\
\hline \(\underline{8}\) & & & 9 & & 11 & 13 & & & & & p & 41 & & p & 7 & 3 & p & 23 & 3 & 47 \\
\hline 91 & 103 & & II & & & & & 3 & & 37 & 3 & & 13 & & & & 3 & P & & 3 \\
\hline 93 & 11 & & & & & & 13 & P & & 149 & & & & 89 & & 179 & 127 & & & 7 \\
\hline 97 & 53 & & 17 & & 3 & 151 & 41 & 3 & 19 & & & 271 & 31 & 3 & P & P & 3 & & & 3 \\
\hline 99 & 19 & & 3 & & & & P & P & 3 & 7 & 23 & 3 & P & p & 3 & 41 & 7 & 3 & 53 & 19 \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 8084184 & & & & & & & & & & & \\
\hline &  & 으 3 &  &  & H1 p &  & & \[
3
\] & 978 \({ }^{p}\) & \[
\begin{array}{r}
13 \\
3 \\
3 \\
3
\end{array}
\] & & \[
\begin{aligned}
& 9 \\
& \hline
\end{aligned}
\] \\
\hline &  & & 7 & & &  & & &  & 33 & & \[
\begin{array}{l|l}
1 & 3 \\
7 & 53
\end{array}
\] \\
\hline &  & \[
p
\] & & & & \[
163
\] & & & \[
\begin{gathered}
41 \\
3 \\
1
\end{gathered}
\] & , & & \[
\begin{aligned}
& 3 \\
& 9 \\
& 9
\end{aligned}
\] \\
\hline &  &  & \[
\begin{array}{r}
23 \\
0 \\
17 \\
\hline
\end{array}
\] &  & & \[
\left[\begin{array}{l}
3 \\
7
\end{array}\right]
\] & & & \[
\begin{array}{l|l|}
9 & \mathrm{p} \\
3 & \mathrm{p} \\
\mathrm{p} & 7 \\
3 & 6 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|c|}
\hline p & 9 \\
3 & 19 \\
23 & 29 \\
3 & p \\
\hline
\end{array}
\] & & \\
\hline &  &  &  & \[
59.47
\] & \[
47
\] & \[
\begin{array}{rr}
37 & \\
3173 \\
175
\end{array}
\] & & & \[
\begin{array}{l|l|}
\hline & 3 \\
p & 31 \\
p & 3 \\
3 & 1 \\
1 & 1
\end{array}
\] &  & & \\
\hline &  & \[
67
\] &  & & & \[
\begin{array}{c|c|c}
\hline \mathbf{p} & 13 & 3 \\
3 & 53 & 11
\end{array}
\] & & & \[
\begin{array}{lll}
3 \\
7 & 7 \\
7 & 3 \\
3 & 3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3 \\
13
\end{array}
\] & & \[
\begin{array}{r|r|}
3 & 23 \\
\mathrm{p} & 3 \\
3 & 43 \\
23 & 43 \\
\hline
\end{array}
\] \\
\hline & \[
\begin{array}{r|r}
p & p \\
1 & 3 \\
73 & 3 \\
\hline
\end{array}
\] & &  &  &  & & & & \[
\begin{gathered}
p \\
p \\
p \\
p \\
p
\end{gathered}
\] & \[
4
\] & & \[
\begin{array}{r|r|}
\hline 19 & 67 \\
3 & 38 \\
17 & 7 \\
3 & 13 \\
\hline
\end{array}
\] \\
\hline &  & \[
\begin{array}{r}
7 \\
39 \\
\mathrm{P} \\
19
\end{array}
\] & \[
\begin{array}{r}
3 \\
17 \\
3 \\
23 \\
\hline
\end{array}
\] &  &  &  & & & \(\square\) & \[
\begin{gathered}
\mathrm{p} \\
83 \\
p \\
13 \\
13
\end{gathered}
\] & &  \\
\hline &  &  &  & \[
\begin{array}{r|r}
41 & 19 \\
251 & 3 \\
& 3 \\
\hline
\end{array}
\] &  &  & & &  & \[
\begin{array}{r}
3 \\
23
\end{array}
\] & & 3 \\
\hline & \[
7 \mathrm{P}
\] & 3 P &  & \[
\begin{array}{r|r}
3 & p \\
29 & 3 \\
3 & p \\
3 \mathrm{r} & 3
\end{array}
\] & \[
\bar{p}
\] & \[
\begin{array}{r|r|r|r}
7 & 3 & \text { p } & p \\
p & 23 & 3 & p \\
19 & 3 & 11 & 43 \\
1 & 73 & 3 & 7
\end{array}
\] & P &  & \begin{tabular}{l}
17 \\
7 \\
13 \\
13 \\
\hline
\end{tabular} & \[
\begin{array}{r|r}
11 \\
3 & 6
\end{array}
\] & &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 860 & 861 & 862 & & & 865 & 866 & 867 & 868 & 869 & 870 & 871 & 872 & 873 & 874 & & 8,68 & & & 889 \\
\hline 01 & 3 & 29 & p & 3 & 7 & P & & \(27 \%\) & 1 & 3 & 19 & 7 & 3 & 67 & 71 & 3 & 17 & & & 11 \\
\hline 03 & 17 & 3 & 13 & 7 & 3 & 23 & 11 & 3 & 61 & 43 & & P & 29 & 3 & P & 13 & 3 & 7 & P & 3 \\
\hline 07 & 3 & 7 & 11 & 3 & 71 & 19 & 3 & 31 & & 3 & 167 & P & 3 & 1 I & P & 3 & 13 & 229 & 3 & 17 \\
\hline \(\bigcirc\) & 7 & 3 & P & 17 & 3 & f & 257 & 3 & 47 & 233 & 3 & 1.1 & 37 & - 3 & 37 & P & 3 & 139 & 277 & 3 \\
\hline 11 & P & P & 3 & p & \({ }^{1} 3\) & 3 & 7 & P & P & 311 & P & 3 & P & 7 & \(6^{3}\) & P & 79 & 3 & P & P \\
\hline 13 & 3 & P & 73 & 3 & P & 7 & 3 & 1 I & P & - 3 & 3 P & 13 & 3 & P & 61 & 3 & P & 239 & 3 & 7 \\
\hline 17 & P & P & 3 & 7 & 103 & 3 & 37 & 17 & & 33 & & 3 & 13 & P & P & P & 41 & & 137 & P \\
\hline 19 & 3 & 11 & 7 & 3 & 89 & 241 & 3 & ¢ & 17 & 1 & 173 & P & P 3 & 29 & 19 & 3 & 7 & & + & 13 \\
\hline 21 & 13 & 3 & 151 & 37 & 3 & 31 & 19 & & & 17 & & 3 P & 1 & & P & 7 & 3 & \(p\) & 53 & 3 \\
\hline 23 & 7 & 71 & & P & P & 3 & 29 & & 3 & 3 P & \(1{ }^{1} 5\) & & P & P & P 3 & P & P & 3 & 31 & 15 \\
\hline 27 & P & 3 & 23 & 173 & 3 & 7 & p & & 13 & 3 & P 3 & 3151 & 7 & 3 & 3 P & 11 & 3 & 37 & 71 & 3 \\
\hline 29 & P & 43 & 3 & 131 & 7 & 3 & P & 1 P & -3 & P & 29 & 9, & 19 & 11 & 13 & 13 & p & 3 & 7 & 23 \\
\hline 31 & 3 & P & 53 & 3 & 19 & p & 3 & 43 & 31 & 1 & & 1 & 3 & 23 & 17 & 3 & P & & 3 & P \\
\hline 33 & 227 & 3 & 7 & 13 & 3 & P & 41 & & 71 & &  & P & 83 & 3 & P & 17 & 3 & 59 & P & 3 \\
\hline 37 & 3 & p & 83 & 3 & 13 & 1 r & 3 & & 7 p & P & 3 & ¢ 59 & 3 & & p & 3 & 11 & 13 & 3 & 47 \\
\hline 39 & 97 & 3 & P & 11 & 3 & P & 7 & 7. 3 & 37 & 7 & P & 13 & 23 & 3 & 1 I & P & 3 & & 17 & 3 \\
\hline 41 & 139 & 11 & 3 & p & P & 3 & 23 & 127 & 3 & 3227 & 7 & p & \[
7
\] & 7 & & & p & 3 & 13 & 7 \\
\hline 43 & 3. & P & P. & 3 & 7 & 37 & 3 & P & P & 3 & 3.11 & 1 & 3 & 9 & 9 & 3 & p & p & & P \\
\hline 47 & 13 & 277 & 3 & 79 & 137 & 3 & 1 & 223 & 3 & 7 & 761 & I & 43 & 13 & 33 & P & 7 & 3 & 107 & 31 \\
\hline 49 & 3 & 7 & p & 3 & 11 & 23 & 3 & 13 & & 3 & 3 & P & 3 & 113 & 157 & 3 & p & 47 & 3 & 37 \\
\hline 5 I & 7 & 3 & 11 & P & & 41 & 73 & & & & & 3 p & & & 3 & 29 & 3 & P & 59 & 3 \\
\hline 53 & 11 & 101 & 3 & P & & & 3.7 & 9 P & & & 263 & 3 & 3 P & 7 & 73 & P & 23 & 3 & & 2.81 \\
\hline 57 & 47 & 3 & P & P & 3 & 101 & 193 & 3 & 3 & P 13 & 3 & 3.7 & P & 3 & 3 19 & P & 3 & 127 & 7 & 3 \\
\hline 59 & 41 & 29 & 3 & - 7 & 31 & 3 & 19 & ,101 & 1 & 3 P & P 7 & 7 & 71 & & P & P & 11 & & 103 & P \\
\hline 61 & & p & 7 & 3 & & & & & & p 3 & 313 & 33 & & 199 & 9 & 3 & & 9 & & P \\
\hline 63 & 89 & & & 67 & & 107 & 79 & & & 79 & & 3101 & 11 & & 3149 & 7 & & 13 & & 3 \\
\hline 67 & & 199 & 281 & & P & I \({ }^{\text {j }}\) & 3 & - & 11 & & 383 & 367 & & & 747 & 3 & 22 & & & 11 \\
\hline 69 & \(p\) & 3 & p & P & 3 & & 11 & & & & & 61 & & & \(3 \quad 23\) & \(6-\) & & 11 & p & 3 \\
\hline 71 & \(!7\) & p & 3 & p & 7 & & & & & ¢ & , & 3 & 197 & 41 & 1 & 11 & & & & 3 \\
\hline 73 & 3 & 17 & 11 & 3 & 43 & & & & 109 & & 37 & 7179 & 3 & 3 & 1 P & 3 & 73. & & & P \\
\hline 77 & P & 7 & 3 & 17 & P & & & 10; & & 3 II & 119 & 93 & 3 P & 23 & 3 & 37 & 43 & 3 & I & P \\
\hline 79 & 3 & P & 19 & 3 & \(1 \%\) & p & p 3 & 37 & 713 & & \(3 \quad 31\) & 1 P & , & 59 & 9 & = & P & 61 & & 97 \\
\hline 81 & 59 & 3 & 13 & P & & 11 & & & & & & & & & \(3-\mathrm{P}\) & 3 & & 41 & & \\
\hline 83 & 1 & & 3 & II & 197 & & & & & & 3 & 3 & 57 & 7 & 3 & & & & & 7 \\
\hline 87 & 31 & & & & & & 23 & & & 737 & 7 & & 191 & & 3.89 & & & & & 3 \\
\hline 89 & 19 & 79 & & & \(\begin{array}{r}13 \\ \hline\end{array}\) & & 3 P & & & & \(7{ }^{7} 7\) & & 341 & 31 & \begin{tabular}{r|r|}
3 \\
3 \\
\hline
\end{tabular} & , & 3 & & & I \\
\hline g & & & & & & & & & & & & & & & & & & 1 & & P \\
\hline 93 & 7 & & & & & & & p 3 & 331 & & & & & & & 11 & & P & & 3 \\
\hline 97 & 3 & & & & & & & & 9113 & & 3251 & 111 & & & & & & p & ) 3 & 7 \\
\hline 09 & 13 & & 271 & & & & 81 & & 367 & 711 & 13 & 37 & 7 P & P 3 & 317 & 251 & 3 & 19 & & 3 \\
\hline & & & & & & & & & - & & & & & & & & & & & \\
\hline
\end{tabular}


Incompofit, or Prime, Numbers, lefs than 100,000 .

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 01 \\
& 03 \\
& 07 \\
& 07 \\
& 09
\end{aligned}
\] & 3
\(p\)
3

\(p\) & 31 & \(\begin{array}{r}137 \\ p \\ 19 \\ 13 \\ \hline\end{array}\) & \(24^{1}\) & P
3
7
3
3 & [r \(\begin{array}{r}23 \\ 5 \\ p \\ p \\ 79 \\ \hline\end{array}\) & 11 & 3
7
\(p\)
3 & \[
\begin{array}{r}
\mathrm{p} \\
17 \\
11 \\
\mathrm{p}
\end{array}
\] & \[
\begin{array}{r}
3 \\
6 \\
6 \\
1 \\
3 \\
53 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\mathrm{p} \\
3 \\
17 \\
3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
15 \\
\mathbf{p} \\
7 \\
17
\end{array}
\] & \[
\begin{array}{r}
3 \\
11 \\
3 \\
83 \\
\hline
\end{array}
\] & \[
\begin{array}{r|r}
13 \\
1 & 3 \\
3 & \mathrm{p} \\
3 & 3 \\
\hline
\end{array}
\] & \(\begin{array}{r}7 \\ 23 \\ p \\ 29 \\ \hline\end{array}\) & \[
\begin{array}{r}
3 \\
\mathrm{p} \\
3 \\
13 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& p \\
& 3 \\
& p \\
& 3
\end{aligned}
\] & \[
8_{3}^{p}
\] & \[
\begin{array}{r}
3 \\
19 \\
3 \\
3
\end{array}
\] & \({ }_{15}^{3}\) \\
\hline \[
\begin{aligned}
& 11 \\
& 13 \\
& 17 \\
& 19
\end{aligned}
\] & \[
\begin{array}{r}
101 \\
3 \\
19 \\
3
\end{array}
\] & p
7
71
p & 11 & \begin{tabular}{l} 
p \\
3 \\
\hline \\
\hline
\end{tabular} & 13 & 71 & 37
3
7
3 & 83
23
1 & 101 &  & \[
\begin{array}{|l|l|}
\hline & 281 \\
3 & 47 \\
1 & 191 \\
3 & 107 \\
\hline
\end{array}
\] & 13 & \[
\begin{array}{r}
17 \\
3 \\
31
\end{array}
\] & \[
\begin{array}{|c|c} 
& 23 \\
3 & 11 \\
1 & 7 \\
6 & p
\end{array}
\] & 109
3 & \[
\begin{array}{r}
11 \\
3 \\
17 \\
3 \\
\hline
\end{array}
\] & \(\begin{array}{r}13 \\ 179 \\ 17 \\ \hline 1\end{array}\) & \[
\begin{array}{r}
31 \\
3 \\
p \\
\hline
\end{array}
\] & 23 & \({ }_{19}\) \\
\hline \[
\begin{aligned}
& 21 \\
& 23 \\
& 27 \\
& 29
\end{aligned}
\] & \[
\begin{aligned}
& 23 \\
& 13
\end{aligned}
\] & \(\begin{array}{r}17 \\ 3 \\ \hline\end{array}\) & \[
\begin{aligned}
& \mathrm{p} \\
& 3 \\
& \mathrm{p} \\
& 3
\end{aligned}
\] & \[
\begin{array}{r}
7 \\
17 \\
127 \\
\hline
\end{array}
\] & \(\begin{array}{r}29 \\ 3 \\ 17 \\ \hline\end{array}\) & \[
67
\] & \[
\begin{array}{r|r}
\mathrm{P} \\
2 \mathrm{H}
\end{array}
\] & \begin{tabular}{l}
3 \\
\(P\) \\
3 \\
7 \\
\hline
\end{tabular} & \[
3
\] & \[
\begin{array}{r}
p \\
43 \\
p \\
19
\end{array}
\] & \[
41 .
\] & 23 & \[
\begin{array}{r}
73 \\
13 \\
53 \\
\mathrm{P} \\
\hline
\end{array}
\] & \[
\begin{array}{ll}
3 & 3 \\
3 & \mathrm{p} \\
3 & 3 \\
0 & \mathrm{p} \\
\hline
\end{array}
\] & 103 & \[
\begin{array}{r}
41 \\
\mathrm{p} \\
7 \\
\mathrm{p}
\end{array}
\] & \[
25
\] & \[
\begin{array}{r}
17 \\
3 \\
19
\end{array}
\] & \[
\begin{array}{r}
17 \\
10 \\
101
\end{array}
\] & \begin{tabular}{c}
3 \\
\hline \\
3 \\
3 \\
\hline 1
\end{tabular} \\
\hline \[
\begin{aligned}
& 31 \\
& 33 \\
& 37 \\
& 39
\end{aligned}
\] & & \[
99
\] & 149
P
p
7 & \[
13
\] & 23 & 37
29 & \[
17
\] & \[
\left.\begin{gathered}
2 \\
p \\
3
\end{gathered} \right\rvert\,
\] & \begin{tabular}{r}
1 \\
\(\mathbf{p}\) \\
13 \\
17 \\
253 \\
\hline
\end{tabular} & \[
\begin{array}{c|c}
9 \\
3 & 199 \\
7 & 3
\end{array}
\] & \[
31
\] & [ \(\begin{array}{r}\text { p } \\ p \\ 1 \\ 1 \\ p\end{array}\) & \[
\left.\begin{aligned}
& 7 \\
& 3 \\
& p
\end{aligned} \right\rvert\,
\] & \[
\begin{aligned}
& 3 \\
& n
\end{aligned}
\] & \[
\begin{array}{|c|c|}
\hline 233 \\
\hline & 223 \\
3 & 41
\end{array}
\] & \[
\begin{array}{r}
11 \\
3 \\
89
\end{array}
\] & \[
310
\] & \[
\begin{array}{r}
11 \\
67 \\
7
\end{array}
\] & \[
\begin{array}{r}
3 \\
103 \\
3 \\
107 \\
\hline
\end{array}
\] & 29
3
\(\mathbf{p}\)
3 \\
\hline \[
\begin{aligned}
& 41 \\
& 43 \\
& 47 \\
& 49
\end{aligned}
\] & \[
\begin{array}{r}
p \\
3 \\
83 \\
3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11 \\
43 \\
\hline
\end{array}
\] & 29 & \[
\begin{array}{r}
107 \\
3 \\
\mathrm{p} \\
3 \\
\hline
\end{array}
\] & \[
\begin{array}{|r}
97 \\
13 \\
193
\end{array}
\] & 11
3
19 & \[
\begin{aligned}
& p \\
& 3 \\
& p \\
& 3
\end{aligned}
\] & \[
\left|\begin{array}{r}
763 \\
137
\end{array}\right|
\] & \[
\left.\begin{array}{r}
3 \\
2 \\
2 \\
3 \\
3
\end{array} \right\rvert\,
\] & \[
\begin{array}{r}
41 \\
3
\end{array}
\] & \[
\begin{array}{r}
13 \\
19 \\
p \\
11
\end{array}
\] & \[
\begin{array}{r}
17 \\
3
\end{array}
\] & \[
\begin{aligned}
& \mathrm{p} \\
& 3 \\
& 7 \\
& 3
\end{aligned}
\] & \[
\begin{array}{r}
31 \\
269 \\
17 \\
277 \\
\hline
\end{array}
\] & 17 & \[
3|139|
\] & 37 & \[
\begin{array}{r}
13 \\
3 \\
241
\end{array}
\] & \[
\begin{array}{r}
\mathrm{II} \\
3 \\
3 \\
13
\end{array}
\] & 37 \\
\hline \[
53
\] & \[
\begin{array}{r}
13 \\
7 \\
7
\end{array}
\] & \[
157
\] & 11 & 19 & 59 & 3
\(p\)
3 & \[
11]
\] & \[
23
\] & \[
3
\] &  & \[
\begin{aligned}
& p \\
& 3 \\
& p
\end{aligned}
\] & \[
\begin{array}{r}
3 \\
19 \\
3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\mathrm{p} \\
\mathrm{p} \\
179 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3 \\
13
\end{array}
\] & & \[
\begin{array}{r}
17 \\
\mathrm{p} \\
\mathrm{p}
\end{array}
\] & \[
\begin{array}{r}
3 \\
7 \\
3 \\
73
\end{array}
\] & \[
\begin{array}{r}
3 \\
29
\end{array}
\] & \[
\left|\begin{array}{r}
9 \\
127 \\
17 \\
47
\end{array}\right|
\] & \(\begin{array}{r}3 \\ 47 \\ 3 \\ 17 \\ \hline\end{array}\) \\
\hline \[
\begin{aligned}
& 63 \\
& 67
\end{aligned}
\] & \[
\begin{array}{r}
43 \\
3 \\
23 \\
\hline
\end{array}
\] & \[
37
\] & \[
\left.\begin{array}{r}
13 \\
257
\end{array} \right\rvert\,
\] & \begin{tabular}{r}
3 \\
\hline \\
\\
3 \\
\(p\)
\end{tabular} & \[
\begin{aligned}
& 1 \\
& p \\
& 3 \\
& p
\end{aligned}
\] & \[
3 \begin{array}{r}
7 \\
151
\end{array}
\] & \[
19
\] & \begin{tabular}{c} 
p \\
3 \\
\(p\) \\
3 \\
\hline
\end{tabular} & \[
7
\] & \[
\begin{array}{r}
3 \\
13 \\
3 \\
31 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
29 \\
3 \\
13 \\
3 \\
\hline
\end{array}
\] & - \(\begin{array}{r}\text { 52 } \\ 7 \\ 7 \\ 151 \\ \hline\end{array}\) & \[
\left.\begin{array}{r}
3 \\
\mathrm{P} \\
3 \\
1
\end{array} \right\rvert\,
\] & \begin{tabular}{|r|r}
89 \\
\hline 3 \\
\hline 73 \\
\hline
\end{tabular} & 151 & \(\begin{array}{r}3 \\ p \\ 3 \\ 7 \\ \hline\end{array}\) & 329 \(\begin{array}{r}29 \\ 3 \\ 7 \\ 3\end{array}\) & \[
\begin{array}{r}
41 \\
13 \\
\hline
\end{array}
\] & \[
37
\] & 7
3
p
3 \\
\hline \[
73
\] & \[
\left.\begin{aligned}
& 7 \\
& 3 \\
& p \\
& 3
\end{aligned} \right\rvert\,
\] & \[
\overline{61}
\] & \(\begin{array}{r}53 \\ 3 \\ 11 \\ \hline 7\end{array}\) & \[
\begin{array}{r}
71 \\
3 \\
p \\
3
\end{array}
\] & \[
\left.\begin{array}{l}
89 \\
19
\end{array}\right]
\] & \(\begin{array}{r}13 \\ 3 \\ 43 \\ \hline\end{array}\) & \(\begin{array}{r}1 \\ 1 \\ \hline\end{array}\) & \[
\begin{array}{r}
7 \\
163 \\
19
\end{array}
\] & \[
\begin{array}{r}
3 \\
11 \\
3 \\
131 \\
\hline
\end{array}
\] & \[
\begin{array}{c|c}
3 & 239 \\
1 & 3 \\
3 & 1
\end{array}
\] & \[
\begin{array}{|c|c|}
\hline & 11 \\
3 & 163 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
3 \\
23 \\
3
\end{array}
\] & \[
\begin{array}{r}
19 \\
3 \\
37 \\
3 \\
\hline
\end{array}
\] &  & \[
211
\] & \[
\begin{array}{r}
137 \\
3 \\
11 \\
3 \\
\hline
\end{array}
\] & \begin{tabular}{|r|r|} 
\\
\hline 1 & 47 \\
\hline 283 \\
1 & 113 \\
3 & 23 \\
\hline
\end{tabular} & \[
79
\] & \[
\begin{aligned}
& 1 \\
& 3 \\
& 7
\end{aligned}
\] & 13 \\
\hline \[
\begin{aligned}
& 83 \\
& 81 \\
& 80 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
11 \\
p \\
71 \\
17
\end{array}
\] & \[
\begin{aligned}
& 3 \\
& 7 \\
& 3 \\
& \text { P }
\end{aligned}
\] & \[
13
\] & \[
\begin{aligned}
& 1 \\
& 11 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
2 \\
3 \\
\mathrm{p}
\end{array}
\] & 11 & \[
59
\] & \[
\begin{array}{r}
31 \\
3 \\
\mathrm{p}
\end{array}
\] & \[
\begin{array}{r}
293 \\
3 \\
24 \\
24 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
11 \\
\mathrm{p} \\
13
\end{array}
\] & \[
\frac{2}{p}
\] & 11
3
\(p\) & \begin{tabular}{c}
\(p\) \\
\(p\) \\
\(p\) \\
7 \\
\hline
\end{tabular} & \[
\begin{array}{r}
3 \\
p \\
3 \\
47 \\
\hline
\end{array}
\] & 3 & \[
\begin{array}{r}
13 \\
3 \\
\hline
\end{array}
\] & 19 & \[
\begin{array}{r}
191 \\
3
\end{array}
\] & \[
\begin{array}{r}
269 \\
223 \\
P \\
p \\
p
\end{array}
\] & \(\begin{array}{r}3 \\ \hline \\ 3 \\ 3 \\ 7 \\ \hline\end{array}\) \\
\hline \[
\begin{aligned}
& 91 \\
& 93 \\
& 97 \\
& 99
\end{aligned}
\] & \[
\begin{array}{r}
3 \\
19
\end{array}
\] & 11 & \[
\begin{array}{r}
41 \\
17 \\
p \\
23
\end{array}
\] & \begin{tabular}{l}
3 \\
7 \\
3 \\
\hline
\end{tabular} & \[
17
\] & \[
\begin{aligned}
& 53 \\
& p \\
& 29 \\
& 13
\end{aligned}
\] & 3
\(p\)
3
\(p\) & \[
71
\] & 19
\(p\)
7
\(p\) & \[
\begin{array}{r}
3 \\
5 \\
3 \\
1
\end{array}
\] & \[
\begin{array}{r}
127 \\
3 \\
p
\end{array}
\] & \[
\begin{array}{r}
71 \\
43 \\
13
\end{array}
\] & \[
\left|\begin{array}{r}
3 \\
29 \\
3 \\
79
\end{array}\right|
\] & 59 & \begin{tabular}{c|c}
1 & p \\
3 & p \\
9 & p \\
3 & 7
\end{tabular} & \begin{tabular}{|r|r|}
\hline 1 \\
\hline 18 \\
\hline \\
3 \\
3 \\
11
\end{tabular} & 343 & \[
\begin{gathered}
71 \\
7 \\
71 \\
97
\end{gathered}
\] & \[
\begin{array}{r}
3 \\
p \\
3 \\
13
\end{array}
\] & \begin{tabular}{r}
193 \\
3 \\
\hline \\
\\
3
\end{tabular} \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 940 & 941 & & & & & & & & 949 & 959 & 951 & \(25^{2}\) & 953 & 95 & & & & & \\
\hline 01 & 23 & & & 181 & 3 & 11 & 13 & & & 3 & 3 & P & 31 & 3 & P & & & p & P & \\
\hline 03 & & 139 & & & 67 & & P & 7 & 3 & p & P & 3 & P & 13 & 3 & 43 & P & & P & 29 \\
\hline 07 & p & 3 & & & 3 & & 89 & 3 & 113 & P & 3 & p & 7 & 3 & 13 & P & 3 & p & 149 & \\
\hline 9 & p & P & 3 & P & 7 & 3 & 37 & P & 3 & 107 & P & 3 & 19 & 191 & 3 & 149 & 67 & 3 & 7 & 11 \\
\hline 11 & 3 & p & 13 & 3 & 9 & 29 & & 53 & P & 3 & & P & 3 & p & 73 & & 23 & & & \\
\hline  & 41 & 3 & 7 & 37 & 3 & & - P & 3 & 59 & & 3 & 227 & P & P & P & 11 & 3 & P & P & \\
\hline 17 & 3 & p & 71 & 3 & 263 & 47 & 3 & & 53 & 3 & 13 & 1 I & 3 & P & 7 & 3 & p & p & 3 & \\
\hline 19 & 149 & 3 & P & 257 & 3 & 31 & 7 & 3 & P & 1. & 3 & 73 & P & 3 & P & 23 & 3 & 13 & p & \\
\hline 21 & 167 & p & 3 & P & P & & P & 11 & & 3 & P & 3 & & 199 & 3 & 9 & & 3 & 11 & \\
\hline & 3 & 61 & 59 & 3 & 7 & 11 & 3 & P & P & 3 & 167 & 7 & 3 & 9 & 37 & 3 & 11 & p & 3 & \\
\hline  & 17 & 11 & 3 & p & P & 3 & 13 & P & 3 & & P & 3 & 11 & P & 3 & P & & 3 & 79 & 13 \\
\hline 29 & 3 & 7 & p & 3 & 89 & P & - 3 & 43 & 7 & 3 & 11 & 251 & 3 & 13 & p & 3 & p & 29 & 3 & 1 \\
\hline 31 & 7 & 3 & 17 & p & 3 & & 173 & 3 & 11 & 59 & 3 & P & P & P 3 & & & & & 61 & \\
\hline 33 & P & 13 & 3 & 17 & P & 3 & 7 & 61 & & P & 29 & 3 & P & 7 & 3 & 83 & P & 3 & 47 & 23 \\
\hline & 271 & 3 & 11 & 29 & 3 & 17 & 101 & 3 & p & 139 & & 7 & 131 & & 19 & 13 & 3 & & 7 & \\
\hline 39 & 11 & 2.3 & 3 & 7 & P & 3 & 17 & 11 & 3 & 13 & 7 & & , & p & , & , & 59 & 3 & 239 & \\
\hline & 3 & 4 & & & p & & 3 & & & 3 & 101 & 89 & & 7 & & & & 19 & \[
3
\] & 37 \\
\hline & 157 & 3 & 73 & P & 3 & & 31 & & & 19 & 3 & p & 23 & & p & & 3 & 67 & 11 & \\
\hline & 3 & 31 & 19 & 3 & p & & 3 & P & p & 3 & 17 & 13 & 3 & & 11 & 3 & 10 & p & 3 & \\
\hline & P & 3 & 307 & P & 3 & 7 & P & 3 & P & P & & 17 & 7 & & 31 & & 3 & 23 & 13 & \\
\hline & 163 & & & p & 7 & 3 & P & 41 & 3 & P & 11 & & 13 & & 3 & 9 & & & & 229 \\
\hline & 3 & P & & 3 & 29 & 23 & 3 & 19 & 11 & 3 & 7 & P & & 17 & 53 & & 41 & & & 11 \\
\hline & P & & & 157 & 11 & & 103 & 13 & 3 & 250 & 9 & 3 & P & 167 & 3 & & 23 & 3 & & \\
\hline 9 & 3 & 13 & 11 & 3 & 59 & p & 3 & 7 & 29 & 3 & 23 & 43 & 3 & 11 & & 3 & 17 & 31 & & \\
\hline & II & 3 & & 127 & 3 & & & 3 & 13 & P & & 11 & & & & & & 17 & 257 & \\
\hline & P & 17 & & 197 & P & & 181 & 193 & 3 & 11 & P & 3 & 7 & 47 & 3 & & 271 & 3 & 15 & \\
\hline & 109 & & 107 & 7 & 3 & 11 & 137 & & 19 & 23 & 3 & 59 & P & 3 & p & 227 & & & 37 & \\
\hline 60 & 19 & p & 3 & 11 & 17 & 3 & 41 & 97 & 3 & 7 & 13 & 3 & 47 & P & 3 & & & & P & 19 \\
\hline & 3 & & 31 & & & & & & 7 & 3 & & 19 & & 281 & P & & 29 & 13 & & \\
\hline & 7 & 3 & P & 19 & 3 & & 17 & & p & 73 & , & 13 & & & & 3 I & 3 & P & & \\
\hline 7 & 3 & 41 & 23 & & P & & 3 & P & 17 & 3 & 31 & P & 3 & 127 & 307 & & 241 & II & 3 & \\
\hline 79 & P & 3 & 29 & P & 3 & 271 & 13 & 3 & & 17 & 3 & & P & - 3 & P & 11 & & 19 & 7 & \\
\hline 81 & 13 & 53 & 3 & & 107 & & 73 & P & & 19 & & & 151 & 11 & & & & & P & 4 \\
\hline 83 & & 19 & & & & & & 13 & 239 & - 3 & P & 11 & & P & P & & & \[
p
\] & 3 & 5 \\
\hline 8 & & 97 & 3 & 37 & 19 & 3 & & & & 43 & p & & & 17 & & & & 3 & 11 & \\
\hline 89 & & 131 & 13 & 3 & \(6:\) & 11 & 3 & p & & & & & - 3 & & & & II & P & & \\
\hline 9 & 37 & & p & II & 3 & & & & & & & & & & & & & & & \\
\hline 93 & 23 & 11 & 3 & 13 & 7 & & & P & 3 & p & P & & 11 & 1 & & 17 & 3 & & & 59 \\
\hline 97 & 73 & 3 & & & 3 & & 281 & , & & & 3 & & & & & & & p & 17 & \[
3
\] \\
\hline \[
39
\] & P & & 3 & \(p\) & 53 & 3 & 311 & 47 & | 3 & P & 61 & & 157 & 19 & & & 83 & 3 & \(4^{1}\) & 17 \\
\hline
\end{tabular}

Incompofit, or Prime, Numbers, lefs than 100,000.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline \[
\begin{aligned}
& 03 \\
& 07 \\
& 07
\end{aligned}
\] & \[
\begin{array}{r}
19 \\
3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
17 \\
7 \\
11 \\
13
\end{array}
\] & \[
\begin{array}{r}
3 \\
17 \\
3 \\
3 \\
\hline
\end{array}
\] & 193
3 & \(\begin{array}{r}P \\ 149 \\ 17 \\ 229 \\ \hline\end{array}\) & \[
\begin{array}{r}
3 \\
11 \\
3 \\
7 \\
7
\end{array}
\] & \[
\begin{aligned}
& 3 \\
& 7 \\
& 3
\end{aligned}
\] & \[
\begin{array}{r}
\mathrm{p} \\
13 \\
97
\end{array}
\] & \[
\begin{array}{r}
3 \\
7 \\
3 \\
131 \\
\hline
\end{array}
\] & P
3 & \[
\begin{gathered}
\mathrm{p} \\
\mathrm{p} \\
\mathrm{p} \\
\mathrm{I} \\
\hline
\end{gathered}
\] & \[
\begin{array}{r}
p \\
3 \\
19
\end{array}
\] & \[
\begin{array}{r}
13 \\
3 \\
11 \\
2
\end{array}
\] & \[
\begin{array}{r}
\mathrm{p} \\
\mathrm{p} \\
7 \\
31 \\
\hline
\end{array}
\] & \[
\begin{array}{rrr}
3 & 9 \\
257 & 3 \\
3 & 281 \\
13 & 3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
7 \\
11 \\
p \\
p \\
p
\end{array}
\] & \[
\left.\begin{array}{r}
41 \\
3 \\
199
\end{array} \right\rvert\,
\] & \[
\begin{array}{r}
11 \\
3 \\
47
\end{array}
\] & 47
3
19
7 \\
\hline 11
12
17
19
19 & & \[
\begin{array}{r}
23 \\
3 \\
277 \\
\hline
\end{array}
\] & 11 & \[
\begin{array}{r}
7 \\
13 \\
61
\end{array}
\] & \[
\begin{array}{r}
3 \\
67 \\
3 \\
\mathrm{p} \\
\hline
\end{array}
\] & \[
\begin{array}{r}
103 \\
3 \\
p \\
3
\end{array}
\] & \[
\begin{aligned}
& 17 \\
& 11 \\
& 79 \\
& 53 \\
& \hline
\end{aligned}
\] & \[
\begin{array}{r}
3 \\
17 \\
3 \\
3
\end{array}
\] & \[
\begin{array}{r}
11 \\
3 \\
7 \\
3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
\mathrm{P} \\
199 \\
17 \\
19 \\
\hline
\end{array}
\] & \[
13
\] & \[
\begin{aligned}
& \mathrm{p} \\
& 3
\end{aligned}
\] & \[
\begin{array}{r}
41 \\
19 \\
67 \\
\hline 191
\end{array}
\] & \[
\begin{array}{r}
23 \\
3 \\
307
\end{array}
\] & \[
\begin{array}{rrr}
29 & p \\
3 & 1 & 13 \\
61 & 7 \\
3 & 7 \\
\hline 1 & 13
\end{array}
\] & \[
\begin{array}{r}
\mathrm{p} \\
3 \\
31
\end{array}
\] & 19 & 29 & 179 \\
\hline \[
\begin{aligned}
& 27 \\
& 29
\end{aligned}
\] & \[
\left[\left.\begin{array}{r}
1 \\
1 \\
3 \\
19
\end{array} \right\rvert\,\right.
\] & \[
\begin{array}{r}
19 \\
3 \\
97 \\
3
\end{array}
\] & \[
4^{1}
\] & & \[
\begin{array}{r}
13 \\
3 \\
21 \\
3
\end{array}
\] & \[
\begin{array}{r}
263 \\
i \\
p \\
8
\end{array}
\] & \[
\begin{array}{r}
23 \\
3 \\
13
\end{array}
\] & \[
\begin{array}{r}
311 \\
3 \\
197 \\
3
\end{array}
\] & \[
\begin{gathered}
p \\
p \\
p \\
37
\end{gathered}
\] & \[
\begin{array}{r}
3 \\
103 \\
3
\end{array}
\] & & \[
\begin{array}{r}
17 \\
13 \\
\mathrm{p} \\
23
\end{array}
\] & II & \begin{tabular}{|c|c}
7 \\
3 \\
\(p\) \\
3
\end{tabular} & \[
\begin{array}{r}
37 \\
\mathrm{P} \\
\mathrm{II} \\
\mathrm{p}
\end{array}
\] & \[
\begin{array}{r}
41 \\
3 \\
23 \\
23 \\
3
\end{array}
\] & 13 & \[
\begin{array}{r}
3 \\
11 \\
3
\end{array}
\] & \[
181
\] \\
\hline \[
\underline{39}
\] & \[
\mid 137
\] & \[
\begin{array}{r}
251 \\
\mathrm{P} \\
127
\end{array}
\] & \[
\begin{array}{r}
3 \\
p \\
3 \\
1
\end{array}
\] & \[
\begin{aligned}
& p \\
& 3 \\
& p \\
& 3
\end{aligned}
\] & \[
\begin{gathered}
p \\
73 \\
11
\end{gathered}
\] & \[
\begin{array}{r}
37 \\
3 \\
19 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
71 \\
31 \\
41
\end{array}
\] & & \[
\begin{array}{r}
3 \\
11 \\
3 \\
179
\end{array}
\] & 31 & 23 & \[
\begin{array}{r}
3 \\
137 \\
3
\end{array}
\] & & \[
\left(\begin{array}{r}
1 \\
1
\end{array} 3\right.
\] & \[
\begin{array}{r|r}
3 & 11 \\
139 \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
17 \\
89 \\
8 \\
163 \\
163 \\
251
\end{array}
\] & \(\begin{array}{r}17 \\ 3 \\ 4 \\ \hline\end{array}\) & \[
\begin{array}{r}
19 \\
3 \\
-27
\end{array}
\] & \({ }^{4}\) \\
\hline \[
\begin{aligned}
& 43 \\
& 47 \\
& 49
\end{aligned}
\] & \[
\mathrm{r} 39
\] & \[
79
\] & \[
\begin{array}{r}
157 \\
109
\end{array}
\] & \[
\begin{aligned}
& 13 \\
& 23 \\
& 11
\end{aligned}
\] & \[
43
\] & \[
31_{1}^{3}
\] & \[
\left.\begin{gathered}
21 \\
p \\
127
\end{gathered} \right\rvert\,
\] & \[
\begin{array}{r}
3 \\
89 \\
3 \\
\hline
\end{array}
\] & \begin{tabular}{r}
13 \\
3 \\
1 \\
1 \\
3 \\
\hline
\end{tabular} & \[
\begin{array}{r}
13 \\
7 \\
29 \\
67 \\
\hline
\end{array}
\] & \(\begin{array}{r}53 \\ 3 \\ 107 \\ \hline\end{array}\) & \[
\begin{array}{r}
3 \\
19 \\
3 \\
\hline
\end{array}
\] & \[
\begin{aligned}
& 47 \\
& 31 \\
& 79 \\
& \hline
\end{aligned}
\] & \[
\left|\begin{array}{ll}
3 & 1 \\
1
\end{array}\right|
\] &  &  & 13 &  & \begin{tabular}{|c|c}
\hline P & 3 \\
\hline
\end{tabular} \\
\hline \[
\begin{aligned}
& 531 \\
& 57 \\
& 59
\end{aligned}
\] & \[
\begin{aligned}
& 3 \\
& p \\
& 3 \\
& p \\
& \hline
\end{aligned}
\] & it & \[
\begin{gathered}
29 \\
101
\end{gathered}
\] & \[
67
\] & \begin{tabular}{r}
\(p\) \\
3 \\
\(p\) \\
3 \\
\hline
\end{tabular} &  & \[
\begin{array}{r}
3 \\
19 \\
3 \\
163 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
31 \\
3 \\
p
\end{array}
\] & \[
\begin{array}{r}
\mathrm{P} \\
23 \\
\mathrm{p} \\
\mathrm{p}
\end{array}
\] &  & \(\begin{array}{r}37 \\ 7 \\ 7 \\ \hline\end{array}\) & \(\begin{array}{r}\mathrm{p} \\ 7 \\ \mathrm{p} \\ \mathrm{p} \\ \hline\end{array}\) & \[
13
\] & \[
\begin{array}{r}
67 \\
3 \\
13 \\
3
\end{array}
\] &  & \[
\begin{aligned}
& 7 \\
& 3 \\
& 7 \\
& 3 \\
& 3
\end{aligned}
\] & \(\begin{array}{r}67 \\ 12 \\ 29 \\ \hline\end{array}\) & 3 & 3 \\
\hline \[
\begin{aligned}
& 63 \\
& 67
\end{aligned}
\] & 17 & \[
\begin{array}{r}
23 \\
\mathrm{p}
\end{array}
\] & \begin{tabular}{l}
3 \\
\hline \\
3 \\
3 \\
\hline
\end{tabular} & \[
\begin{array}{r}
73 \\
3 \\
29
\end{array}
\] & \[
\begin{gathered}
p \\
1
\end{gathered}
\] & \[
\begin{array}{r}
3 \\
61 \\
3 \\
11
\end{array}
\] & \begin{tabular}{l}
\(p\) \\
3 \\
\(P\) \\
3 \\
\hline
\end{tabular} & \[
\begin{array}{r}
\mathrm{p} \\
1 \mathrm{H} \\
\mathrm{p}
\end{array}
\] & \[
\begin{array}{r}
3 \\
13 \\
3 \\
157 \\
\hline
\end{array}
\] & 13 & 31
29
113 & \[
\begin{array}{r}
3 \\
11 \\
3
\end{array}
\] & 23 & \[
\begin{array}{|r|}
11 \\
7 \\
\mathrm{p} \\
\mathrm{p}
\end{array}
\] & \[
\begin{array}{r|r|}
3 & \mathrm{p} \\
\mathrm{p} & 3 \\
3 & 43 \\
29 & 3 \\
\hline
\end{array}
\] & \[
\begin{array}{|c|c|}
\hline 61 & 61 \\
3 & 127 \\
3 & 101 \\
3 & 12 \\
\hline
\end{array}
\] & 59 & p
3
7
3 & - 16 \\
\hline \[
\begin{aligned}
& 71 \\
& 73 \\
& 77 \\
& 79
\end{aligned}
\] & \[
\left[\begin{array}{r}
23 \\
191 \\
29
\end{array}\right.
\] & & 43 & \[
\begin{array}{r}
17 \\
p \\
3 r
\end{array}
\] & 13 & \[
\begin{array}{r}
269 \\
3 \\
13 \\
3 \\
\hline
\end{array}
\] & \[
\begin{array}{r}
p \\
277 \\
7 \\
11
\end{array}
\] & \[
\begin{array}{r}
3 \\
29 \\
3 \\
p \\
\hline
\end{array}
\] & \[
\begin{array}{|c}
7 \\
7 \\
3 \\
1 \\
1 \\
3 \\
\hline
\end{array}
\] & \(\begin{array}{r}\text { P } \\ 3 \\ \hline \\ \hline\end{array}\) & \(\begin{array}{r}p \\ 3 \\ 193 \\ \hline\end{array}\) & \begin{tabular}{l} 
P \\
\hline \\
\\
\hline \\
\hline
\end{tabular} & \[
\begin{aligned}
& 211 \\
& 11 \\
& 80
\end{aligned}
\] & \[
3
\] &  & \[
\begin{array}{r}
3 \\
19 \\
\hline
\end{array}
\] & \(p\)
3
\(p\)
3 & \[
\begin{array}{r}
97 \\
13 \\
1 \\
\hline
\end{array}
\] &  \\
\hline \[
87
\] & \[
\begin{array}{r}
3 \\
13
\end{array}
\] & & \[
\begin{array}{r}
p \\
11 \\
73 \\
p \\
\hline
\end{array}
\] & 113 & \begin{tabular}{|r}
7 \\
3 \\
\(P\) \\
3 \\
\hline
\end{tabular} & \[
\begin{array}{r}
\text { P } \\
59
\end{array}
\] & \[
\begin{array}{r}
3 \\
109 \\
3 \\
3
\end{array}
\] & \[
\begin{array}{r}
17 \\
3 \\
\mathrm{p} \\
3
\end{array}
\] & \begin{tabular}{r}
19 \\
\hline 19 \\
19 \\
13 \\
13
\end{tabular} & \[
\begin{array}{r}
3 \\
23 \\
3 \\
\hline
\end{array}
\] & \(\begin{array}{r}17 \\ 3 \\ \hline\end{array}\) & \[
\begin{array}{|l|l|}
\hline 3 \\
3 & 157 \\
7 & p \\
\hline & \\
\hline
\end{array}
\] & 271 & \[
\begin{aligned}
& 3 \\
& \mathrm{p}
\end{aligned}
\] & \[
\begin{array}{r|r|}
\hline 43 & 3 \\
71 & p \\
13 & 3 \\
7 & 23 \\
\hline
\end{array}
\] & \begin{tabular}{r|r}
3 & 23 \\
\hline & 2 \\
3 & 2 \\
\hline & 3 \\
3
\end{tabular} & 277
7
\(p\)
\(p\) & \[
1 \mathrm{II}
\] &  \\
\hline \[
\begin{aligned}
& 91 \\
& 93 \\
& 97 \\
& 99
\end{aligned}
\] & 307 & \[
\begin{array}{r}
43 \\
29 \\
19 \\
p
\end{array}
\] & 3 & 41 & 47
\(p\)
\(p\)
13 & 2. & 7
3
\(p\)
3 & \[
\begin{array}{r}
151 \\
43 \\
p \\
p
\end{array}
\] & 3
p
3
11 &  &  & \[
\begin{array}{r}
3 \\
83 \\
3 \\
37
\end{array}
\] & \[
\begin{array}{r}
17 \\
3 \\
149 \\
3
\end{array}
\] & \begin{tabular}{|c|r|}
3 & 17 \\
\hline & P \\
& 173
\end{tabular} & \[
\begin{array}{r|r}
3 & 13 \\
11 & 3 \\
3 & 37 \\
\mathrm{p} & 3
\end{array}
\] & \[
\begin{array}{l|l|}
\hline 3 & 11 \\
3 & 2
\end{array} 1
\] & 19
3
13 & \[
\begin{array}{r}
53 \\
3 \\
223 \\
3
\end{array}
\] &  \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline & 193019 & 981 & 982 & \(9^{83}\) & 1984 & & 986 & & 198 & \(9^{89} 9\) & \(99^{\circ}\) & 931 & 1992 & & 994 & 995 & 996 & 997 & & 999 \\
\hline 01 & & & & & & & & & & - 3 & 7 & 113 & & 199 & & & 103 & & & \\
\hline 03 & 23 & 3 & 7 & & & 137 & 151 & 3 & 29 & 7 & & P & [3 & 3 & 107 & 19 & 3 & 179 & & \\
\hline 07 & 3 & 17 & P & 3 & P & P & & 7 & p & 31 & 181 & 23 & 3 & 13 & 7 & 3 & p & P & & \\
\hline 09 & [ & & \(1 \%\) & 37 & & 23 & 7 & 3 & P & P & 3 & P & 11 & 3 & P & 151 & 3 & p & P & \\
\hline 11 & \(p\) & 13 & 3 & 17 & P & 3 & 31 & P & 3 & P & 11 & 3 & 3 & 47 & 3 & 191 & P & 3 & 51 & \\
\hline 13 & 3 & 41 & P & 3 & 7 & 29 & 3 & P & 11 & 3 & p & 7 & 3 & 19 & 89 & 3 & 23 & - & & 11 \\
\hline 17 & P & 59 & 3 & P & 11 & 3 & 17 & P & 3 & 7 & p & 3 & 3.47 & P & 3 & 11 & & 3 & P & 41 \\
\hline 19 & 3 & 7 & 14 & 3 & P & P & & 17 & 7 & 3 & 83 & P & - 3 & 1 I & 37 & 3 & 13 & p & 3 & 163 \\
\hline 21 & 7 & 3 & p & p & 3 & 83 & & 3 & 17 & 31 & 3 & 1 & 313 & 3 & & 23 & 3 & P & 73 & 3 \\
\hline 23 & 83 & p & 3 & P & 13 & 3 & & 260 & 3 & 11 & P & 3 & 3 P & 7 & 3 & P & P & 3 & p & P \\
\hline 27 & 61 & 3 & P & p & & 11 & P & 3 & 37 & P & & & \(\epsilon_{7}\) & 3 & 19 & P & 3 & 31 & 7 & 3 \\
\hline 29 & 167 & 1 & 3 & 7 & P & 3 & 19 & P & 3 & P & 7 & 3 & 13 & 71 & 3 & P & 67 & 3. & P & \\
\hline 31 & 3 & 11 & 7 & 32 & 257 & 37 & & & 23 & 31 & \(16 \%\) & & 3 & 17 & p & 3 & & 19 & 3 & \({ }^{1} 3\) \\
\hline 33 & 13 & 3 & 231 & 107 & 3 & P & 53 & 3 & 7 & 19 & 3 & P & P P & 3 & 17 & 7 & 3 & p & P & 3 \\
\hline 37 & 3 & 131 & 193 & 3 & i 733 & 211 & 3 & P & P & 3 & 97 & P & P & 7 & 13 & 3 & 17 & 11 & 3 & 37 \\
\hline 39 & 17 & 3 & 31 & 29 & 3 & 7 & & 3 & 13 & P & 3 & p & P 7 & 3 & P & 1 I & 3 & 17 & P & 3 \\
\hline 41 & P & 17 & 3 & 43 & 7 & 3 & & 293 & 3 & 163 & P & 3 & P & 11 & 3 & 13 & 37 & 3 & 7 & 139 \\
\hline 43 & 3 & P & 17 & 3 & P & P & 3 & 19 & 97 & 3 & 1 & 11 & 3 & 41 & 17 & 3 & P & 7 & & 1 \\
\hline 47 & P & 7 & 3 & P & \({ }^{17}\) & 3 & 23 & 11 & 3 & P & 13 & 3 & 61 & P & 3 & 7 & 251 & 3 & 11 & So \\
\hline 49 & 3 & 61 & 19 & 3 & 1.3 & 11 & 3 & & P & 3 & 37 & P & 1 3 & P & 7 & 3. & I & 13 & & 127 \\
\hline 51 & 71 & 3 & p & 11 & 3 & 39 & & 3 & 41 & 53 & 3 & 13 & P & 3 & 11 & P & 3 & 23 & 31 & \\
\hline 53 & 31 & 11 & 3 & 59 & P & 3 & 4 & 17 & 3 & P & P & 3 & , & 73 & 3 & 113 & 227 & 3 & 13 & \\
\hline 57 & P & 3 & P & & 3 & 67 & 13 & 3 & 11 & 17 & 32 & 229 & P & 3 & 271 & 29 & . 3 & 7 & 61 & 3 \\
\hline 59 & 13 & 3 & 3 & 41 & p & 3 & 11 & 61 & 3 & 7 & 17 & 3 & p & 13 & 3 & p & 7 & & & 19 \\
\hline 61 & 3 & & 97 & 3 & 11 & P & & 13 & 7 & & 23 & 17 & 3 & 67 & 79 & & p & P & & \\
\hline 63 & 7 & - & 11 & 19 & 3 & P & & & 109 & P & 3 & 53 & 17 & 3 & 7 & P & 3 & 67 & 37 & \\
\hline 67 & 3 & 89 & 13 & 3 & P & 7 & & 283 & P & 1 & 157 & 131 & 1 & p & 17 & 3 & p & P & & \\
\hline 69 & 281 & & P & P & 3 & \(2+1\) & P & & P & 13 & & - & 53 & 3 & P & 17 & 3 & 19 & & \\
\hline 71 & 101 & 127 & 3 & 7 & 59 & 3 & 79 & 43 & 3 & 19 & 7 & 3 & 37 & P & 3 & P & 11 & & & \\
\hline \(7:\) & 3 & 19 & 7 & 3 & P. & p & & P & P & 3 & 13 & P & P & 43 & 11 & & & 17 & & 2,7 \\
\hline 77 & & 31 & 3 & P & I) & 3 & 101 & & 3 & 23 & 11 & 3 & 3 & P & 3 & & 263 & & P & 17 \\
\hline 79 & - 3 & P & 23 & & p & 13 & & p & 11 & & ? & 4 & I & 7 & 31 & 3 & P & 113 & 3 & 11 \\
\hline 81 & P & 3 & 29 & 131 & 3 & 7 & 11 & 3 & 01 & P & 3 & & & 7 3 & 53 & P & 3 & 11 & P & 3 \\
\hline 83 & 43 & 47 & 3 & 37 & \% & & & 173 & 3 & 31 & p & & 3101 & 23 & 3 & 11 & 83 & & & 1 \\
\hline 5 & 11 & 3 & 7 & & & 11 & & & P & - & 3 & 11 & 143 & 3 & , & 53 & & & 59 & \\
\hline 80 & 47 & & 3 & & 149 & & & 223 & & 11 & P & 3 & 1 & 19 & & 5 & P & & 23 & \\
\hline 91 & & 149 & 227 & & & 19 & & & 3 & & 197 & P & P & P & & & 131 & 73 & & \\
\hline 93 & 233 & & 13 & 61 & P & 11. & & & & P. & & & 131 & & 37 & & 3 & & 191 & 3 \\
\hline 97 & & 11 & P & & 7 & p & & 31 & p & 3 & 41 & & 7 3 & P & p & 3 & 13 & 23 & & 19 \\
\hline 39 & 263 & 3 & P & & 3 & 43 & 229 & & & p & 3 & & & , & & 137 & 3 & & 283 & 3 \\
\hline & & & & & & & & & & & & & & & & & & & & \\
\hline
\end{tabular}

\title{
Of Rational Numbers that express the Sides of
}
Right-angled Triangles.


\section*{A PR OB LE M.}

Article 1. To find as many right-angled triangles as we please, of which the three fides hall be expreffible in rationat numbers.

\section*{S O L U TI O N.}

Let the numbers that express the lengths of the two fides that contain the right angle, be denoted by the letters \(m\) and \(n\). Then will the number that denotes the hypotenufe of the triangle, or the line that fubtends the right angle, be greater than either of the two numbers \(m\) and \(n\), and its excefs above either of the fail numbers will be a rational number: for, if it were not, the number itfelf which expreffes the fail hypotenufe would not be a rational number. Let the excels of this number, which expreffes the hypotenufe, above the number \(m\), which expreffes one of the fides containing the right angle, be called \(e\). Then will the number which expreffes the hypotenuse be \(n+e\), and its square will be \(m m+2 m e+c e\). But (by El. I, 47,) the fquare of the hypotenufe of a right-angled triangle is equal to the fum of the fquares of the two fides of it. Therefore 3 H
\(n m+2 m e+e e\) will be equal to \(m m+n n\); and, confequently (fubtracting \(m m\) from both fides), \(2 m e+c e\) will be equal to \(n n\); and (fubtracting ee from both fides, which is evidently lefs than \(2 m e+e e\), and confequently muft be lefs alfo than \(n n\), or the right-hand fide of the equation 2 me \(+e e=n n\), \(2 m e\) will be equal to \(m n-e e\); and (dividing both fides of the equation by \(2 e\),) \(m\) will be equal to \(\frac{n n-e \varphi}{2 c}\), and confequently \(m+e\) will be equal to \(\frac{n n-c e}{2 e}+e\), or to \(\frac{2 n-c e}{2 e}+\frac{2 e \times e}{2 e}\), or to \(\frac{n n-e e}{2 e}+\frac{2 e e}{2 e}\), or to \(\frac{n n+c e}{2 e}\). And confequently the three numbers \(m\), \(n\), and \(m+e\), that will exprefs the three fides of a right-angled triangle, will be equal to \(\frac{n \eta-e e}{2 e}, n\), and \(\frac{n n+c e}{2 c}\), or \(\frac{n n-c c}{2 e}, \frac{2 e n}{2 e}\), and \(\frac{n n+c e}{2 e}\); or, if we take any number whatfoever, and call it \(e\), and take any other number whatfoever that is greater than \(e\), and call it \(n\), the three numbers \(\frac{n n-c c}{2 e}, \frac{2 c n}{2 e}\), and \(\frac{n n+e e}{2 e}\), will be three rational numbers that will exprefs the three fides of a right-angled triangle. e. E. I.

Examples of tbis Melbod of finding fucb Retional Numbers.

Art. 2. Thus, for example, if \(e\) is \(=\mathrm{I}\), and \(n\) is \(=2\), (which are the fimpleft numbers we can chufe, ) we thall have \(e e=1\), and \(n m=4\), and confequently \(\frac{n n-e e}{2 e}(=\) \(\left.\frac{4-1}{2 \times 1}=\frac{4-1}{2}\right)=\frac{3}{2}\), and \(\frac{2 c n}{2 e}\left(=\frac{2 \times 1 \times 2}{2 \times 1}\right)=\frac{4}{2}\), and \(\frac{5 n+e e}{2 \xi}\left(=\frac{4+1}{2 \times 1}=\frac{4+1}{2}\right)=\frac{5}{2}\); and confequently
\[
\frac{3}{2},
\]
\(-\frac{3}{2}, \frac{4}{2}\), and \(\frac{5}{2}\), will be three rational numbers that will exprefs the lengths of the three fides of a right-angled triangle. And accordingly we hall find that the fquare of the laft of thefe numbers, to wit, \(\frac{5}{2}\), which expreffes the hypotenure of the triangle, is equal to the fum of the fquares of the two former numbers, to wit, \(\frac{3}{2}\) and \(\frac{4}{2}\), which exprefs the two fides that contain the right angle. For the fquare of \(\frac{5}{2}\) is \(\frac{25}{4}\), and the fquares of \(\frac{3}{2}\) and \(\frac{4}{2}\) are \(\frac{9}{4}\) and \(\frac{16}{4}\); and \(\frac{25}{4}\) is \(=\frac{9}{4}+\frac{16}{4}\).

Secondly, let \(e\) be \(=2\), and \(n\) be \(=3\).
Then we fhall have \(e e=4\), and \(m n=9\), and \(2 e=4\) ? and confequently \(\frac{m n-c e}{2 e}\left(=\frac{9-4}{4}\right)=\frac{5}{4}\), and \(\frac{2 e n}{2 e}\) \(\left(=\frac{2 \times 2 \times 3}{2 \times 2}\right)=\frac{12}{4}\), and \(\frac{n n+c e}{2 c}\left(=\frac{9+4}{4}\right)=\frac{13}{4}\).
Therefore \(\frac{5}{4}, \frac{12}{4}\), and \(\frac{13}{4}\), will be three rational numbers that will exprefs the three fides of a right-angled triangle. And accordingly we fhall find that the fquare of \(\frac{13}{4}\) will be equal to the fum of the \{quares of \(\frac{5}{4}\) and \(\frac{12}{4}\). For the fquare of \(\frac{13}{4}\) is \(=\frac{169}{16}\), and the fquares of \(\frac{5}{4}\) and \(\frac{12}{4}\) are \(\frac{25}{15}\) and \(\frac{144}{16}\); and \(\frac{169}{16}\) is \(=\frac{25}{16}+\frac{144}{16}\).

Thirdly, let \(e\) be \(=3\), and \(n\) be \(=5 \cdot\)
Then we thall have \(e e=9\), and \(n=25\), and \(2 e=6\), and confequently \(\frac{n n-e e}{2 e}\left(=\frac{25-9}{6}\right)=\frac{16}{6}\), and \(\frac{2 c n}{2 e}\) \(\left(=\frac{2 \times 3 \times 5}{6}\right)=\frac{30}{6}\), and \(\frac{m n+6}{2 c}\left(=\frac{25+9}{6}\right)=\frac{34}{6}\). 3 H. 2

Therefore

Therefore \(\frac{16}{6}, \frac{30}{6}\), and \(\frac{34}{6}\), will be three rational numbers that will exprefs the three fides of a right-angled triangle. And accordingly we fhall find that the fquare of \(\frac{34}{6}\) will be equal to the fum of the fquares of \(\frac{16}{6 \cdot \pi}\) and \(\frac{30}{6}\). For the fquare of \(\frac{34}{6}\) is \(\frac{115^{6}}{3^{6}}\), and the fquares of \(\frac{16}{6}\) and \(\frac{30}{6}\) are \(\frac{256}{3^{6}}\) and \(\frac{900}{36}\); and \(\frac{1156}{3^{6}}\) is \(=\frac{25^{6}}{3^{6}}+\frac{900}{3^{6}}\).

Thefe three numbers \(\frac{16}{6}, \frac{30}{6}\), and \(\frac{37}{6}\), might have been reduced to fmaller numbers, by dividing both their numerators and denominators by 2. For they would then have been \(\frac{8}{3}, \frac{15}{3}\), and \(\frac{17}{3}\). Therefore thefe three numbers \(\frac{8}{3}, \frac{15}{3}\), and \(\frac{17}{3}\), will exprefs the three fities of a rightangled triangle.

Fourthly, let \(e\) be \(=3\), and \(n=7\).
Then we flall have \(c e=9\), and \(m n=49\), and \(2 e=6\), and confequently \(\frac{m n-c e}{2 c}\left(=\frac{49-9}{6}\right)=\frac{40}{6}\), and \(\frac{2 e n}{26}\) \(\left(=\frac{2 \times 3 \times 7}{6}\right)=\frac{42}{6}\), and \(\frac{m n+c e}{2 e}\left(=\frac{49+9}{6}\right)=\frac{58}{6}\).
Therefore \(\frac{40}{6}, \frac{42}{6}\), and \(\frac{58}{6}\), or \(\frac{20}{3}, \frac{27}{3}\), and \(\frac{29}{3}\), will be three rational numbers that will exprefs the fides of a rightangled triangle. And accordingly we fhall find that the fquare of \(\frac{29}{3}\) will be equal to the fum of the fquares of \(\frac{20}{3}\) and \(\frac{2 I}{3}\). For the fquare of \(\frac{29}{3}\) is \(\frac{S_{41}}{9}\), and the fquares of \(\frac{20}{3}\) and \(\frac{2 x}{3}\) are \(\frac{400}{9}\) and \(\frac{44 x}{9}\); and \(\frac{S_{41}}{9}\) is \(=\frac{400}{9}+\frac{441}{9}\).

Fifthly,

Fifthly, let \(e\) be \(=3\), and \(n=1\).
Then we thall have \(e e=9\), and \(m=121\), and \(2 e=\) 6 , and confequently \(\frac{n n-c e}{2 e}\left(=\frac{12 i-9}{6}\right)=\frac{112}{6}\), and \(\frac{2 e n t}{2 e}\) \(\left(=\frac{6 \times 11}{6}\right)=\frac{66}{6}\), and \(\frac{n n+e e}{2 c}\left(=\frac{121+9}{6}\right)=\frac{130}{6}\). There. fore \(\frac{112}{6}, \frac{66}{6}\), and \(\frac{130}{6}\), or, \(\frac{5^{6}}{3}, \frac{33}{3}\), and \(\frac{65}{3}\), will be three rational numbers that will exprefs the three fides of a rightangled triangle. And accordingly we thall find that the fquare of \(\frac{65}{3}\) will be equal to the fum of the fquares of \(\frac{56}{3}\) and \(\frac{33}{3}\). For the fquare of \(\frac{65}{3}\) is \(\frac{4225}{9}\), and the fquares of \(\frac{56}{3}\) and \(\frac{33}{3}\) are \(\frac{3136}{9}\) and \(\frac{1089}{9}\); and \(\frac{4225}{9}\) is \(=\frac{3136}{9}+\frac{1089}{9}\).

Sixthly, let \(e\) be \(=5\), and \(n=1_{3}\).
Then we fhall have \(e e=25\), and \(m n=169\), and \(2 e=\) 10, and confequently \(\frac{m n-e e}{2 e}\left(=\frac{169-25}{10}\right)=\frac{144}{10}\), and \(\frac{2 e n}{2 e}\) \(\left(=\frac{10 \times 13}{10}\right)=\frac{130}{10}\), and \(\frac{n n+e e}{26}\left(=\frac{169+25}{10}\right)=\frac{194}{10}\).
Therefore \(\frac{144}{10}, \frac{130}{10}\), and \(\frac{194}{10}\), or \(\frac{72}{5}, \frac{65}{5}\), and \(-\frac{97}{5}\), will be three rational numbers that will exprefs the three fides of a right-angled triangle. And accordingly we thall find that the fquare of \(\frac{97}{5}\) will be equal to the fum of the fquares of \(\frac{72}{5}\) and \(\frac{65}{5}\). For the fquare of \(\frac{97}{5}\) is \(\frac{9409}{25}\), and the fquares of \(\frac{72}{5}\) and \(\frac{65}{5}\) are \(\frac{5184}{25}\) and \(\frac{4225}{25}\); and \(\frac{94 c 9}{25}\) is \(=\frac{5184}{25}+\) \(\frac{4225}{25}\).

Thus we have obtained fix different fets of rational num. bers, which exprefs the lengths of the fides of as many different
ferent right-angled triangles; to wit, ift; \(\frac{3}{2}, \frac{4}{2}\), and \(\frac{5}{2}\); and, \(2 \mathrm{dly}, \frac{5}{4}, \frac{12}{4}\), and \(\frac{13}{4}\); and, \(3 \mathrm{dly}, \frac{8}{3}, \frac{15}{3}\), and \(\frac{17}{3}\); and, 4 thly \(, \frac{20}{3}, \frac{2 \pi}{3}\), and \(\frac{29}{3}\); and, 5 thly, \(\frac{56}{3}, \frac{33}{3}\), and \(\frac{65}{3}\); and, 6 thly, \(\frac{72}{5}, \frac{65}{5}\), and \(\frac{97}{5}\). And, by changing either both the numbers denoted by \(e\) and \(n\), or only one of thofe numbers, and computing the values of the three fractions \(\frac{n n-e e}{2 e}, \frac{2 e n}{2 e}\), and \(\frac{n n+c e}{2 e}\), we may obrain as many more fuch fets of numbers as we pleafe.

Art. 3. All thefe numbers are fractions, becaufe they are derived from the general fractional expreffions \(\frac{m n-c c}{2 e}, \frac{2 c n}{2 c}\), and \(\frac{n n+e c}{2 e}\). But, if we multiply the three fractions of each of thefe fix fets of fractions by their common denominator, the products will be whole numbers exprefling the fides of greater right-angled triangles fimilar to the former triangles, of which the fides were exprefied by the foregoing fractions. Thus, if we multiply the three fractions \(\frac{3}{2}, \frac{4}{2}\), and \(\frac{5}{2}\), by their common denominator 2 , we fhall have the whole numbers 3,4 , and 5 , for the fides of a greater right-angled triangle fimilar to the former triangle, of which the fides were expreffed by the fractions \(\frac{3}{2}, \frac{4}{2}\), and \(\frac{5}{2}\). And, if we multiply the three fractions \(\frac{5}{4}, \frac{12}{4}\), and \(\frac{13}{4}\), by their common denominator 4 , we fhall have the whole numbers 5,12 , and 13 , for the fides of a greater right-angled triangle fimilar to the former triangle, of which the fides were \(\frac{5}{4}, \frac{17}{4}\), and \(\frac{13}{4}\). And, if we multiply the three fractions
\[
\frac{8}{3}
\]
\(\frac{8}{3}, \frac{15}{3}\), and \(\frac{17}{3}\), by their common denominator 3 , we Thall have the whole numbers 8 , 15 , and 17 , for the fides of a greater right-angled triangle fimilar to the former triangle, of which the fides were \(\frac{8}{3}, \frac{15}{3}\), and \(\frac{17}{3}\). And, in like manner, from the fractions \(\frac{20}{3}, \frac{21}{3}\), and \(\frac{29}{3}\), we may derive the whole numbers 20,21 , and 29 ; and from the fractions \(\frac{56}{3}, \frac{33}{3}\), and \(\frac{65}{3}\), we may derive the whole numbers 56,33 , and 65 ; and from the fractions \(\frac{72}{5}, \frac{65}{5}\), and \(\frac{97}{5}\), we may derive the whole numbers 72,65 , and 97 ; all which fets of whole numbers will exprefs the fides of right-angled triangles fimilar to the three former triangles, of which the fides were expreffed by the fractions \(\frac{20}{3}, \frac{21}{3}\), and \(\frac{29}{3}\), and the fractions \(\frac{56}{3}, \frac{33}{3}\), and \(\frac{65}{3}\), and the fractions \(\frac{42}{5}\), \(\frac{65}{5}\), and \(\frac{97}{5}\).

Art. 4. And thefe whole numbers might have been obtained at once by computing only the numerators of the three general fractions \(\frac{n n-c e}{2 e}, \frac{2 e n}{2 e}\), and \(\frac{n n+c e}{2 e}\), to wit, the expreffions \(m n-e e, 2 e n\), and \(n n+e e\), which are the products of the multiplication of the faid three fractions into their common denominator \(2 e\). For then we fhould have found, in the firt example, in which \(e\) is \(=1\) and \(n\) is \(=2\), that the faid expreffions \(m n-e e, 2 e n\), and \(n n+e e\), would have been equal to ( \(4-1,2 \times 1 \times 2\), and \(4+1\), or) 3,4 , and 5 ; and, in the fecond example, in which e was \(=2\), and \(n=3\), we fhould have had \(n n-e e, z e n\), and \(n n+e e\), equal to \((9-4,2 \times 2 \times 3\), and \(9+4\), or \()\)

5,12 , and 13 ; and, in the 3 d example, in which \(e\) was \(=3\), and \(n=5\), we fhould have had \(i n-e e, 2 e n\), and \(m n+e e\), equal to \((25-9,2 \times 3 \times 5\), and \(25+9\), or \()\) 16,30 , and 34 , which, when divided by 2 , become 8 , 15, and 17; and in the 4th example, in which e was \(=3\), and \(n=7\), we Gould have had \(n n-c e, z e n\), and \(n n+\) ce, equal to ( \(49-9,2 \times 3 \times 7\), and \(49+9\), or) 40 , 42 , and 58 , which, when divided hy 2 , become 20,21 , and 29; and, in the 5 th example, in which \(e\) is \(=3\), and \(n\) is \(=11\), we fhould have had \(n n-c e, 2 e n\), and \(n n+e e\), equal to ( \(121-9,2 \times 3 \times 11\), and \(121+9\), or) 112 , 66 , and 130 , which, when divided by 2 , become 56,33 , and 65 ; and in the 6 th and laft example, in which \(e\) was \(=5\), and \(n\) was \(=13\), we fhould have had \(n n-c e, 2 e n\), and \(n n+e e\), equal to \((169-25,2 \times 5 \times 13\), and 169 +25 , or) 144, 130, and 194, which, when divided by 2 , become 72,65 , and 97. And thus we fhould have obtained the fix foregoing fets of whole numbers to exprefs the fides of different right-angled triangles, to wit, ift, the numbers 3,4 , and \(5 ; 2\) dly, the numbers 5,12 , and 13 ; \(3^{\mathrm{dly}}\), the numbers 8,15 , and 17 ; 4thly, the numbers 20 , 21 , and 29 ; 5 thly, the numbers 56,33 , and 65 ; and, 6thly, the numbers \(i^{2}, 65\) and 97 .

\section*{A S CHOLIUM.}

Art. 5. It may be obferved, that in the four firft of the foregoing fix fets of numbers, which exprefs the fides of right-angled triangles, to wit, in the numbers 3,4 , and 5 , and in the numbers 5,12 , and \(I_{3}\), and in the numbers 8,15 , and 17 , and in the numbers 20,21 , and 29 , the firtt number of each fet is lefs than the fecond; but in the fifth and fixth fets of thofe numbers, to wit, in the numbers 56,33 , and 65 , and in the numbers 72,65 , and 97 , the firt

Eirt number of each fet is greater than the fecond. Now this depends upon the proportion in which the number \(n\) (which is always greater than \(e\), exceeds the number \(e\). For, if \(n\) were not a number, but a quantity incommenfurable to \(I\), which bore the fame proportion to the number \(e\) as 1 hears to \(\sqrt{2}-1\), or to the excefs of \(\sqrt{2}\) above 1 , or as the fide of a fquare bears to the excefs of its diagonal above its fide, the general expreffion \(n n-e e\), from which the firlt terms of all thefe fets of numbers are derived, would be exactly equal to the general expreffion 2 en , from which the fecond terms of the faid fets of numbers are derived: and, when the proportion of \(n\) to \(e\) is lefs than that of \(I\) to \(\sqrt{2}-1\), or \(n\) is lefs than \(e \times \frac{1}{\sqrt{ }{ }^{2}-1}\), the general expreffion \(n n-e e\) will be lefs than \(2 e n\) : and, when the proportion of \(n\) to \(e\) is greater than the faid proportion of I to \(V_{2}-1\), or \(n\) is greater than \(e \times \frac{1}{\sqrt{2}-1}\), the general expreffion \(n n\) - ee will be greater than \(2 e n\). Thefe things may be demonftrated in the manner following.

Art. 6. In the Ift place, if \(n\) is \(=e \times \frac{1}{\sqrt{2}-1}\), we fhall have \(n n=e e \times \frac{1}{\sqrt{2-1)^{2}}}=\frac{e e}{2-2 \sqrt{2}+1}\), and \(n n-e e(=\) \(\frac{e e}{2-2 \sqrt{2}+1}-c e={ }_{2-2 \sqrt{2}+1}^{e e}-\frac{\sqrt{2-2 \sqrt{2}+1} \times c e}{2-2} \frac{\sqrt{2}+1}{}=\) \(\frac{c e}{2-2 \sqrt{2}+1}-\sqrt{\frac{2 c e-2 \sqrt{ } 2 \times e+c e}{2-2 \sqrt{ } 2+1}}=\frac{e e}{2-2 \sqrt{2}^{2}+1}-\) \(\frac{\sqrt{3 e c}-2 \sqrt{ } 2 \times c e}{2-2 \sqrt{ }{ }^{2}+1}=\frac{e e}{2-2 \sqrt{ }{ }^{2}+1} \frac{-3 c e+2 \sqrt{ } 2 \times c}{2-2 \sqrt{ }{ }^{2}+1}=\) \(\left.+\frac{2 \sqrt{ } 2 \times c e-2 c e}{2-2 \sqrt{2}+1}=\frac{2 c e \times \sqrt{ } 2-1}{2-2 \sqrt{2}+1}\right)=\frac{2 c e}{\sqrt{2}-1}\); and we fhall allo have \(2 c n\left(=2 e \times e \times \frac{1}{\sqrt{ } 2-1}\right)=\frac{2 c e}{\sqrt{2}-1}\). And confequently \(n i n-e e\) will in this cafe be equal ts \(2 e n\) \& E. D.

2dly, If \(n\) is lefs than \(e \times \frac{1}{\sqrt{2}^{2}-1}\), the compound quanfity \(m n-e e\) will be lefs than \(2 c n\).

For, if we fuppofe \(n\), from being equal to \(e \times \frac{1}{\sqrt{2}-1}\), to become lefs than that quantity, but ftill to be greater than \(\varepsilon\), and the decrement of \(n\), or its difference from its firt value, to be denoted by the letter \(d\), it is evident that while \(n\) is decreafing from \(n\) to \(n-d\), the compound quantity \(m n-e e\) will decreafe from \(n n-e e\) to \(n-\left.d\right|^{2}-e e\), that is, to \(m n-2 n d+d d-c e\), or to \(m n-e e-2 n d+d d\), or to \(n n-e e-\sqrt{2 n d}-d d\), or will be lefs than it was before by the quantity \(2 n d\) - \(d d\); and in the fame time the quantity \(2 e n\) will decreafe from its firft value, 2 cm , (which was equal to \(n n-e e\) ) to \(2 e \times n-d\), or \(2 e n-2 e d\), or will be lefs than it was before by the quantity \(2 e d\). Now, becaufe \(n-d\) is greater than \(e\), it follows that \(n\) muft be greater than \(e+d\), and confequently that \(n-e\) muft be greater than \(d\). Therefore \(2 d \times \overline{n-e}\) will be greater than \(2 d \times d\), or 2 nd \(-2 e d\) will be greater than \(2 d d\), and confequently 2 nd will be greater than \(2 d d+2 e d\), and \(2 n d\) - \(d d\) will be greater than \(d d+2 e d\). Therefure, à fortiori, and - \(d d\) will be greater than \(2 e d\); that is, the decrement of the quantity \(n n\) - \(e e\) while \(n\) decreafes from \(n\) to \(n-d\), will be greater than the decrement of the quantity \(2 e n\) in the fame time: and confequently the quantity \(n n-e e-\) \(\sqrt{2 n d}-d d\), to which \(n n\) - ee will have decreafed, while \(n\) was decieafing from \(n\) to \(n-d\), will be lefs than the quantily \(2 e n-2 e d\), to which the quantity \(2 e n\) (which was at firft equal to \(m\) - \(e e_{\text {s }}\) ) will have decreafed in the fame time ; or, if \(n\) is of any magnitude lefs than \(e \times \frac{1}{\sqrt{ }{ }^{2}-1}\), but greater than \(e\), the quantity \(n n-\) ee will be lefs than the quantity 2 en. e. E. D.

And, 3 dly, if \(n\) is greater than \(e \times \frac{1}{\sqrt{2-I}}\), the compound quantity \(n n\) - ee will be greater than 2 cm .

For, if we fuppofe \(n\), from being equal to \(e \times \frac{1}{\sqrt{2}-1}\), to become greater than that quantity, and the increment of \(n\), or its difference from its former value, to be denoted by the letter \(d\), it is crident that, while \(n\) is increafing from \(n\) to \(n+d\), the compound quantity \(n n\) - ee will increafe from \(n n-e e\) to \(\overline{n+\left.d\right|^{2}}-\varepsilon e\), that is, to \(n n+2 n d+d d\) - ee, or to \(m-c e+2 n d+d d\), or it will be greater than it was before by the quantity \(2 n d+d d\); and in the fame time the quantity 2 cn will increafe from its firt value, 2 en , (which was equal to \(n n-e e\), ) to \(2 e \times \overline{n+d}\), or \(2 e n+2 e d\), or will be greater than it was before by the quantity \(2 e d\). Now, becaufe \(n\) is greater than \(e\), it follows that \(2 n d\) muft be greater than \(2 e d\); and confequently, à fortiori, 2 nd \(+d d\) will be greater than \(2 e d\); that is, the increment of \(n n-e e\) during the increafe of \(n\) from \(n\) to \(n+d\) will be greater than the contemporary increment of 2 en . Therefore the quantity \(n n-e e+2 n d+d d\), to which \(n n-e e\) will have increafed while \(n\) increafed from \(n\) to \(n+d\), will be greater than the quantity \(2 e n+2 e d\), to which the quantity \(2 e n\) (which was at firt equal to \(n n-e e\), will have increafed in the fame time ; or, if \(n\) is of any magnitude greater than \(e \times \frac{1}{V^{2}-1}\), the quantity \(m n-e e\) will be greater than the quantity zen. Q.E.D.

Art. 7. If we take two numbers for \(e\) and \(n\) that are nearly in the proportion of \(V_{2}-1\) and 1 , we fhall find that \(n n-e e\) will be very nearly equal to \(2 e n\). Now \(\sqrt{ } 2\) is \(=1.414 \& c\). Therefore \(\sqrt{2}\) - 1 is \(=1.414 \& c-1\) \(=0.41+\& \mathrm{c}\), and \(\boldsymbol{V}_{2}-1\) is to I pretty nearly in the proportion of 0.414 to I , or of 414 to 1000 , or of 207 to 500. Therefore, if we fuppofe \(e\) to be \(=20 \%\), and \(n\) to be \(=500\), the value of \(n n-e e\) ought to be nearly equal to that of \(2 e n\). And fo we fhall find them to be. For, upon thefe fuppofitions, we Mall have ee \(\left(=\overline{207}^{2}\right)=\) 42,849 , and \(\left.n n(=500)^{2}\right)=250,000\), and \(n n\)-eee \((=\) \(2.50,000-42,849)=207,15 \mathrm{I}\). And 2 en will be \((=\)
\(2 \times 207 \times 500=207 \times 1000)=207,000\); which is very nearly equal to 207,151 , or \(m\)-ee.

Art. 8. And, upon thefe fuppofitions, \(n n+\) ee will be \((=250,000+42,849)=292,849\); which gives us a feventh fet of numbers that exprefs the fides of a rightangled triangle, to wit, the numbers 207,151, 207,000, and 292,849. And accordingly we fhall find that the fquare of the number 292,849 , which reprefents the hypotenufe of the triangle, will be equal to the fum of the fquares of the other two numbers 207,151 and 207,000, which reprefent the fides that consain the right angle. For the fquare of 292,849 is \(85,700,536,801\), and the fquares of 207,151 and 207,000, are 42,911,536,801 and \(42,849,000,000\); and \(85,760,536,801\) is \(=42,911,536,801\) \(+42,849,000,000\).

Art. 9. If we fuppofe \(e\) to be \(=2\), and \(n\) to be \(=5\), we fhall have \(n n-e e(=25-4)=21\), and \(2 e n(=\) \(2 \times 2 \times 5)=20\), and \(n n+c e(=25+4)=29\). Therefore 21,20 , and 29 , will be three numbers that will exprefs the lengths of the three fides of a right-angled wiangle. And thefe numbers, we may obferve, are the fame with the three numbers 20, 21 , and 29, obrained above in art. 4 , by fuppofing \(e\) to be equal to 3 , and \(n\) to be equal to \%, excepting that the order of the two firlt numbers 20 and 21 is different in the two lets, 20 being the firlt number in the firfe fer, 20,21 , and 29 , and being the fecond number in the fecond fet, 21, 20, and 29 ; the reafon of which is, that 20 is derived from the filft general expreffion \(3 n n-c e\) in the firft fet of numbers, 20,21 , and 29 , and it is derived from the fecond general quantity \(2 e n\) in the fecond fet of numbers, 21,20 , and 29 . This, however, has an odd appearance, that, "Hen the original numbers \(n\) and \(\varepsilon\), from which the general expreffions \(n n-e e, 2 e n\), and \(n n+e e\) are derived, are made to bear different proportions to each other (for the proportion of 5 to 2 is greater than the proportion of 7 to 3, being equal to that of 7 to 2.8 , or of 70 to 28 ,) the three numbers obtained by means
of thofe general expreffions fhould ftill be the fame, though placed in a different order: and therefore it may not be amifs to inquire a little further into it.

Art. Io. In order therefore that the reafon of this feeming irregularity may appear the more clearly, we will recur' to the obfervation made above in art. 5, concerning the change in the proportion of the general expreffion \(n n-e e\) to the general expreffion 2en, when the proportion of \(n\) to \(e\), from being at firtt a lef's proportion of majority than that of 1 to \(\sqrt{2}-1\), or of 1 to \(0.414, \& c\), becomes equal to, and greater than, the faid ratio; to wit, that, when the ratio of \(n\) to \(e\) is lefs than the ratio of 1 to 0.414 , \(\& e c\), the quantity \(n n-e e\) is lefs than the quantity \(2 e n\); and that, when the ratio of \(n\) to \(e\) is equal to the ratio of 1 to \(0.414, \& \mathrm{c}\), the quantity \(n n-e e\) is equal to the quantity \(2 e n\); and that, when the ratio of \(n\) to \(e\) is greater than the ratio of I to \(0.4 \mathrm{I} 4, \& \mathrm{c}\), the quantity \(n n\) - \(e e\) is greater than the quantity \(2 e n\). And to this obfervation we muft add that, if the ratio of \(n\) to \(e\), after having been equal to the ratio of i to \(0.414, \& \%\), is fuppofed to increafe gradually ad infinitum, the ratio of \(m\) - ee to \(2 e n\) will increate gradually at the fame time ad infinitun, or fo as to become greater than any affigned ratio whatfocver. For the ratio of \(m\)-ee to \(2 e n\) is equal to the ratio of \(\frac{n n-e e}{2 e n}\) to ( \(\left(\frac{2 e n}{2 e n}\right.\), or) I , or to the ratio of \(\frac{n n}{2 e n}-\frac{c e}{2 e l n}\) to 1 , or to the ratio of \(\frac{n}{2 e}-\frac{e}{2 n}\) to I, which evidently increafes ad infinitum, while the ratio of \(n\) to \(e\) increafes ad infinitum. Therefore while the ratio of \(n\) to \(e\) increafes, from being equal to the ratio of 1 to 0.414 , \(\& c\), ad infinitum, the ratio of \(m=\) ee to \(2 e \mathrm{~s}\) will increate gradually from a ratio of equality ad infinitum, and confequently will become fucceffively cqual to all ratios of majority whatoever. Therefore, if the ratio of \(n\) to \(e\) is at one time taken equal to the ratio of 7 to 3 , (which is lefs than the ratio of 7 to 2.898 , \&ic, or of 7 to \(7 \times 0.414\), \&ic, or of 1 to \(0.414, \&<c\), and is afterwards fuppofed to increale
increafe gradually till it becomes equal to the faid ratio of \(x\) to \(0.414, \& \mathrm{cc}\), and then to increafe further ad infinitum; the ratio of the compound quantity \(n n-e e\) to the quantity \(2 e n\) (which is equal to the ratio of 20 to \(2 \pi\), when the ratio of \(n\) to \(e\) is equal to the ratio of 7 to 3 ,) will firt become a ratio of equality, to wit, when the ratio of \(n\) to \(e\) becomes equal to the ratio of 1 to \(0.414,8 x\), and afterwards will increafe continually from being a ratio of equality, (which may be confidered as an infinitely fmall ratio of majority, and is ufually fo confidered by writers who treat of the magnitudes and meafures of ratios \(s_{3}\) ) till it becomes fucceffively equal to every ratio of majo-ity whatfoever. It therefore muft at one point of time during its faid increafe become equal to the ratio of 21 to 20 ; or, there will be a certain ratio of majority, greater than that of I to 0.414 , \(\& c\), to which when the ratio of \(n\) to \(e\) fhall have become equal, the ratio of \(n n\) - ee to \(2 e n\) will be equal to the ratio of 21 to 20. And this ratio of majority is that of 5 to 2, as has been fhewn in the foregoing, or gth, article.

Art. II. I will juft add one more example of the fored going method of finding three whole numbers that fhall exprefs the lengths of the fides of a right-angled triangle.

Let \(e\) be \(=5\), and \(n\) be \(=1\). And we thall have \(e e=25\), and \(m n=289\), and \(m n-e e(=289-25)=\) 264 , and \(2 e n(=2 \times 5 \times 17=10 \times 17)=170\), and \(n n+c e(=289+25)=314\). Therefore 264, 170, and 314 , or (dividing all thefe numbers by 2, ) \(\times 32,85\), and 157, will be three whole numbers that will exprefs the three fides of a right-angled triangle.

And accordingly we fhall find that the fquare of tile number 157, which reprefents the hyporenufe, or line fubtending the right angle, will be equal to the fum of the fquares of the two numbers 132 and 85 , which reprefent the fides that contain the right angle. For the fquare of 157 is 24,649 , and the 〔quares of 132 and 85 are 17,424 and \(7225 ;\) and 24,649 is \(=17,424+7225\).

We have therefore now found the nine following fets of whole numbers for exprefling the three fides of different right-angled triangles ; to wit,

Ift, The whole numbers 3,4 , and 5 ;
2 dly , The whole numbers 5,12 , and 13 ;
3 dly, The whole numbers 8,15 , and 17 ;
4 thly, The whole numbers 20, 21, and 29;
5 thly, The whole numbers 56,33 , and 65 ;
6 chly, The whole numbers 72,65 , and 97 ;
7 thly, The whole numbers 207,151, 207,000, and
\[
29^{2}, 849 ;
\]

8thly, The whole numbers 21,20 , and 29 ; and
9thly, The whole numbers \(I_{3} 2,85\), and \(1_{57}\).
And we may eafily find as many more fets of fuch numbers as we pleafe, by fubftituting different numbers for \(e\) and \(n\), or for either of them, in the three general expreffions \(n n-e e, 2 e n\), and \(n n+c e\).

Art. 12. The foregoing fubject may alfo be treated in a fomewhat different manner, by folving the following Problem.

\section*{A P R O B L E M.}

To divide a given fquare number into two other fquare numbers, either whole numbers, or fractions, or mixt numbers.

\section*{S O L U T I O N.}

Let the given fquare number that is to be fo divided, be denoted by the letters \(a a\), and let \(x x\) be one of the two fquare numbers that are fought, and \(y y\) be the other.

Then, fince the two numbers fought are together to be equal to the given number, we hall, in the firft place, have \(x x+y y=a a\).

Now, fince \(x x+y y\) is \(=a a\), it follows that \(y y\) will be \(=a a-x x\). But \(a a-x x\) is \(=\overline{a+x} \times a-x\). Therefore \(y y\) will be \(=\overline{a+x} \times \widetilde{a-x}\). Therefore \(y\) will be a geomerrical mean proportional between \(a+x\) and \(a-x\), and confequently will be lefs than \(a+x\). Let the proportion of \(a+x\) to \(y\) be that of the two numbers \(m\) and \(n\), of which \(m\) is the greater. Then will \(y\) be \(=\frac{n}{m} \times \overline{a+x}\), and \(y y\) will be \(=\frac{n n}{n n n} \times\left.\overline{a+x}\right|^{2}\left(=\frac{n n}{m n} \times \overline{a a+2 a x+x x}\right)\) \(=\frac{n n}{m n n} \times a a+\frac{m n}{m n n} \times 2 a x+\frac{n n}{n n n n} \times n \%\). Therefore \(\times x\) \(+y y\) will be \(=a: 3+\frac{m n}{m n n} \times a a+\frac{m n}{m m n} \times 2 a x+\frac{n n}{m m n} \times\) \(x: x\left(=\frac{m m n}{n m n} \times n x+\frac{n n}{m m} \times a a+\frac{n n}{m n n} \times 2 a x+\frac{m n}{m n n} \times\right.\) \(x x)=\frac{m m+n n}{m m} \times x i x+\frac{m n}{m n} \times a a+\frac{n n}{m m} \times 2 a x\). But \(x x+j y\) is \(=a a\). Therefore \(\frac{m m+m n}{m n n} \times x x+\frac{m n}{m m n} \times a a\) \(+\frac{n n}{n m n} \times 2 a x\) will alfo be \(=a a\), and confequently \(=\) \(\frac{m m n}{m m} \times a a\). Therefore \(\frac{m m+n n}{n m} \times n x+\frac{m n}{m n} \times 2 a x\) will be \(=\frac{m m}{m n} \times a a-\frac{m n}{m m} \times a a=\frac{m m-n n}{m m} \times a a\), and confequently
fequently (multiplying all the terms by \(m m\), \(\widetilde{m m+n m} \times\) \(a x+m n \times 2 a x\) will be \(=m m-n m \times a a\), and (dividing all the terms by \(m m+m, n+\frac{n n}{m n+n} \times 2 a x\) will be \(=\frac{n m n-m n}{n m+n n} \times a a\). Therefore (adding \(\frac{n^{4}}{m m+n n)^{2}} \times a a\) to both fides of the equation,) we fhall have \(x x+\frac{m}{m m n}+m n\) \(\times 2 a x+\frac{n^{4}}{m n n+m n^{2}} \times a a=\frac{m m-n n}{n m n+m n} \times a a+\frac{n^{4}}{n m m+n n^{2}} \times\) \(a a=\frac{\overline{m n-n} n}{\overline{m m+n n} \times \overline{m m+n n}} \times a a+\frac{n^{4}}{m n+n n} \times a a=\frac{m n^{4}-n^{4}}{m m+n n^{2}}, n n^{2}\) \(\times a a+\frac{n^{4}}{m m+n n^{2}} \times a a=\frac{m^{4}}{m m n+n_{n}}{ }^{2} \times a a\). Therefore (extracting the fquare-roots of both fides, ) we fhall have \(x+\) \(\frac{n n}{m m n+m n} \times a=\frac{m m}{m m+n n} \times a\), and confequently \(x=\frac{m m}{m m+m n}\) \(\times a-\frac{n n}{m n n+n n} \times a=\frac{m m-n n}{m n+n n} \times a\). Therefore \(a+x\) will be \(=a+\frac{m m-n n}{m m+n n} \times a\left(=\frac{m m+n n}{m m+n n} \times a+\frac{m m-n n}{m m n+n n}\right.\) \(\times a)=\frac{2 m m}{n m n+n n} \times a\); and \(y\), or \(\frac{n}{m} \times a+x\), will be \(=\) \(\frac{n}{n} \times \frac{2 m m}{m m+n n} \times a=\frac{2 m n}{m m+n n} \times a\), that is, \(x\), or the root, or fide, of the firft of the two fquares fought, to wit, \(x x\) and \(y y\), will be equal to \(\frac{m m m}{m m n} \frac{-n n}{+n n} \times a\), and \(y\), or the root, or fide, of the latter of the faid two fquares, will be equal to \(\frac{2 m n}{m m+n n} \times a\); and confequently \(x x\), or the firft of the faid two fquares itfelf, will be equal to \(\frac{m_{m-n n}{ }^{2}}{m m+n n^{2}} \times a a\), and \(y y\), or the latter of the faid two fquares
\[
3 \mathrm{~K}
\]
itself, will be equal to \(\frac{2 m m n^{2}}{m m+n n^{2}} \times a a\), or \(\frac{4 m^{2} n^{2}}{m m+n m)^{2}} \times a a\); or, if \(m\) and \(n\) be any two numbers whatfoever, of which \(m\) is the greater, \(\frac{\overline{m m-n)^{2}}}{\frac{m m+n n^{2}}{2}} \times a a\) and \(\frac{4 m^{2} n^{2}}{m m n+n n^{2}} \times a a\) will be two fquare numbers that will together be equal to the origihal square number \(a a\). C. E. I.
 and \(\frac{4 m^{2} n^{2}}{m m+m a^{2}} \times a a\), will together be equal to the original fquare number \(a\) a, will be evident by adding them together. For \(\frac{\overline{m m-n n})^{2}}{m m n+m n^{2}} \times a a+\frac{4 m^{2} n^{2}}{m m n+n n^{2}} \times a a\) are \(=\frac{n^{4}-2 m^{2} n^{2}+n^{4}}{m^{4}+2 m^{2} n^{2}+n^{4}}\) \(\times a a+\frac{4 m^{2} n^{2}}{m^{4}+2 m^{2} n^{2}+n^{4}} \times a a=\frac{m^{4}+2 m^{2} n^{2}+n^{4}}{m^{4}+2 m^{2} n^{2}+n^{4}} \times a a=a a\). Q. E. D.

This folution of the foregoing Problem feems to me more early and natural than that of Dr. Saunderfon in his Algebra, Vol. 2, page 366, et Jequentibus.

\section*{Examples of the foregoing Solution.}

Art. 14. Let the given square number aa be 25 , and let \(n\) be 1 , and \(m\) be 2 .

Then will \(n n\) be \(=x\), and \(m m\) be \(=4\), and \(m m\) - \(m\) will be \((=4-1)=3\), and \(m m+n n\) will be \((=4+1)\) \(=5\), and consequently \(\overline{m m-m)^{2}}\) will be \(=9\), and \(m_{m 2}+m n^{2}\) will be \(=25\), and \(4 m^{2} n^{2}\) will be \((=4 \times 4 \times 1)\) \(=16\),
\(=16\), and \(\frac{\frac{m m n}{m m n+n \pi)^{2}}}{m a} \times\) will be \(=\frac{9}{25} \times 25=9\), and \(\frac{4 \pi i^{2} n^{2}}{\pi n i n n+2 n)^{2}} \times a a\) will be \(=\frac{16}{25} \times 25=16\). Therefore 9 and 16 will be two fquare numbers that will together be equal to the given fquare number 25. And it is evident that 9 and 16 are equal to 25 .

Secondly, let \(a a\) be \(=25\), and \(n=\mathrm{r}\), and \(m=3\).
Then will \(m m\) be \(=1\), and \(m m\) be \(=9\), and consequently mm - \(n n\) will be \((=9-1)=8\), and \(m m+n n\) will be \(=9+1=10\), and \(4 m^{2} n^{2}\) will be \((=4 \times 9 \times 1)=36\). Therefore \(\overline{m m-n m}^{2}\) will be \(=64\), and \({\overline{m m}+m n^{2}}^{2}\) will be \(=100\), and \(\frac{\frac{m n n-n n)^{2}}{m n n+n n^{2}}}{m a a}\) will be \(=\frac{64}{100} \times a a=\frac{64}{100}\) \(\times{ }_{25}=\frac{16}{25} \times{ }_{25}=16\), and \(\frac{4 m^{2} n^{2}}{m m n+n n)^{2}} \times\) aa will be \(=\) \(\frac{3^{6}}{100} \times a a=\frac{9}{25} \times a a=\frac{9}{25} \times 25=9\). Therefore 16 and 9 will be two fquare numbers that will together be equal to the given fquare number 25. Ard it is evident that they are equal to 25 .

There two fquare numbers 16 and 9 are the fame with the two former fquare numbers 9 and 16 , derived from the fuppofition that \(m\) was \(=3\), except in the order of their portion.

Thirdly, let aa be \(=25\), and \(n\) be \(=1\), and \(m\) be \(=4\).

Then we hall have \(n n=1\), and \(m m=16\), and conequently \(m m-n n(=16-1)=15\), and \(m m+n n(=\) \(16+1)=17\), and \(m m-m n^{2}\left(=177^{\prime}\right)=225\), and \(\left.m m+m n^{2}\left(=\overline{2_{7}}\right)^{2}\right)=289\), and \(4 m^{2} n^{2}(=4 \times 16 \times 1)\)
\(=64\). Therefore \(\frac{-\overline{m m-n n})^{2}}{\frac{m m n+m)^{2}}{m a} \times a \text { will be }\left(=\frac{225}{289} \quad \times a a\right), ~}\)
\(=\frac{225}{289} \times 25\), and \(\frac{4 m m^{2} n^{2}}{m n n+m n^{2}} \times a a\) will be \(\left(=\frac{64}{289} \times a a\right)\)
\(=\frac{64}{289} \times 25\). Therefore \(\frac{225}{289} \times 25\) and \(\frac{64}{289} \times 25\), will be two fquare numbers that will, together, be equal to the given §quare number 25. And it is evident that thefe two fquare numbers are equal to 25 : for \(\frac{225}{289} \times 25+\frac{64}{289} \times 25\) are \(=\frac{225+64}{289} \times 25=\frac{289}{289} \times 25=25\).

If we multiply thefe three numbers \(\frac{225}{289} \times 25, \frac{64}{289} \times 25\), and 25 , by 289 , we flall thereby obtain the three following whole numbers, to wit, \(225 \times 25,64 \times 25\), and \(289 \times 25\), which will be, all of them, fquare numbers, and of which the two former will, together, be equal to the latter. And, if we divide thefe three laft numbers by 25 , we fhall obtain the three following leffer whole numbers, to wit, 225,64 , and 289 , which will be, all of them, fquare numbers, and of which the two former will, together, be equal to the latter.

Fourthly, let \(a a\) be \(=25\), and \(n\) be \(=1\), and \(m\) be \(=5\).

Then we fhall have \(m=1\), and \(m=25\), and confequently \(n n m-n=24\), and \(n m+n n=26\), and \(\overline{m m-n n_{1}}{ }^{2}\) \(\left(=241^{2}=576\right.\), and \(7 m^{2}+2 m^{2}(=\overline{261})=676\), and \(4 m^{2} n^{2}(=4 \times 25 \times 1)=100\). Therefore \(\frac{\frac{m m-m n^{2}}{m m+n n)^{2}} \times a a}{m a}\) will be \(\left(=\frac{57^{6}}{676} \times a a\right)=\frac{57^{6}}{676} \times 25\), and \(\frac{4 m n^{2} n^{2}}{m m n+m n^{2}} \times a 6\) will be \(\left(=\frac{100}{676} \times a a^{a}\right)=\frac{100}{676} \times 25\). Therefore \(\frac{576}{676} \times 25\) and \(\frac{100}{676} \times 25\) will be two fquare numbers that will, together, be equal to the given fquare number 25 . And accord-
accordingly it is evident that thefe two fquare numbers are equal to 25 : for \(\frac{576}{676} \times 25+\frac{100}{676} \times 25\) are \(=\frac{576}{676}+100\) \(\times 25=\frac{676}{676} \times 25=25\).

If we multiply thefe three numbers, \(\frac{\frac{57}{675}}{676} \times 25, \frac{100}{676} \times 250\) and 25 , by 676 , we fhall thereby obtain the three following whole numbers, to wit, \(576 \times 25,100 \times 25\), and \(676 \times 25\), which will be, all of them, fquare numbers, and of which the two former will, together, be equal to the latter. And, if we divide thefe three laft numbers by 25 , we fhall thereby obtain the three following leffer whole numbers, to wit, 576,100 , and 676 , which will be, all of theni, fquare numbers, and of which the two former will, together, be equal to the latter. And, if we divide thefe lait numbers, 575 , 100, and 676 , by 4 , we fhall thereby obtain the three following fill leffer whole numbers, to wit, 144,25 , and 169 , which will likewife be, all of them, fquare numbers, and of which the two former will, together, be equal to the latter.

Art. 15. In the \(5^{\text {th }}\) place, let \(a a\) be, as before, \(=25\), and let \(n\) be \(=2\), and \(m\) be \(=3\).

Then we fhall have \(n=4\), and \(m=9\), and confequently \(m m\) - \(n n(=9-4)=5\), and \(m m+n n(=\) \(9+4)=I_{3}\), and \(m m-n n^{2}=25\), and \(m m+n n^{2}\) \(=169\), and \(4^{m} m^{2} n^{2}(=4 \times 9 \times 4)=144\). Therefore \(\frac{m_{m}-n n^{2}}{m m+n n^{2}} \times\) a will be \(\left(=\frac{25}{169} \times a a\right)=\frac{25}{169} \times 25\), and \(\frac{4^{2 m^{2} n^{2}}}{m n i+n 2^{2}} \times a a\) will be \(\left(=\frac{144}{169} \times a a\right)=\frac{144}{169} \times 25\). Therefore \(\frac{25}{169} \times 25\) and \(\frac{144}{169} \times 25\) will be two fquare numbers that will, together, be equal to 25 . And accordingly it is evident that thefe two fquare numbers \(\frac{25}{169} \times 25\) and \(\frac{144}{169}\)
\[
\times 25
\]
\(\times 25\) are equal to 25 . For they are equal to \(\frac{25+144}{169} \times 25\) \(=\frac{169}{169} \times 25=25\).

If we multiply thefe three numbers, \(\frac{25}{169} \times 25, \frac{144}{169} \times\) 25 , and 25 , by 169 , we flall thereby obtain the three following whole numbers, to wit, \(25 \times 25,144 \times 25\), and \(169 \times 25\), which will be, all of them, quare numbers; and of which the two former will, together, be equal to the latter. And, if we divide thefe three laft numbers \(25 \times 25\), \(144 \times 25\), and \(169 \times 25\), by 25 , we mall thereby obtain the three following lefer whole numbers, to wit, 25,144 , and 169 , which will be, all of them, fquare numbers, and of which the two former will, together, be equal to the latter.

Sixthly, let aa be, as before, \(=25\), and let \(n\) be \(=2\), and \(m\) be \(=5\).

Then we fhall have \(n n=4\), and \(m m=25\), and confequently \(m m\) - \(n n(=25-4)=21\), and \(m m+n n\) ( \(=\) \(25+4)=29\), and \(\overline{m m-n n})^{2}\left(=21^{2}\right)=44^{1}\), and \(m m+m n^{2}\left(=\overline{2 g}^{2}\right)=84 \mathrm{I}\), and \(4^{m^{2} n^{2}}(=4 \times 25 \times 4)\) \(=400\). Therefore \(\frac{{\overline{m m}-m n^{2}}_{m m+n n^{2}}^{2}}{m^{2} a \text { will be }\left(=\frac{441}{841} \times a a\right) ~}\) \(=\frac{441}{841} \times 25\), and \(\frac{4 m^{2} n^{2}}{\pi m+m n)^{2}} \times\) aa will be \(=\frac{400}{841} \times 25\). Therefore \(\frac{441}{841} \times 25\) and \(\frac{400}{841} \times 25\), will be two fquare numbers that will, together, be equal to the given fquare number 25. And fo we thall find them to be: for \(\frac{44^{1}}{84^{1}}\) \(\times 25+\frac{400}{841} \times 25\) are \(=\frac{441+400}{841} \times 25=\frac{841}{84.1} \times 25\) \(=25\).

If we multiply thefe three numbers, \(\frac{44 \mathrm{I}}{84 \mathrm{I}} \times 25, \frac{400}{84 \mathrm{I}} \times 25\), and 25 , by 841 ; we Chall thereby obtain the three following whole numbers, to wit, \(441 \times 25,400 \times 25\), and \(841 \times\) 25 , which will be, all of them, fquare numbers, and of which the two former will, together, be equal to the latter. And, if we divide thefe three whole numbers by 25 , we fhall obtain the three following leffer whole numbers, to wit, \(44 \mathrm{I}, 400\), and 84 I , which will be, all of them, fquare numbers, and of which the two former will, together, be equal to the latter.

Seventhly, let \(a a\) be, as before, \(=25\), and let \(n\) be \(=2\), and \(m\) be \(=7\).

Then we fhall have \(m n=4\), and \(m m=49\), and confequently \(m m\) - \(n n(=49-4)=45\), and \(m m+n n(=\) \(\left.49^{\circ}+4\right)=53\), and \(m m 2{ }^{2} m^{2}\left(=455^{2}\right)=2025\), and \(m m+n n^{2}\left(=53^{2}\right)=2809\), and \(4 m^{2} n^{2}(=4 \times 49 \times 4)\) \(=784\). Therefore \(\frac{\overline{m m-\left.n \pi\right|^{2}}}{\overline{m m+n n^{2}}} \times a a\) will be \(\left(=\frac{2025}{2809} \times a a\right)\) \(=\frac{2025}{2809} \times 25\), and \(\frac{4 m^{2} n^{2}}{n m m+n n^{2}} \times a a\) will be \(=\frac{784}{2809} \times 25\). Therefore \(\frac{2025}{2809} \times 25\) and \(\frac{784}{2809} \times 25\), will be two fquare numbers that will, together, be equal to the given fquare number 25. And accordingly it is evident that thefe two fquare numbers \(\frac{2025}{2809} \times 25\), and \(\frac{78 \mathrm{t}}{2809} \times 25\), are equal to 25. For they are equal to \(\frac{2025+784}{2809} \times 25=\frac{2809}{2809} \times 25\) \(=25\).

If we multiply thefe three numbers, \(\frac{2025}{2809} \times 25, \frac{784}{2809} \times 25\), and 25 by 2809 , we fhall thereby obtain the three following whole numbers, to wit, \(2025 \times 25,784 \times 25\), and \(2809 \times 25\), which will be, all of them, fquare numbers, and
and of which the two former will, together, be equal to the latter. And, if we divide thefe three whole numbers by 25 , we fhall thereby obtain the three following leffer whole numbers, to wit, 2025,784 , and 2809 , which will, all of them, be fquare numbers, and of which the two former will, together, be equal to the latter.

Art. 16. In the 8 th place, let \(a a\) be, as before, equal to 25 , and let \(n\) be \(=3\), and \(m\) be \(=5\).

Then we fhall have \(m=9\), and \(m m=25\), and confequently \(m m\) - \(n i n(=25-9)=16\), and \(m m+n n(=\) \(25+9)=34\), and \(m m-m m^{2}\left(=\left.16\right|^{2}\right)=256\), and \(m m+\left.m\right|^{2}\left(=344^{2}\right)=1156\), and \(4 m^{2} n^{2}(=4 \times 25 \times 9\)
 \(\left(=\frac{256}{115^{6}} \times a a\right)=\frac{25^{6}}{115^{6}} \times 25\), and \(\frac{4^{m^{2} n^{2}}}{m m n+m m^{2}} \times\) aa will be \(\left(=\frac{900}{1156} \times a 0\right)=\frac{900}{1156} \times 25\). Therefore \(\frac{256}{1156} \times 25\), and \(\frac{900}{115^{6}} \times 25\), will be two fquare numbers that will, together, be equal to the given fquare number 25. And accordingly it is evident that thefe two fquare numbers \(\frac{256}{115^{6}} \times 25\), and \(\frac{900}{1156} \times 25\), are equal to 25 . For they are \(=\frac{256+900}{1156} \times 25=\frac{1156}{1156} \times 25=25\).

If we multiply thefe three fquare numbers, \(\frac{256}{15^{6}} \times 25\), \(\frac{900}{1156} \times 25\), and 25 , by 1156 , we thall thereby obtain the three following whole numbers, to wit, \(256 \times 25,900 \times\) 25 , and \(1156 \times 25\), which will be, all of them, fquare numbers, and of which the two former will, togecher, be .equal to the latter. And, if we divide thefe three whole numbers by 25 , we fhall thereby obtain the three following leffer,
leffer whole numbers, to wit, 256,900 , and 1156 , which are, all of them, fquare numbers, and of which the two former are, together, equal to the latter.

Ninthly, let \(a a\) be, as before, \(=25\), and let \(n\) be \(=33\) and \(m\) be \(=7\).

Then we fhall have \(n n=9\), and \(m m=49\), and confequently \(m m\) - \(m n(=49-9)=40\), and \(m m n+m n(\) = \(49+9)=58\), and \(m m^{2}-m n^{2}\left(={4 c^{2}}^{2}\right)=1600\), and \(m m+m n)^{2}\left(=5^{8}\right)=3364\), and \(4 m^{2} n^{2}(=4 \times 49 \times 9)\)
\(=1764\). Therefore \(\frac{\overline{m m-m n})^{2}}{m m+m n^{2}} \times a\), will be \(\left(=\frac{1600}{33^{64}} \times a a\right)\)
\(=\frac{1600}{33^{64}} \times 25\), and \(\frac{4 m^{2} n^{2}}{m m n+m n^{2}} \times a a\) will be \(\left(=\frac{1764}{3364} \times a a\right)\)
\(=\frac{1764}{33^{64}} \times 25\). Therefore \(\frac{1600}{33^{64}} \times 25\), and \(\frac{1764}{33^{6} 4} \times 25\), will be two fquare numbers that, together, will be equal to the given fquare number 25. And accordingly it is evident that thefe two numbers are equal to 25 . For \(\frac{1600}{33^{64}} \times 25\) \(+\frac{1764}{33^{6}} \times 25\), are \(=\frac{1600+1764}{3364} \times 25=\frac{3364}{3364} \times 25\) \(=25\).

If we multiply thefe three numbers, \(\frac{1600}{33^{64}} \times 25, \frac{1764}{3364}\) \(\times 25\), and 25 , by 3364 , we fhall thereby obtain the three whole numbers \(1600 \times 25,1764 \times 25\), and \(3364 \times 25\), which will be, all of them, fquare numbers, and of which the two former will, together, be equal to the latter. And, if we divide thefe three whole numbers by 25 , we thall thereby obtain the three following leffer whole numbers, to wit, 1600,1764 , and 3364 , which are, all of them, fquare numbers, and of which the two former are equal to the latter.

Tenthly, let \(a a\) be, as before, \(=25\), and let \(n\) be \(=3\), and \(m\) be \(=11\).

Then we fhall have \(12 n=9\), and \(m \mathrm{~mm}=12 \mathrm{I}\), and confequently \(m m\) - \(m n(=121-9)=112\), and \(m m+m n\) \((=12 \mathrm{I}+9)=\mathrm{I}_{3} \mathrm{O}\), and \(\mathrm{man}-\mathrm{nn}^{2}\left(=\overline{112}^{2}\right)=\) \(12,544\), and \(m m+m)^{2}\left(=130^{\circ}\right)=16,900\), and \(4^{m^{2} n^{2}}\) \((=4 \times 121 \times 9=484 \times 9)=4356\). Therefore \(\frac{(m m-n n)^{2}}{\frac{m m+n m)^{2}}{2}} \times\) aa will be \(\left(=\frac{12,5+4}{16,900} \times a a\right)=\frac{12,544}{16,900} \times 25\), and \(\frac{4 m^{2} n^{2}}{n m m+m m^{2}} \times a a\) will be \(\left(=\frac{4356}{16,900} \times a a\right)=\frac{435^{6}}{16,000} \times 25\). Therefore \(\frac{12,544}{16,900} \times 25\), and \(\frac{4356}{10,900} \times 25\), will be two fquare numbers that will, togecher, be equal to the given fquare number 25. And accordingly it will eafily appear that thefe two numbers are equal to 25 . For \(\frac{12,544}{16,900} \times 25\) \(+\frac{4356}{16,900} \times 25\) are \(=\frac{12,544+4356}{16,900} \times 25=\frac{16,900}{16,900} \times 25\) \(=25\).

If we multiply thefe three numbers, \(\frac{12,544}{16,900} \times 25, \frac{4356}{16,900}\) \(\times 25\), and 25 , by 16,900 , we fhall thereby obtain the three following whole numbers, to wit, \(12,544 \times 25\), \(4356 \times 25\), and \(16,900 \times 25\), which are, all of them, iquare numbers, and of which the two former are, together, equal to the latter. And, if we divide thefe whole numbers by 25 , we fhall thereby obtain the three following leffer whole numbers, to wit, \(12,544,4356\), and 15,900 , which are, all of them, fquare numbers, (to wit, the fquares of the numbers 112,66 , and 130 , ) and of which the two former are, togecher, equal to the latter.

Art. I7. In the ith place, let aa be equal, as before, to 25 , and let \(n\) be \(=5\), and \(m\) be \(=7\).

Then we fall have \(m=25\), and \(m m=49\), and conSequently \(m m z\) - \(m n(=49-25)=24\), and \(m m z n n\) \((=49+25)=74\), and \(m m-n)^{2}\left(=2^{2}{ }^{2}\right)=576\); and \(m m+m n^{2}\left(=74^{2}\right)=5476\), and \(4 m^{2} n^{2}(=4 \times 49\) \(\times 25=100 \times 49)=4900\). Therefore \(\frac{n_{m m}-n n^{2}}{m m+n n^{2}} \times a a\) will be \(\left(=\frac{576}{5+7^{6}} \times a a\right)=\frac{576}{547^{6}} \times 25\), and \(\frac{4 m^{2} n^{2}}{m m n+n n^{2}} \times a a\) will be \(\left(=\frac{4900}{5476} \times a n\right)=\frac{4900}{547^{6}} \times 25\). Therefore \(\frac{576}{547^{6}}\) \(\times 25\), and \(\frac{4900}{547^{6}} \times 2.5\), will be two square numbers that will, together, be equal to the given fquare number 25 . And accordingly, if we add there numbers together, we hall find them to be \(\left(=\frac{57^{6}+4900}{547^{6}} \times 25=\frac{5476}{547^{6}} \times 25\right)\) \(=25\).

If we multiply the fe three numbers, \(\frac{576}{5476} \times 25, \frac{4900}{5476} \times 25\), and 25 , by \(547^{6}\), we fall thereby obtain the three following whole numbers, to wit, \(576 \times 25,4900 \times 25\), and \(5476 \times 25\), which are, all of them, fquare numbers, and of which the two former are, together, equal to the latter. And, if we divide the fe whole numbers by 25 , we foal thereby obtain the three following lifer whole numbers, to wit, 576,4900 , and 5476 , which are alpo, all of them, fquare numbers, and of which the two former are, together, equal to the latter.

Twelfthly, let aa be, as before, \(=25\), and let \(n\) be \(=5\), and \(m\) be \(=1 \mathrm{II}\).

Then we fall have \(n n=25\), and \(m m=121\), and confrequently \(m m-m n(=121-25)=9^{6}\), and \(m m z+n n\) \((=121+25)=146_{2}\) and \(\overline{m 2 n}-22^{2}\left(=96{ }^{\circ}\right)=9216\). \(3 \mathrm{~L}_{2}\) and
\left. and \({\overline{m m}+m n^{2}}^{2}(=\overline{146})^{2}\right)=21,316\), and \(4^{m} m^{2}(=4 \times\)
\(121 \times 25=121 \times 100)=12,100\). Therefore \(\frac{\overline{m m-n n^{2}}}{\overline{m m+n)^{2}}}\)
\(\times\) aa will be \(\left(=\frac{9216}{21,316} \times a a\right)=\frac{9216}{21,316} \times 25\), and \(\frac{4 \pi 2^{2} n^{2}}{n n m+n n^{2}} \times a a\) will be \(\left(=\frac{12,100}{21,316} \times a a\right)=\frac{12,100}{21,316} \times 25\). Therefore \(\frac{9216}{21,316} \times 25\), and \(\frac{12,100}{21,316} \times 25\), will be two fquare numbers that will, together, be equal to the given fquare number 25. And fo we thall eafily find them to be. For \(\frac{9216}{21,316} \times 25+\frac{12,100}{21,316} \times 25\), are equal to \(\frac{9216+12,100}{21,316}\) \(\times 25=\frac{2 \mathrm{~T}, 316}{21,316} \times 25=25\).

If we multiply thefe three numbers, \(\frac{9^{216}}{21,316} \times 25, \frac{12,100}{21,316}\) \(\times 25\), and 25 , by 21,316 , we flatl thereby obtain the three following whole numbers, to wit, \(9216 \times 25\), \(12,100 \times 25\), and \(21,316 \times 25\), which are, all of them, fquare numbers, and of which the two former are, together, equal to the latter. And, if we divide thefe three whole numbers by 25, we fhall thereby obtain the three leffer whole numbers \(9216,12,100\), and 21,316 , which are, all of them, fquare numbers, (to wit, the fquares of the numbers 96,110 , and 146 ,) and of which the two former are, together, equal to the latter.

Art. 18. We have now obtained, by means of the three general expreffions \(\frac{\overline{m m-n n^{2}}}{\overline{m m+n n^{2}}} \times a a, \frac{4 m^{2} n^{2}}{m m+n n^{2}}\), and aa, the twelve following fets of three whole numbers each, that are, all of them, fquare numbers, and of which the two firt numbers in every fet are, ogether, equal to the third number; to wit,

Ift, The numbers 9,16 , and 25 ;
2 dly , The numbers 16, 9, and 25 , which differ from the three former numbers 9,16 , and 25 , only in the order in which the two firft numbers 9 and 16 are placed;

3 dly, The numbers 225, 64, and 289;
4 thly, The numbers 144,25 , and 169 ;
5 thly, The numbers 25,144 , and 169 , which differ from the three foregoing numbers only in the order in which the two firft numbers 25 and 144 are placed;

6 thly, The numbers 441, 400, and \(S_{41}\);
7 thly, The numbers 2025, 784, and 2800;
8thly, The numbers 256,900 , and 1156 ;
9thly, The numbers 1600,1764 , and 3364 ;
1cthly, The numbers \(12,544,4356\), and 16,900 ;
1 ithly, The numbers 576,4900 , and 5476 ; and, 12thly, The numbers \(9216,12,100\) and 21,316 .

Art. 19. The fquare roots of the foregoing twelve fets of numbers are as follows; to wit,
ift, The numbers 3,4 , and 5 ;
2 dly , The numbers 4,3 , and 5 ;
3 dly, The numbers 15, 8, and 17;
\(4^{\text {thly }}\), The numbers 12, 5, and 13;
5 thly, The numbers 5, 12, and 13;
6thly, The numbers 21, 20, and 29; 7thly, The numbers 45, 28, and 53; 8thly, The numbers 16,30 , and 34 ; 9thly, The numbers 40,42 , and 58 ;
rothly, The numbers 112,66 , and 130 ;
IIthly, The numbers 24,70 , and 74 ; and
12 thly, The numbers 96 , 110 , and 146 .
Art. 20. If we divide the numbers of fome of the foregoing
going fets of numbers by 2 , (which will not alter the proportion of fuch numbers to each other,) the faid twelve fets of numbers will be as follows; to wit,
\[
\begin{aligned}
& \text { Ift, } 3,4 \text {, and } 5 ; \\
& \text { 2dly, } 4,3 \text {, and } 5 ; \\
& \text { 3dly, } 15,8 \text {, and } 17 ; \\
& \text { 4thly, } 12,5 \text {, and } 13 ; \\
& \text { 5thly, } 5,12 \text {, and } 13 ; \\
& \text { 6thly, } 21,20 \text {, and } 29 ; \\
& \text { 7thly, } 45,28 \text {, and } 53 ; \\
& \text { 8thly, } 8,15 \text {, and } 17 ; \\
& \text { 9thly, } 20,21 \text {, and } 29 ; \\
& \text { Iothly, } 56,33 \text {, and } 65 ; \\
& \text { Irthly, } 12,35 \text {, and } 37 \text {; and } \\
& \text { I2thly, } 48,55 \text {, and } 73 \text {. }
\end{aligned}
\]

And all thefe twelve fets of numbers will exprefs the Jengths of the fides of different right-angled triangles.

Art. 2I. In the three foregoing general expreffions
 obtained in art. 12, the leiter \(n\) anfivers to the letter \(e\) in the three former general expreflions \(n n-e e, 2 n e\), and \(n i t+e e\), obtained in art. 4 ; and the letter \(m\) in the three expreffions obtained in art. 12, anfwers to the letter \(n\) in the three former expreffions ubtained in art, 4. And accordingly we find that, where, the fame two numbers have been fubftituted inftead of the letters \(m\) and \(n\) in the general expreffions
 were fubftituted in art. 4, inftead of the letters \(n\) and \(e\) refpectively, in the general expreffions \(n n-c e, 2 m e\), and \(m n+e e\), they have produced the fame three numbers to reprefent the lengths of the three fides of a right-angled triangle.
viiangle. The only difference between thefe two fets of general expreffions is, that the three expreffions \(\frac{\overline{m m-n}-n n^{2}}{n m+n m l^{2}} \times a a\), \(\xlongequal[m m m^{2} n^{2}]{m m^{2}} \times a \pi\), and \(\frac{m m+n n n^{2}}{m n n+n n n^{2}} \times a n\), give us the fquares of fuch numbers as will exprefs the fides of right-angled triangles, and the three expreffions \(m\) - ee, \(2 n e\), and \(n n+e e\), give us the faid numbers themfelves.

Art. 22. The whole numbers that exprefs the lengths of the fides of a right-angled triangle, cannot, when they are reduced to the loweft numbers poffible by dividing then by their common divifors, be, all of them, even numbers.

For, if they were all even numbers, they might all be divided by 2 , either once, or more than once, till at laft fome of the quotients would be odd numbers. Thus, for example, the three even numbers 16,30 , and 34 , which have been found above to exprefs the three fides of a rightangled triangle, are all divifible by 2 , and are by fuch divifion reduced to the three lefler numbers 8,15 , and 17 , of which the two latter are odd numbers.

Art. 23. And further, the faid numbers that exprefs the lengths of the fides of a right-angled triangle, cannot be, all of them, odd numbers.

For, if the two numbers exprefing the lengths of the two fides of the triangle that contain the right angle, were, both of them, odd numbers, their fquares would alfo be odd numbers; becaufe the fquare of every odd number is an odd number taken an odd number of times, and confequently muft be an odd number: and confequently the fum of the faid two fquares muft be an even number, becaufe two odd numbers added together always make an even number. Therefore the fquare of the number reprefenting the hypotenufe of the triangle, being equal to the faid fum of the two other fquares, mult be an even number. And

And confequently the fquare-root of the faid number, that is, the number reprefenting the hypotenufe of the triangle, muft be an even number likewife, which is contrary to the fuppofition. Therefore it is impoffible that all the three numbers which reprefent the lengths of the fides of a fightangled triangle, fhould be odd numbers.

Art. 24. There is alfo another way of finding feveral whole numbers that fhall reprefent the lengths of the fides of different right-angled triangles; which confifts in forming a lift, or table, of the fquares of the natural numbers \(1,2,3,4,5,6,7,8,9,10,11,12,13,8 c\), fet down in their proper order; and a lift of the differences of the faid fquares, (which, it is well known, are the feveral odd numbers \(3,5,7,9,11,13,15,17,19,21,23,25, \& \mathrm{c}\), taken in their natural order,) and adding together the faid differences that follow any given fquare number in the lift of fquares cill their fum amounts to another fquare number. Such a table, carried as far as the fquare of 100 , will be as follows.

TABLE of the Squares of the Natural Numbers 1, 2, 3, \(4,5,6,7,8,9,10,11,12,13, \forall 3\); as far as 100, and of their feveral Differences from each other, and likewife of the Differences of thoje Differences, or of the Second Differences of the faid Squares.
\begin{tabular}{|c|c|c|c|}
\hline The Natural Numbers. & The Squares of the Natural Numbers. & \[
\begin{aligned}
& \text { The Differ- } \\
& \text { ences of the } \\
& \text { faid Squares. }
\end{aligned}
\] & Their 2dDifferences or the Differences of their Differences. \\
\hline I & I & & \\
\hline 2 & 4 .... & 3 ..... & 2 \\
\hline 3 & 9 ..... & 5 ..... & 2 \\
\hline 4 & 16 … & 7 ..... & 2 \\
\hline 5 & \(25 \cdots\) & 9 & 2 \\
\hline 6 & 36 .... & 11 ..... & 2 \\
\hline & 49 .... & 13 ..... & 2 \\
\hline 8 & 49
64 & 15 ..... & 2 \\
\hline 9 & 8 I . \({ }^{\text {c... }}\) & . 17 ..... & 2 \\
\hline 10 & 100 & 19 & 2 \\
\hline I.I & 12 I & 2 I & 2 \\
\hline & 1 & 23 & \\
\hline 12 & 144 ..... & \(25 \cdots\) & 2 \\
\hline 13 & I69. \({ }^{\text {a }}\) & 25 .... & 2 \\
\hline 14 & I9 \(6^{\cdots}\) & 27 ..... & 2 \\
\hline I5 & 225 - & 29 ..... & 2 \\
\hline 16 & 2,6 \({ }^{\text {2 }}\), & 31 & 2 \\
\hline 17 & 289 & 33 ..... & 2 \\
\hline 18 & 324 ••... & 35 ... & 2 \\
\hline 19 & 36 I .... & 37 ..... & 2 \\
\hline 19 & 301 ..... & 39 ..... & 2 \\
\hline 20 & 400 & 39 ..... & 2 \\
\hline 2 I & 441 & 41 ..... & 2 \\
\hline 22. & \(484 \quad \cdots\) & 43 .... & 2 \\
\hline 23 & 529 & 45 ..... & 2 \\
\hline 24 & 576 & 47 ..... & 2 \\
\hline 25 & 625 .... & 49 ..... & 2 \\
\hline 26 & 676 •... & 51 & 2 \\
\hline & -.... & 53 .... & 2 \\
\hline 27 & 729 & 53 ..... & 2 \\
\hline 28 & 784 & 55 ..... & 2 \\
\hline & & 57 & 2 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|}
\hline The Natural Numbers. & The Squares of the Natural Numbers. & The Differences of the faid Squares. & Their 2d Differences or the Differences o their Differences. \\
\hline 2.9 & 841 ..... & 59 & \\
\hline 30 & 900 ..... & 61 . 6. & 2 \\
\hline 31 & 961 ...... & 63 ..... & 2 \\
\hline 32 & 1024 & 6 & 2 \\
\hline 33 & 1089 & 65 .... & 2 \\
\hline 34 & 1156 ..... & 67 .... & 2 \\
\hline 35 & 1225 & 99 .... & 2 \\
\hline 36 & \(129^{6}\) … & 71 & 2 \\
\hline 37 & 139 - & 73 & 2 \\
\hline 38 & \(1+44 \cdots\) & 75 & 2 \\
\hline 39 & 152 I & 77 & 2 \\
\hline 40 & 1600 … & 79 & 2 \\
\hline 41 & 1681 & 81 & 2 \\
\hline 42 & 1764 & 83 & 2 \\
\hline 43 & \(18_{4}\) I \(\cdots\) & 85 .... & 2 \\
\hline 44 & 1) \(3^{6}\) & 87 .... & 2 \\
\hline 45 & 2025 & 89 & 2 \\
\hline 46 & 2116 & 91 ..... & 2 \\
\hline 47 & 2209 & 93 & 2 \\
\hline 48 & 2304 & 95 & 2 \\
\hline 49 & 2401 & 97 ..... & 2 \\
\hline 50 & 2500 .... & 99 ..... & 2 \\
\hline 51 & 2601 ..... & 101 & 2 \\
\hline 52 & 2704 & 103 & \\
\hline 5 & 2809 & 105 .... & 2 \\
\hline 53 & 2809 & 107 .... & 2 \\
\hline 54 & \(2916 \quad \cdots\) & 107 ..... & 2 \\
\hline 55 & 3025 … & 109 ..... & 2 \\
\hline 56 & 3136 … & III ..... & 2 \\
\hline 57 & 3249 ..... & 113 & 2 \\
\hline \(5^{8}\) & 3364 .... & 115 & 2 \\
\hline 59 & 3481 …. & 117 & \\
\hline 69 & 3401 & 119 *... & 2 \\
\hline 6 & 3600 & 121 & 2 \\
\hline 61 & 3721 & 121 ..... & 2 \\
\hline 62 & 3844 . & 123 ..... & 2 \\
\hline 63 & 3909 & 125 ..... & 2 \\
\hline 64 & 4096 ..... & 127 & 2 \\
\hline & & 129 & 2 \\
\hline
\end{tabular}

The

Sides of Right-angled Triangles.
\begin{tabular}{|c|c|c|c|}
\hline The Natural Numbers. & The Squares of the Natural Numbers. & The Differences of the faid Squares. & Their 2d Differences, or the Differences of their Differences. \\
\hline 65 & 4225 & & \\
\hline 66 & \[
\begin{array}{r}
423 \\
4356
\end{array}
\] & \(131 \quad . . .\). & 2 \\
\hline 67 & \(4489 \quad \cdots\) & 133 & 2 \\
\hline 68 & 4624 - & I.35 ..... & 2 \\
\hline 69 & 4761 …. & I 37 ..... & 2 \\
\hline 70 & 4900 & I 39 & 2 \\
\hline 71 & 5041 … & 141 & 2 \\
\hline 72 & 5184 & 143 & 2 \\
\hline 73 & 5329 & 145 & 2 \\
\hline 74 & 5476 & 147 & 2 \\
\hline 75 & 5625 & 149 & 2 \\
\hline 76 & 5776 & 151 & 2 \\
\hline 77 & 5929 - & 153 & 2 \\
\hline 78 & 6084 & I 55 ..... & 2 \\
\hline 79 & 6241 … & I 57 ..... & 2 \\
\hline 80 & 6400 & 159 ..... & 2 \\
\hline 81 & 6-61 & 161 & 2 \\
\hline 82 & 6724 …. & 163 & 2 \\
\hline 83 & 6889 & 165 ..... & 2 \\
\hline 84 & 7056 & 157 ..... & 2 \\
\hline 85 & 7225 & 169 & 2 \\
\hline 86 & 7225 .... & 171 & 2 \\
\hline 87 & 7569 .... & 173 ..... & 2 \\
\hline 88 & 774 & 175 ..... & 2 \\
\hline 89 & 7744 - 79. & I 77 ..... & 2 \\
\hline 90 & 3 OOO ..... & 179 & 2 \\
\hline 91 & 8281 ..... & 181 & 2 \\
\hline 92 & 8464 … & 183 ..... & 2 \\
\hline 93 & 8649 .... & 185. & 2 \\
\hline & 8836 … & 187 ..... & 2 \\
\hline 94
95 & 88 & 189 …* & 2 \\
\hline 95 & 9025 & 191. & 2 \\
\hline 96 & 9216 & 193 ..... & 2 \\
\hline 97 & 9409 &  & 2 \\
\hline 98 & 9604 ..... & 195 ..... & 2 \\
\hline 99 & 9801 & 197 ..... & 2 \\
\hline 100 & 10,000 & 199 & \\
\hline
\end{tabular}

Art. 25. In the foregoing table the firt column contains all the natural numbers \(\mathrm{I}, 2,3,4,5,8 \mathrm{c}\), as far as 100 ; and the fecond column contains the fquares of the faid numbers fet down even with the faid numbers themfelves, or fo that every fquare number fhall be in the fame horizontal line with the natural number of which it is the fquare; and the third column contains the differences of the fquare numbers in the fecond column, fet down in lines between the lines in which the fquares themfelves, of which they are the differences, are fet down; and the fourth column contains the differences of the foregoing differences that are fet down in the third column, or the fecond differences of the fquare numbers that are fet down in the fecond column; and each of thefe fecond differences is fet down in a line that lies between the two lines in which the two firft differences, of which it is the difference, are fet down. And we may obferve, that the differences fet down in the third column are the odd numbers \(3,5,7\), 9, 11, 13, 15, \& co, taken in their natural order; and the fecond differences fet down in the fourth column, being the differences of the faid odd numbers, are all equal to each other, and to the number 2 .

Art. 26. From the conftruction of this table, it is obvious that, if we take any number whatfoever in the firt column, and look out its fquare in the fecond column, and then add together the feveral differences in the third column that follow the faid fquare number in the fecond column, till the fum of the faid differences fhall amount to a fquare number, the fquare-root of the faid fquare number, or the number in the firft column that is placed even with it, and the number firft taken, will exprefs the lengths of the two fides of a right-angled triangle that contain the right angle, and the number in the firtt column that immediately follows the laft of the faid differences in the third column, fo added together, will exprefs the length of the hypotenufe of the fame triangle. Thus, for example, if we take the number 3 in the firft column, and find its fquare, to wit, 9 , in the fecond column, and then add up the
the differences \(7,9,11,13, \& c\), in the third column, which come after the fquare number 9 , till their fum becomes equal to a fquare number, (for which purpofe we need only add together the two differences 7 and 9 , becaufe their fum is 16 , which is a fquare number,) the fquare root of the faid fquare number 16 , or the number in the firft column which is placed even with it, to wit, the number 4, and the number 3, which was taken at firt, will exprefs the lengths of the two fides of a right-angled triangle that contain the right angle, and the number 5 in the firt column, which immediately follows the lait of the faid two differences; fo added together, to wit, 9 , will exprefs the length of the hypotenufe of the fame triangle. So that we we hall hereby obtain the whole numbers 3, 4 , and 5 , to exprefs the length of the three fides of a right-angled triangle: which numbers we had before obtained by both the former methods of inveftigation.

Art. 27. If we look in the 3 d column, or column of differences, for thofe differences that are themfelves fquare numbers, without being added to any of the foregoing, or following, differences to make them fo, (which differences are but few in number, being only the following fix numbers, to wit, \(9,25,49,81,12 \mathrm{I}\), and 169 , in the whole table,) we may at once obtain from each of thefe differences a fet of numbers that will exprefs the lengths of the three fides of a right-angled triangle.

For, fince 9 is a fquare number, and is likewife the difference between the two contiguous 〔quare numbers 16 and 25, and confequently \(9+16\) are \(=25\), it follows that the fquare-roots of thefe three numbers 9,16 , and 25 , that is, the three numbers 3,4 , and 5 , will exprefs the three fides of a right-angled triangle.

And, in like manner, fince 25 is a 〔quare number, and is likewife the difference between the two contiguous fquare numbers 144 and 169 , and confequently \(25+144\) are \(=\) 169 , it follows that the fquare-roots of the three numbers

25,144 , and 169 , that is, the three numbers 5,12 , and 13, will exprefs the three fides of a right-angled triangle.
And, fince 4.9 is a fquare number, and is likewife the difference of the two contiguous fquare numbers 576 and 625 , and confequently \(49+576\) are equal to 625 , it follows that the fquare-roots of the three numbers 49,576 , and 62 , that is, the three numbers \(\%, 24\), and 25 , will exprefs the three fides of a right-angled triangle.

And, fince 8 I is a fquare number, and is likewife the difference of the two contiguous fquare numbers 1600 and 1681 , and confequently \(81+1600\) are \(=1681\), it follows that the fquare-roots of the three numbers 81,1600 , and 168 I , that is, the three numbers 9,40 , and 4 r , will exprefs the three fides of a right-angled triangle.

And, fince 121 is a 〔quare number, and is likewife the difference of the two contiguous fquare numbers 3600 and 3721 , and confequently \(121+3600\) are \(=3721\), it follows that the fquare roots of the three numbers \(12 \mathrm{I}, 3600\), and 3721 , that is, the three numbers 11,60 , and 61 , will exprefs the three fides of a right-angled triangle.

And, laftly, fince 169 is a fquare number, and likewife is the difference of the two contiguous Cquare numbers 7055 and 7225 , and confequently \(169+7056\) are \(=7225\), it follows that the fquare-roots of the three numbers \(\mathbf{1 6 9}\), 7056 , and 7225 , that is, the three numbers 13, 84, and 85, will exprefs the three fides of a right-angled triangle.

Art. 28. In this way of obtaining three numbers that fhall exprefs the three fides of a right-angled triangle, namely, by chufing fuch numbers in the 3 d column, or column of differences, as are themfelves fquare numbers, it is evident that the number expreffing the hypotenufe of the triangle will always exceed the greater of the other two numbers, that exprefs its fides, by an unit. But, when we take feveral fucceffive differences, of which the furn is equal to a fquare number, the number that expreffes the hypotenufe of the triangle, will exceed the number taken at firf, and
between the fquare of which, and the fquare of the number reprefenting the hypotenufe, the feveral differences that are added together lie, by as many units as there are differences that have been fo added together in order to make a fquare number. Of this it will not be amifs to give a few examples.

Art. 29. Let us take \(S\) for the firft number. Then, fince the fquare of 8 is 64 , we muft begin with the difference 17, which comes immediately after 64, and we muft add together this difference 17 , and the following differences 19, 21, 23, \(25,27, \& c\), till their fum amcunts to a fquare number. For this purpofe we need add together only two of thefe differences, to wit, 17 and 19. For \(17+19\) are \(=36\), which is a fquare number, to wit, the fquare of 6 . Therefore the firft number 8, and the number 6 , (or the fquare-root of the fum of thefe two differences), and the number 10, (or the fquare-root of the fquare number 100, which comes immediately after the laft difference 19), will be three numbers that will exprefs the three fides of a rightangled triangle. For \(\left.\overline{8}\right|^{2}+\overline{6} 2^{2}\) will be \(=\overline{1 c^{2}}\), or \(64+3^{6}\) will be \(=100\). And the number 10 , (which reprefents the hypotenufe of the triangle, exceeds the firt number 8, (which reprefents the greater of its two fides,) by 2 , or two units, or the fame number of units as there were differences addied together, in order to produce the fquare number \(3^{6 .}\)

And, if, inftead of taking only two of the differences 17, 19, 21, 23, 25, 27, 29, \&c, we take nine of them, we fhall find their fum to be equal to anorher fquare number, to wit, 225 , which is the fquare of 15 . For \(17+19\) \(+21+23+25+27+29+31+33\) are \(=225\). Therefore the firt number 8, and the number 15, (or the fquare-root of the fum of thefe nine differences, ) and the number \(\mathbf{1 7}\), (or the fquare-root of the fquare number 289 , which comes immediately after the laft difference 33 ,) will be three numbers that will exprefs the three fides of a rightangled triangle. For \(87^{2}+\sqrt[15]{ }{ }^{2}\) will be \(=17^{2}\), or \(64+\)

225 will be \(=289\). And the number 17, (which reprefents the hypotenufe of the triangle,) exceeds the firt number 8 , (which reprefents one of the fides that ingclofe the right angle,) by 9 , or nine units, or the fame number of units as there were differences added together, in order to produce the fquare number 225 .

Art. 30. Now let the firft number be 20. Then, fince the fquare of 20 is 400 , we muft begin with the difference 4 I , which comes immediately after 400 , and mult add together this difference 41, and the following differences 43 , \(45,47,49,5 \mathrm{I}, \& \mathrm{c}\), till their fum amounts to a fquare number. And for this purpofe it will be neceffary to add together nine of thefe differences. For \(41+43+45+\) \(47+49+51+53+55+57\) are \(=44 \mathrm{r}\), which is the fquare of 21 . Therefore the firft number 20, and the number 21 , (or the fquare-root of the fum of thefe nine differences,) and the number 29, (or the fquare-root of the fquare number 84 I , which comes immediately after the laft difference 57 ,) will be three numbers that will exprefs the three fides of a right-angled triangle. For \(201^{2}+\) \(27^{2}\) will be \(=29^{2}\), or \(400+441\) will be \(=84 \mathrm{r}\). And the number 29, (which reprefents the hypotenufe of the triangle,) exceeds the firft number 20 , (which reprefents one of the fides that inclofe the right-angle,) by 9 , or nine units, or the fame number of units as there were differences added together in order to produce the fquare number 441.

Art. 31. Now let the firft number be 28. Then, fince the fquare of 28 is 784 , we mult begin with the difference 57 , which comes immediately after 784 , and we muft add together this difference 57 , and the following differences \(59,61,63,65, \& c\), till their fum amounts to a fquare number. And for this purpofe it will be neceffary to add together feven of thefe differences. For \(57+59+61+\) \(63+65+67+69\) are \(=44 \mathrm{r}\), which is the fquare of 21. Therefore the firft number 28, and the number 2I,
(or the fquare-root of the fum of thefe feven differences, ) and the number 35 , (or the fquare-root of the fquare number 1225 , which comes immediately after the laft difference 69,) will be three numbers that will exprefs the three fides of a right-angled triangle. For \(281^{2}+2 \mathrm{~T}^{2}\) will be \(=35^{2}\), or \(784+44^{1}\) will be \(=1225^{\circ}\). And the number 35, (which reprefents the hypotenufe of the triangle,) exceeds the firt number 28 , (which reprefents one of the fides that inclofe the right angle, ) by 7 , or feven units, or the fame number of units as there were differences added together, in order to produce the fquare number 44 I .

Thefe examples, I apprehend, are fufficient to explain this method of obraining different fers of whole numbers that fhall exprefs the lengths of the fides of different righte angled triangles. And with them I hall conclude this little tract.

End of the Difcourfe concerning the Metbods of finding Rational Numbers that express the Sides of Right-angled Triangles.

\section*{OFTHE}

\section*{DIFFERENCES}
OF THE

\section*{\(C U B=E\)}
```

OFTHE

```

NATURAL NUMBERS \(1,2,3,4,5,6,7,8<c\)

Article I . We have feen in the table of the fquares of the natural numbers \(1,2,3,4,5,6,7, \& c\), fet down in the foregoing Tract, that the firft differences of the fquares of thofe numbers are the odd numbers \(3,5,7,9\), II, \(13,15,17, \& c\), in their natural order, and their fecond differences, or the differences of their firf differences, are all equal to each other, and to the number 2. We will now fet down a table of the cubes of the feveral natural numbers \(1,2,3,4,5,6,7,8,9, \& c\), and of their differences, and the differences of thofe firf differences, and the differences of thofe fecond differences; by which it will appear that the cubes of the faid numbers have three orders of differences, and that their differences of the third order are all equal to each other and to the number 6. This Table will be as follows:

A TABLE of the Cules of the NTatural Numbers \(1,2,32\) \(4,5,6,7,8,9, \mathcal{E}^{3}\), as far as 100 ; together with their Firft, Second, and Tbird, Differences.
\begin{tabular}{|c|c|c|c|c|}
\hline \begin{tabular}{l}
The \\
Natural \\
Numbers
\end{tabular} & Their Cubes. & The Differences of their Cubes. & Their2dDiffs.on the Difis. of the former Diffs. & The 3d Differences of the faid Cubes. \\
\hline 1 & 1 & & & \\
\hline 2 & 8 & & 12 & \\
\hline 3 & 27 & 19 & 2 S & 6 \\
\hline 4 & 64 & 37 & & 6 \\
\hline 4 & 64 & 6 I & 27 & 6 \\
\hline 5 & 125 & 9 I … & 30 & 6 \\
\hline 6 & 216 & 127 & 36 & 6 \\
\hline 7 & 343 & 127 & 42 & 6 \\
\hline 8 & 512 & 169 & 48 & 6 \\
\hline 9 & 720 - & 217 & 4 & 6 \\
\hline IO & 100 & 27 I & 6 & 6 \\
\hline & & 331 & & 6 \\
\hline I I & 1331 & & 06 & 6 \\
\hline 12 & 1728 & 397 & 72 & 6 \\
\hline 13 & 2197 & 409 .... & - 78 & 6 \\
\hline 14 & 2744 & 547 & 84 & 6 \\
\hline I5 & 3375 & 631 & 00 & 6 \\
\hline 16 & 4096 & 721 & 6 .... & 6 \\
\hline & & 817 & 96 & 6 \\
\hline 17. & 4913 & OIO & 102 & 6 \\
\hline 18 & 5832 & 919 & 108 & 6 \\
\hline 19 & 6859 & 1027 & 144 & 6 \\
\hline 20 & 8000 & 1141 & 120 & 6 \\
\hline 2 I & 9261 & 1.251 & 126 & 6 \\
\hline 22 & 10,648 & 1.387 & & 6 \\
\hline 23 & 12,167 & 1519 & 32 & 6 \\
\hline 24 & 13,8224 & 1657 & 130 ..... & 6 \\
\hline & 13,8.24 & 1801 & 144 & 6 \\
\hline 25
26 & 15,625 & 1951 & 150 & 6 \\
\hline 26 & 17,576 & 1951 & 156 & 6 \\
\hline 27 & 19,683 & 2107 & 162 & 6 \\
\hline 28 & 21,952 & 2269 & 58 & 6 \\
\hline 29 & 24,389 & 2437 ..... & 5 6 & 6 \\
\hline & & 2611 ...... &  & 6 \\
\hline
\end{tabular}

The
the Natural Numbers \(1,2,3,4,5,6,7, E^{3} c\).
\begin{tabular}{|c|c|c|c|c|}
\hline \[
\begin{aligned}
& \text { The } \\
& \text { Natural } \\
& \text { Numbers }
\end{aligned}
\] & Their Cubes. & The Differences of their Cubes. & TheirzdDiffs.on the Diffs. of the former Diffs. & The3dDifferences of the faid Cubes. \\
\hline 30 & 27,000 & & & \\
\hline 31 & 29,791 & 2077 & 136 & 6 \\
\hline 32 & 32,768 & & 192 & 6 \\
\hline 33 & 35,937 & 697 & 193 & 6 \\
\hline 34 & 39,304 & 3571 & 204 & 6 \\
\hline 35 & 42,875 & 3781 & 210 & 6 \\
\hline 36 & 46,656 & 3097 & 216 & 6 \\
\hline 37 & 50,653 & 4219 & 22.2 & 6 \\
\hline 38 & 54, 872 & 444 & 228 & 6 \\
\hline 39 & 59,319 & 468 I & 234 & 6 \\
\hline 40 & 64,000 & 4921 & \(240^{\circ}\) & 6 \\
\hline 41 & 68,921 & 5167 & 246 & 6 \\
\hline 42 & 74,088 & 5419 & 252 & 6 \\
\hline 43 & 79,507 & 5677 & 258 & 6 \\
\hline 44 & 85,184 & 504.1 & 264 & 6 \\
\hline 45 & 91,125 & 62 II & 270 & 6 \\
\hline 46 & 97.336 & 6487 & 276 & 6 \\
\hline 47 & 103,823 & 6767 & 282 & 6 \\
\hline 48 & I 10,592. & 7057 & 288 & 6 \\
\hline 49 & I17,649 & 7351 & 294 & 6 \\
\hline 50 & 125,000 & 7651 & 300 & 6 \\
\hline 51 & I 32,651 & 7957 & 306 & 6 \\
\hline 52 & 140,608 & 8250. & 312 & 6 \\
\hline 53 & 148,877 & 8587 & 318 & 6 \\
\hline 5+ & 157,464 & 8011 & 324 & 6 \\
\hline 55 & 156,375 & 9241 & 330 & 6 \\
\hline 56 & 175,6I6 & 9577 & 336 & 6 \\
\hline 57 & 185,193 & 9519 & 342 & 6 \\
\hline 58 & 193,112 & 10267 & 34.8 & 6 \\
\hline 59 & 205,379 & 10621 & 354 & 6 \\
\hline 60 & 2.16,000 & & 360 & 6 \\
\hline 6 r & 226,981 & 10901 & 366 & 6 \\
\hline 62 & 2, 3,323 & 11719 & 372 & 6 \\
\hline 63 & 2,50,047 & 112097 & 378 & 6 \\
\hline 64 & 262,144 & 12481 & 384 & . 6 \\
\hline
\end{tabular}


Art. 2. And in like manner it will be found that the fourth powers of the natural numbers \(1,2,3,4,5, \& c\), will have four orders of differences, and that their fifth powers will have five orders of differences; and, in general, that their \(n\)th powers, \(n\) leing any whole number whatfoever, will have \(n\) orders of differences. This is a curious property of the powers of the ratural numbers \(1,2,3\), 4, 5, 6, 7, \&x, and has been long known to Mathematicians. The celebrated Mr. Leibnitz, of Hanover, had taken notice of it before the month of February, 1673 ; and it had been obferved before him by a French Mathematician, named Mouton, (who was a Canon of the Church of Lyons, ) in a book on the apparent diameters of the Sun and Moon; but which Mr. Leibnitz declared he had not feen at the time he made the fame difcovery. Mr . Leibnitz's manner of confidering the fubject is explained pretty fully in a large extract from a letter of his to Mr. Henry Oldenburgh, the Secretary of the Royal Society of London, dated at London on the 3d of February, \(167 \frac{2}{3}\), which has been publifhed in the Commerciun Epifolicum of Mr. John Collins and other Mathematicians of that time. This extract, as it contains feveral interefting particulars relating to thefe numbers, I thall here infert at length from the faid Commercium Epifolicum, pages 108, 109, 110, .... 114. It is as follows.

Art. 3. Excerpta ex Epifola Domini Gothofredi Gulielmí Leibnitzii ad Dominum Oldenburgh, Londini, Anno \(167 \frac{2}{3}\), \(3^{\text {iio }}\) die Februarii, datâ.

Hujus Autographon in foriniis Regice Societatis extat, et exemplar cjus in Libro Epiffolarum dizia Societatis, \(N^{\circ} .6\), pag. 35, defcriptum legitur.

CUM heri apud illuffriffimum Boylium incidiffem in clariffimum Polliution Mathematicum infignem, ac de Numeris incidiffet
incidiffet mentio, commemoravi ego, ductus occafione Sermonum, effe mihi methodum ex quodam differentiarum genere, quas roco generatrices, colligendi terminos Seriei cujufcunque continuè crefcentis vel decrefcent's. Differentias autem generatrices voco, fi datæ Seriei inveniantur differentix, \&s differentix differentiarum, \& ipfarum ex differentiis differentiarum differentiæ, \(\Xi c\). \&z feries conftituatur ex termino primo \& primâ differentiâ, \& primâ differentiâ differentiarum, \& primâ differentiâ ex differentiis differentiarum, \(\mathcal{E}^{c}\). ea Series erit differentiarum generatricium, ut fi Series continuè crefcens vel decrelcens fuerit \(a, b, c, d\).

Pofitá as differentice Notá,] differentiæ generatrices crunt:
 \(\overline{\overline{b \omega c} \omega \overline{c \omega d}}\).
\[
4 \overline{\overline{a \omega b}} \cdots \overline{b \omega c} \backsim \sqrt{\bar{b} \overline{\omega c} \omega \overline{c \omega d}}
\]
\[
3 a \cos b \cos c \quad b \sin c \cos d
\]
\(2_{a} a \cos b \quad b \cos \quad c \quad \cos d d\)

Aut in Numeris; fil Series fit Numerorum cubicorum deinceps ab unitate crefcentium, differentiæ generatrices erunt numeri o, 1, 6, 6. Vocu autem generatrices, quia ex iis certo modo multiplicatis producuntur termini Seriei; cujus ufus tum maximè apparet, cum differentix generatrices funt finitæ, termini autem Seriei infiniti; ut in propofito exemplo Numerorum Cubicorum.


Hoc cum audiffet clariffimus Peliius, refpondit, id jam fuiffe in literas relatum à D. Moutor, Canonico Lugdunenfo, ex obfer-
obfervatione nobiliffimi viri Francifci Regnaldi Lugdunerfis, dudùm in literario Orbe celebris, in libro laudati D. Mouton de diametris apparentibus Solis \& Lunæ. Ego qui ex Epiftolâ quâdam à Regnaldo ad Monconifumm fcriptấ, \& Diario itinerum Monconifiano infertâ, nomen D. Moutoni \& defignata ejus duo didiceram; Diametros Luminarium apparentes, \& confilium de menfuris rerum ad pofteros tranfmitiendis; ignorabam tamen librum ipfum prodiffe : quarè apud D . Oldenburgiuins Societatis Regalis Secretarium, fumtum mutuò tumultuariè percurri, \& inveni veriffimè dixiffe Pellium. Sed \& mihi tamen dandam operam credidi, ne qua in animis relinqueretur fufpicio, quafi, tacito * inventoris nomine, alienis meditationibus honorem mihi quærere voluifferm ; \& fpero appariturum effe, non adeò egenum me meditationum propriarum ut cogar alienas emendicare. Duobus autem argumentis ingenuitatem meam vindicabo. Primò, fi ipfas Schedas meas confufas, in quibus non tantùm inventio mea fed \& inveniendi modus occafíque apparet, monftrem: deinde, fi quædam momenti maximi Regnaldo Moutonóque indicta addam, quæ ab hefterno vefpere confinxifie me non fit verifimile, quaéque non poffunt facilè expectari à Tranfcriptore.

Ex Schedis meis occaffo inventi hæc apparet: quærebam modum inveniendi differentias omnis generis poteftatum, quemadmodum conftat differentias Quadratorum effe numeros impares ; invenerámque regulam generalem ejufmodi.

Datâ potentiâ gradûs dati præcedente, invenire fequentem (vel contrà) diftantiæ datæ vel radicum datarum; feu invenire potentiarum gradus dati utcunque diftantium differentias. Multiplicetur porentia gradûs, proximè precedentis radicis majoris per differentiam radicum; \&r differentia potentiarum gradûs proximè præcedentis multiplicetur per radicem minorem : productorum fumma erit quæfita differentia potentiarum, quarum radices funt datæ. Eandem regulam ita inflexeram, ut fufficeret, preter radices, cujuflibet gradûs, etiamfi non proximè præcedentis, potentias datarum radicum dari, ad differentias potentiarum alterius cu-
> \(*\) Id cft, celato.
jufcunque, licet altioris, gradûs inveniendas. \({ }^{\circ} \mathrm{Et}\) oftendi quod in Quadratis obfervatur, numeros impares effe eorum differentias, id non nifi regulæ propofitæ fubfumptionem effe.

His meditationibus defixus, quemadmodum in Quadratis differentix funt numeri impares, ita quoque quæfivi quales effent differentix Cuborum, quæ cum irregulares viderentur, quæfivi differentias differentiarum, donec inveni differentias tertias effe numeros fenarios. Hæc obfervatio mihi aliam peperit : videbam enim ex differentiis precedentibus generari terminos differentiáfque fequentes, ac proinde, ex primis, quas ideò voco generatrices, (ut hoc loco o. I . 6.6,) fecuentes omnes. Hoc conclufo, reftabat invenire, quo additions, multiplicationífve, aut horum complicationis, genere, termini fequentes ex differentiis generatricibus producerentur. Atque ita refolvendo experiundóque deprehendi primum Terminum o componi ex primâ dıfferentiâ generatrice o umtâ femèl, feu vice unâ: Secundum I ex primâo femèl \& fecundâ i femèl: Tertium 8 ex primâ o femèl, fecundâ 1 bis \& tertiâ 6 femèl : nam \(0 \times 1+1 \times 2+\) \(6 \times 1=8\). Quarrum 27 , ex primâ o femèl, fecundâ 1 tèr, tertiâ 6 tèr, quariâ 6 femèl : nam \(0 \times 1+1 \times 3+\) \(6 \times 3+6 \times I=27\), Ec \(^{2}\). ídque Analyfis mihi univerfale effe comprobavit. Hæc fuit occafio obfervationis meæ, longè alia à Moutoniana, qui cum in Tabulis condendis laboraret, in hoc calculandi compendium cum Regnaldo incidit : nec vel illi vel Regnaldo adimenda laus; quod \& Briggius in Logarithmicis fuis jam olim talia quædam, obfervante Pillio, ex parte advertit. Mihi hoc fupereft ut addam nonnulla illis indifta, ad amoliendum Tranferiptoris nomen; neque enim intereft Reipublicæ quis obfervaverit, intereft quid obtervetur. Primum, ergò illud adjicio, quod apud Moutonium non extar, \& capus tamen rei eft : quinam fint illi numeri, quorum Tabulam ille exhibet in infinitum continuandam, quorum ductu in differentias generatrices, productis inter fe junctis, termini Serierum generentur. Vides enim ex ipfo modo quo tabula ab eo pag. 385 , exhibetur, non fuitle id ei fatis exploratum, alioqui enim verifimile eft ita Tabulam fuiffe difpofiturum, ut ea numerorum connexio aique
arque harmonia appareret; nifi quis de induftriâ texiffe dicat: ita enim fe habet pars Tabulx.
\begin{tabular}{r|rrrrrr}
\(I\) & \(I\) & & & & & \\
2 & \(I\) & \(I\) & & & & \\
3 & \(I\) & 2 & \(I\) & & & \\
\((4)\) & \(I\) & 3 & 3 & \(I\) & & \\
5 & \(I\) & 4 & 6 & 4 & \(I\) & \\
6 & \(I\) & 5 & 10 & 10 & 5 & \(I\) \\
7 & \(I\) & 6 & 15 & 20 & 15 & 6 \\
8 & \(I\) & 7 & \(2 I\) & 35 & 35 & \(2 I\) \\
9 & \(I\) & 8 & 28 & 56 & 70 & 56 \\
IO & \(I\) & 9 & 36 & 84 & 126 & 126 \\
\(I^{\prime}\) & \(I\) & \(I O\) & 45 & 120 & 210 & 252
\end{tabular}

Apparet ex hujus Tabulæ conftructione folam haberi rationem correlponfûs numerorum generantium cum numero Termini generati ; uc cum terminus eft quartus (4) producitur ex primâ differentiâ femèl, fecundâ ter 3, tertiâ ter 3 , quartâ femèl I ; ideò in eâdem (4) Lineâ tranfversâ locantur 1.3.3.I. Sed vel non obfervavit vel diffimulavit autor correfponfum numerorum, fi à fummo deorfùm eundo per columnas difponantur hoc modo,


Ita enim ftatìm vera genuináque corum natura ac generatio apparet; effe, fcilicet, eos numeros quos Csmbinatorios appellare foleo, de quibus multa dixi in differtatiunculâ de Arte Combinatoriâ ; quófque alii appellant Ordines numeri-
cos; alii Specie primam columnam Unitatum ; fecundam Numerorum naturalium, tertiam T'riangularium, quartam Pyranidalium, quintam Triangulo-Triangularium, E'c. de quibus integer extat Tractatus Pafcbalii fub titulo Trianguli Arithmetici; in quo tamen proprietatem numerorum ejufmodi tàm illuftrem támque naturalem * non obfervatam fum miratus. Sed eft profectò cafus quidam in inveniendo, qui non femper maximis ingeniis maxima, fed fape etiam mediocribus nonnulla offert.

Hinc jan vera numerorum iftorum natura, \& Tabulæ confructio, five à Regraldo five à Moutonio diffimulata, intelligitur : femper enim terminus datus columnæ datæ componitur ex termino precedente columnæ tàm præcedentis quàm datæ: Atque illud quoque apparet, non opus effe molefto calculo ad Tabulam à Moutonio propofitam continuandam, ut ipfe poftulat; cum hæ numerorum Series pafsìm janı tradantur calculentúrque.

Cæterùm Mantonius obfervatione iftâ ad interponendas medias proportionales inter duos extremos numeros datos; ego ad inveniendos ipfos numeros extremos in infinitum cum eorum differentiis, utendum cenfebam. Hinc ille, non nifi cum differentix ultimæ evanefcunt (aut penè evanefcunt) ufum regulx invenit; ego detexi innumerabiles cafus, regulâ quâdam inobfervatâ comprehendendos; ubi poffum ex datis numeris finitis cerio modo multiplicatis producere numeros plurimarum Serierunn in infinitum euntium, etfi differentix earum non evanelcant.

Ex iifdem fundamentis poffum efficere in progrefionibus problemata plurima; aut in Numeris fingularibus, aut in Rationibus vel Fractionibus: poffum enim progreffiones ad-

\footnotetext{
* Inò obfervata fuit. Vide Pafchalii Triangulum Aritbmeticum, Parifiis Anno 1665 editum, pag. 2. uhi definitionum antrpenullima brec eft.

Le nombre de chaque cellule oft cral à crluy de la cellule qui la précéle dans Son rang perpendiculaire, plus à celuý vís lo collule qui la précóde dans fon rang parallíce. Ainf la cellule F , c'eft a dive le nombre de la collule F , égale la celvele C plus la cellule E ; És ainfo des autires.
}
dere
dere fubtraheréque, imò multiplicare quoque \& dividere, ídque compendiosè.

Multa alia circà hos numeros obfervata funt à me, e quibus illud eminet, quod modum habeo fummam inveniendi Seriei Fractionum in infinitum decrefcentium; quarum numerator Unitas, nominatores vero numeri itti Triangulares aut Pyramidales, aut Triangulo-Triangulares; \(\mathcal{E}^{\circ}{ }_{c}\)

\section*{End of the Extract from Mr. Leibnitz's Letter.}

Art. 4. By the help of the foregoing table of the cubes of the natural numbers \(\mathrm{I}, 2,3,4,5,6,7,8 \mathrm{c}\), as far as 100 , we may find the cube-root of any number exact to two places of figures, without the trouble of any calculation whatfoever, or by the mere infpection of the table. Thus, for example, if I wanted to find the cuberoot of 2000 , I need only look along the fecond column of the table, (which contains the cubes of the numbers fet down in the firft column, ) till I found the two cube numbers which are neareft to the propofed number 2000, the one above it and the other below it. Thefe numbers I flould find to be 2197 and 1728 ; of which the former is the cube of 13 , and the latter is the cube of 12 . And hence I might conclude with certainty that, fince the propofed number 2000 is greater than 1728 , or the cube of 12 , but lefs than 2197, or the cube of \(I_{3}\), its cube-root muft be greater than 12, but lefs than 13, and contequently that the two firft figures of it mult be 12. And from the two firt figures of the cube-root of any propofed number, we many derive the following figures of it to five, of fix, or any greater
number of figures that we may defire, by the method of approximation invented for this purpofe by Monfieur De Lagney, which has fince been approved and adopted by Dr. Halley and other Mathematicians, as the moft convenient that can be taken. This method is as follows.

Monfeur De Lagney's Metbod of approximating to the Value of the Cube-root of any proposed Number, when the Two, or Thbree, firf Figures of the faid Cube-root are known.

Art. 5. If the number of which the cube-root is to be extracted be called \(c\), and a number, confiting of two, or more figures, that is fomewhat lefs than the true value of the faid cube-root be called \(a\), the remaining part of the faid cube-root will be very nearly equal to the quantity \(\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\), and confequently the whole of the faid cuberoot will be very nearly equal to \(a+\frac{\left.c-a^{2}\right) x a}{c+2 a^{3}}\); but it will always be a little greater than the faid quantity. Alfo the faid remaining part of the cube-root of \(c\), which is to be added to its firft value \(a\), will be very nearly equal to the quantity \(\left.\sqrt{\frac{4 c-a^{3}}{12 a}}\right)-\frac{a}{2}\), and confequently the whole of the faid cube-root will be very nearly equal to \(a+\) \(\sqrt{\frac{4 a-a^{3}}{12 a}}-\frac{a}{2}\), or to \(\frac{a}{2}+\sqrt{\frac{4-a^{3}}{12 a}}\); but it will always be a little lefs than that quantity. And this latter expreffion will be a little nearer to the true value of the cube-roor of \(c\) than the former expreffion \(a+\frac{\left.\overline{c-a^{3}}\right) \times a}{c+2 a^{3}}\); but the difference will be fo fmall as to be hardly worth confidering.

Art. 6.

Art. 6. And, if \(a\), or the firt near value of the cuberoot of the propofed number \(c\), be a little greater than irs true value, the quantity to be fubtracted from \(a\), in order to make it equal to the faid true value, will be very nearly equal to the quantity \(\frac{a^{3}-\lambda \times a}{c+2 a^{3}}\), and confequently the faid cube-root will be very nearly equal to \(a-\frac{\sqrt{a^{3}}-a \times a}{c+2 a^{3}}\); but it will be always a little greater than the faid quantity.

Alfo the faid difference between \(a\) and the true value of the cube-root of \(c\), or quantity which is to be fubtracted from \(a\), in order to make it equal to the faid cube-root, will be very nearly equal to the quantity \(\frac{a}{2}-\sqrt{\frac{4 c-a^{3}}{12 a}}\); and confequently the faid cube-root will be very nearly equal to \(a-\frac{a}{2}-\sqrt{\frac{4 c-a^{3}}{12 a}}\), or to \(\frac{a}{2}+V \sqrt{\frac{4 c-a^{3}}{12 a}}\); but it will always be a litule lefs than the faid quantity. And this latter expreffion \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\) will be a little nearer to the true value of the cube-root of \(c\) than the former expreffion \(a-\frac{\sqrt{a^{3}-a} \times a}{c+2 a^{3}}\); but the difference will be fo fmall as to be hardly worth confidering.

Art. 7. The number of figures that will be exact in the fecond near value of the cube-root of the propofed number \(c\) that will be obtained by either of thefe four expreffions \(a+\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}, \frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}, a-\frac{\sqrt{a^{3}-a} \times a}{c+2 a^{3}}\), and \(\frac{a}{2}+\) \(\sqrt{\frac{4 c-a^{3}}{12 a}}\), (which laft expreffion, we may obferve, is the very fame with the fecond expreffion,) is ufually triple, or triple wanting one figure, and in the worlt cafes is triple wanting two figures, of the number of figures that are exact in the firft near value, \(a_{0}\)

\section*{An Example of the Extrafion of the Cube-root of a Number, by means of the foregoing Metbod of Approximation.}

Art. 8. Let it be required to extract the cube-root of the number 2; which anfwers to the folution of the Problem, fo much celebrated amongtt the Antients, of doubling the cube, or finding the length of the fide of a cube that fhall be double of a given cube.

Here I obferve, in the firft place, that, fince the number 2000 is equal to \(1000 \times 2\), or to \(10 \times 10 \times 10 \times 2\), the cube-root of 2000 muft be equal to 10 times the cuberoot of 2 . But it appears from the foregoing table of cube numbers, that the cube-root of 2000 mult be greater than 12, but lefs than 13, and confequently that the two firft figures of it mult be 12. Therefore the cube-root of a mult be \(\left(=\frac{12}{10}=\frac{10}{10}+\frac{2}{10}\right)=1.2\), or the two firlt figures of the faid cube-root muft be 1.2. Here then we have \(c=2\), or \(2.000,000\), and \(a=1.2\), and confequently \(a^{3}=\) 1.728, and \(2 a^{3}=3.45^{6}\), and \(c+2 a^{3}\left(=2+3.45^{6}\right)=\) 5.456 , and \(c-a^{3}(=2.000-1.728)=0.272\), and \(\overline{c-a^{3}} \times a\left(=0.27^{2} \times 1.2\right) 3.264\), and \(\frac{c-a 7 \times a}{c+2 a^{3}}(=\) \(\left.\frac{3 \cdot 264}{5 \cdot 45^{6}}\right)=0.059,82\). Therefore \(a+\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\) will be \(=\) \(1.2+0.059,82\), or \(1.259,82\); or the fecond near value of the cube-root of 2 , which is obtained by means of the firlt expreffion \(a+\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\) given in art. 5 , is \(1.259,82\).

The number of figures that are exact in this fecond near value, \(1.259,82\), of the cube-root of 2 , is four, to wit, the figures 1.259 , that is, three times as many figures, wanting two, as are contained in 1.2 , or \(a\), the firft near value of
the faid cube-root, the more accurate value of which is \(1.259,921,049\), \&c, which is greater than \(1.259,82\) by \(0.000,1, \& c\).
The other expreffion given in art. 5 , to wit, \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\), may be computed as follows.

Since \(a\) is \(=1.2\), and \(c\) is \(=2\), we fhall have i2 \(a(=\) \(12 \times 1.2)=14.4\), and \(\frac{a}{2}=0.6\), and \(46=8.000\), and \(4 c-a^{3}(=8.000-1.728)=6.272\), and \(\frac{4 c-a^{3}}{12 a t}(=\) \(\left.\frac{6.272}{14.4}\right)=0.435,555,555, \& \mathrm{c}\), and \(\sqrt{\frac{4 c-a^{3}}{12 a}}(=\sqrt{ } 0.435\), \(555,555, \& \mathrm{c},)=0.659,96\), and \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}(=\) \(0.6000,00+0.659,96)=1.259,96\). Therefore \(\frac{a}{2}+\) \(\checkmark \sqrt{\frac{4 c-a^{3}}{12 a}}\), or the fecond near value of the cube-root of 2 , which is obtained by means of the fecond expreffion given in art. 5 , is \(\mathrm{I} .259,9^{6}\); which is exact in the firft five figures 1.2599, and is greater than the true value of the faid cuberoot, to wit, 1.2 .59 .92 , \&c, by only \(0.000,04\), \& ic, which is lefs than the difference \(0.000, \mathrm{I}\), by which \(\mathrm{I} .259,82\), or the fecond value of the cube-root of 2 , obtained by means of the former expreffion \(a+\frac{\left.\overline{a-a^{3}}\right) \times a}{c+2 a^{3}}\), fell thort of the true value of the faid cube roor. But either of thefe fecond near values of the faid cube-root, \(1.259,82\) and \(1.259,96\), is a great improvement upon its firft near value, I.2, though lefs than it would have been if the two firft figures of the cube-root of the propofed number had been higher figures than 1 and 2 .

Art. 9. And, if we repeat this procefs of approximation with either of the two expreffions \(a+\frac{c-a^{3} \times a}{c+2 a^{3}}\), and \(\frac{a}{2}+\)
\(\checkmark \sqrt{\frac{4 c-a^{3}}{12 a}}\), taking the firft four figures of the fecond values of the cube-root of 2 , which have been already found, (and which are the fame in both the foregoing calculations,) to wit, the four figures 1.259 , for the bafis of the next operation, we thall obtain the value of the faid cube-root to a very great degree of exactnefs. This may be done in the manner following.

Let \(a\) be fuppofed \(=1.259\).
Then we fhall have \(a^{3}\left(=\overline{1.259}{ }^{3}\right)=\mathbf{1 . 9 9 5 , 6 1 6 , 9 7 9 ,}\) and confequently \(2 a^{3}\{=2 \times 1.995,616,979)=3.991\), 233,958 , and \(c+2 a^{3}\left(=2+3.991,233,95^{8}\right)=\) \(5.991,233,95^{8}\), and \(c-a^{3}(=2.000,000,000-1.995\), \(616,979)=0.004: 383,021\), and \(\overline{c-a^{3}} \times a(=0.004\), \(383,021 \times 1.259)=0.005,518,223,439\), and \(\frac{\left.c-a^{3}\right) \times a}{c+2 a^{3}}\) \(\left(=\frac{0.005,518,223,439}{5.991,233,958}\right)=0.000,92 \mathrm{I}, 049,55, \& \mathrm{c}\). Therefore \(a+\frac{c-a^{2}}{c+2 a^{3}}\) will be ( \(=1.259+0.000,921,049,55, \& c\), \(=1.259,921,049,55,8 c\); which is exact in the firft ten figures \(1.259,921,049\), the more accurate value of the cube-root of 2 being \(1.259,921,049,89\), which is greater than \(1.259,921,049,55\) by only the very fimall quantity \(0.000,000,000,34\).

Alfo we thall have \(4 c(=4 \times 2)=8.000,000,000\), and \(4 c-a^{3}(=8.000,000,000-\mathrm{I} .995,616,979)=\) \(6.004,383,02 \mathrm{I}\), and \(12 a(=12 \times 1.259)=15.108\), and \(\frac{4 c-a^{3}}{12 a}\left(=\frac{6.004,383,021}{15.108}\right)=0.397,430,900,3\), and \(\sqrt{\frac{4 c-a^{3}}{12 a}}\) \((=\sqrt{ } 0.397,430,700,3)=0.630,42 \mathrm{I}, 050,01\). Therefore \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\) will be ( \(=\frac{1.259}{2}+0.630,421,050,01=\) \(0.6295+0.630,421,050,01)=1.259,921,050,01\); which exceeds the more accurate value of the cube-root of 2 , to
wit, \(1.259,92 \mathrm{I}, 049,89\), by only the very fmall quantity \(0.000,000,000,12\), which is ftill lefs than the fmall quantity \(0.000,000,000,34\).

Anotber Example of the ExtraEtion of the Cube-root of a Number, by the fame Metbod of Approximation.

Arr. 10. Ler it be propofed to find, in inches and decimal parts of an inch, the fide of a cube that is equal to the Englifh meafure called a gallon, which contains 23 I cubick inches; or, in other words, let it be required to find the cube-root of the number 23 r .

Now, if we look along the column of cube numbers in the foregoing table, we thall find that 216 is the cube of 6 , and that 343 is the cube of 7 . Therefore we may conclude that the cube-root of the propofed number 231 mult be greater than 6 , but lefs than 7 . We will therefore take 6 for the value of \(a\), or for the firft near value of \(\sqrt[3]{\sqrt[3]{23} \mathrm{r}}\), with which we are to begin our approximation:

Now, fince \(c\) is, in this example, equal to 23 r , and \(a\) is \(=6\), we thall have \(a^{3}\left(=\overline{3^{3}}\right)=216\), and \(2 a^{3}=43^{2} 2\) and \(c+2 a^{3}(=231+432)=663\), and \(c-a^{3}(=\) \(231-216)=15\), and \(c-a^{3} \times a(=15 \times 6)=90\), and \(\overline{\frac{c-a^{3}}{} \times a} \frac{a}{c+2 a^{3}}\left(=\frac{90}{663}=0.13\right.\). Therefore \(a+\frac{\left.\overline{c-a^{3}}\right) \times a}{c+2 a^{3}}\) will be \((=6+0.1 \hat{3})=6.13\); which is therefore the fe cond near value of the cube-root of 231 .

Now let \(a\) be taken \(=6.13\), in order to obtain a third near value of the cuberoot of 231.

Then we Chall have \(a^{3}\left(=6.131^{3}\right)=230.346,397\), and \(2 a^{3}(=2 \times 230.346,397)=460.692,794\), and \(c+2 a^{3}\) \({ }_{3} P_{2}\)
( \(=\)
\((=231+460.692,794)=691.692,794\), and \(c-a^{3}(=\) \(231.000,000-230.346,397)=0.653,603\), and \(\overline{c-a^{3}} \times a\) \((=0.653,603 \times 6.13)=4.006,586,39\), and \(\frac{c-a^{3}}{c+2 a^{3}}\) \(\left(=\frac{4.006,586,39}{691.692,794}\right)=0.005,792,436\). Therefore \(a+\overline{\left.\overline{c-a^{3}}\right) \times a} \overline{c+2 a^{3}}\) will be \((=6.13+0.005,792,436)=6.135,792,436\); which is therefore the third near value of the cube-root of 231 , or of the length, in inches and decimal parts of an inch, of the fide of a cube that contains an Englifh gallon. 2. E. I.

This number \(6.135,792,436\), is exact in the firft nine figures, \(6.135,7.92,43\), the more accurate value of the cuberoot of 231 being, according to Dr. Halleý, (from whofe tract upon this fubject in the Philofophical Tranfactions this example is taken, \(6.1_{35,792,439,661,958, ~ \& c . ~ T h e r e-~}^{\text {. }}\) fore the number of figures obtained exactly in this inftance by means of the expreffion \(a+\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\) is jutt triple of the number of figures that are contained in \(a\), or 6.13, agreeably to what is obferved above in art. 7.

Art. II. The other exprefion of the third near value of the cube-root of 23 I , to wit, the expreffion \(\frac{a}{2}+\sqrt{\frac{4-a^{3}}{12 a}}\), may be computed as follows.

Since \(c\) is \(=231\), and \(a\) is \(=6.13\), we fhall have \(4 c(=\) \(4 \times 23 \mathrm{I})=924\), and \(\frac{a}{2}\left(=\frac{6.13}{2}\right)=3.065\), and \(12 a(=\) \(12 \times 6.13)=73.56\), and \(a^{3}\left(=\overline{6.13}{ }^{3}\right)=230.346,397\), and \(4 c-a^{3}(=924.000,000-230.346,397)=693.653,603\), and \(\frac{4 c-a^{3}}{12 a}\left(=\frac{693.653,603}{73 \cdot 56}\right)=9 \cdot 429,766,218,053,289,8\), and \(\sqrt{\frac{4 c-a^{3}}{12 a}}(=\sqrt{9.42 \dot{9}, 766,218,053,289,8)}=\) \(3.070,792,441\). Therefore \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\) will be \((=3.065\)
\(\left.+3.070,79^{2,44} \mathrm{I}\right)=6.135,792,44 \mathrm{I}\); or the third near value of the cube-root of 231 , obtained by means of the expreffion \(\frac{a}{2}+\sqrt{\frac{4-a^{3}}{22 a}}\), will be \(6.135,79^{2,44 \mathrm{I}}\).
Q. E. I.

Art. 12. This number \(6.135,79^{2}, 44 \mathrm{I}\), obtained by means of the expreffion \(\frac{a}{2} \div \sqrt{\frac{4 c-a^{3}}{12 a}}\), exceeds the more accurate value of the cube-root of 231 , to wit, \(6.135,792,439\), \(\& c\), by only the fmall fraction \(0.000,000,002\); which is fomewhat lefs than the fmall fraction \(0.000,000,003\), by which the former number \(6.135,792,436\), that was obtained by means of the expreffion \(a+\frac{\left.c-a^{3}\right) \times a}{c+2 a^{3}}\), falls fhort of the faid more accurate value. But both thefe differences enter in the fame place of decimal fractions, to wit, the ninth place, and therefore the fmall difference of exactnefs in thefe two expreffions \(a+\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\), and \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\) is not worth attending to. But Dr. Halley gives the preference to the latter expreffion \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\) on another account, to wit, becaufe he thinks the extraction of the £quare-root of the fraction \(\frac{4 c-a^{3}}{12 a}\) a lefs laborious operation than the divifion of \(c-a^{3}, \times a\) by the great divifor \(c+2 a^{3}\). His words are as follows. "And this Formula [the irra"t tional formula \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\), though he ufes a fome"s what different notation,] is defervedly preferable to the "s rational [or \(a+\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\), ] upon the account of the " great divifor, which is not to be managed without a " great deal of labour; whereas the extraction of the "f fquare-root proceeds much more eafily, as manifold ex"perience has taught me."

Thefe

Thefe two examples are taken from a very ingenious and ufeful tract on this fubject, intitled, \(A\) nerw, exact, and eafy Method of finding the Roots of Equations Generally, and that without any previous Reduction; written by the celebrated Dr. Edmund Halley, and publifhed firtt in the Philofophical Tranfactions for the month of May 1694, Number 210, and afterwards in the year 1708, in the fecond volume of the Collection of Mathematical and Philofophical Tracts, intitled Mijcellanea Curiofa, in three volumes octavo. See the 2d volume of the faid Mijcellanea Curiofa, pages 70, 71, \(72,73,74\), and 75.

> A Third Example of the Extrastion of the Cube-riot of a Nuinber, by the fame Method of Approximation.

Art. 13. This example flall be that which is given by Mr. Raphfon in his Analyjis Equationum Univerfalis, Problem 2 d . It is to find the cube-root of the number 37,945.

Now, if we look along the column of cube-numbers in the foregoing table, we thall find that 35,937 is the cube of 33 , and that 39,304 is the cube of 34 . Therefore, fince the propofed number 37,945 is greater than 35,937 , but lefs than 39,304 , it follows that the cube-root of 37,945 will be greater than 33 , but lefs than 34 , and confequently that the two firf figures of it will be 33 .

Here then we have \(c=37,945\), and \(a=33\). Therefore \(a^{3}\) will be \(=35,937\), and \(2 a^{3}\) will be \((=2 \times 35,937)=\) 71,874 , and \(c+2 a 3\) will be \((=37,945+71,874)=\) 109,819, and \(c-a^{3}\) will be \((=37,945-35,937)=\) 2008 , and \(c-a^{3} \times a\) will be \((=2008 \times 33)=66,264\), and confequently \(\frac{\frac{c-a^{3}}{c \mid} \times a}{c+2 a_{3}^{3}}\) will be \(\left(=\frac{66,264}{109,819}\right)=0.6033\).

\author{
Therefore
}

Therefore \(a+\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\), or the fecond near value of the cube-root of the propofed number 37,945 , will be ( \(=33\) +0.6033 , or) 33.6033 ; ; which number the five firft figures 33.603 are exact, the more accurate value of the faid cube-root being \(33.603,526,179,43, \& c\).

Now let us fuppofe a to be \(=33.6033\), or the fecond near value of the cube-root of 37,945 that has been already found; and let us, in order to obtain a third near value of it, repeat the foregoing procefs.

Then we thall have \(a^{3}=37,944 \cdot 233,80\) r, 747,937, and \(2 a^{3}\) \((=2 \times 37,944.233,801,747,937)=75,888.467,603,\),495 , 874 , and \(c+2 a^{3}\) (=37,945.000,000,000,000 \(+75,888.467\), \(603,495,874)=113,833 \cdot 467,603,495,874\), and \(6-a^{3}(=\) \(37,945 \cdot 000,000,000,000-37,944 \cdot 233,801,747,937)=\) \(0.766,198,252,063\), and \(\left.c-a^{3}\right) \times a(=0.766,198,252,063\) \(\times 33.6033)=25 \cdot 746,789,723,548,607,9\), and confequently \(\frac{\overline{\left.c-a^{3}\right]} \times a}{c+2 a^{3}}\left(=\frac{25 \cdot 746,789,723,548,607,9}{113,933 \cdot 467,603,495,574}\right)=0.000,226\), \({ }^{179,437,95}\). Therefore \(a+\frac{\left.c-a^{3}\right) \times a}{c+2 a^{3}}\) will be \((=33.6033\) \(+0.000,226,179,437,95,)=33.603 \cdot 526,179,437,95 ;\) that is, the third near value of the cube-root of \(c\), or \(37,9+5\), that is obtained by means of the rational expreffion \(a+\frac{\left.c-a^{3}\right) \times a}{c+2 a^{3}}\), will be \(33.603,526,179,437,95\); which I believe to be exact in the firt fifteen figures \(33.603,526\), \(179,437,9\), if not in the laft, or fixteenth, figure 5 likewife.

Art. 14. The other expreffion of the third near value of the cube-root of 37,945 , to wit, the irrational expreflion \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\), may be computed as follows.

Since \(c\) is \(=37,945\), and \(a\) is \(=33.6033\), we fhall have \(\frac{a}{2}\left(=\frac{33.6033}{2}\right)=16.801,65\), and \(12 a(=12 \times 33.6033)\)
\(=403.2396\), and \(46(=4 \times 37,945)=151,780\), and \(a^{3}\left(=33.6033{ }^{3}\right)=37,944 \cdot 233,801,747,937\), and \(4 c-a^{3}\) (三 \({ }_{151,780.000,000,000,000-37,944 \cdot 233,801,747,937)}\)
\(={ }_{11} 3,835 \cdot 766,198,252,063\), and \(\frac{4 c-a^{3}}{12 a}(=\)
\(\left.\frac{113,835 \cdot 966,198,252,063}{403 \cdot 2396}\right)=282.303,043,149,165,069\), and \(\sqrt{\frac{4 c-a^{3}}{12 a}}(=\sqrt{282.303,043,149,165,069})=16.801\), \(876,179,437,96\). Therefore \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\) will be \((=\) \(16.801,65+16.801,876,179,437,96)=33.603,526,179\), 437,96 ; that is, the third near value of the cube-root of \(c\), or 37,945 , that is obtained by means of the irrational expreffion \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\), will be \(33.603,526,179,437,96\).

Art. 15. This number \(33 \cdot 603,526,179,437,96\) muft (if there has been no miftake made in the calculation,) be fomewhat greater than the true value of the cube-root of \(c\), or 37,945 ; and the former number \(33.603,526,179,437,95\), obtained by means of the rational expreffion \(a+\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\), mult be fomething lefs than the faid true value. Thefe two numbers differ only by an unit in the laft, or fixteenth, figure. And hence it follows that the firt fixteen figures of the faid true value muft be the fame with thofe of the leffer of thofe two numbers, or \(33.603,526,179,437,95\). Mr . Raphfon, however, computes it to be \(33.603,526,179\), 438,08 . But I fufpect that his three laft figures are not exact. But, whether they are exact or not, we may, at leaft, conclude that, fo far as thefe different calculations agree with each other, they muft be exact, and confequently that the firft thirteen figures of the cube-root of the number 37,945 are \(33.603,526,179,43\).

2F Fourth Example of ibe Extraction of the Cube-root of Number, by means of the foregoing Metbod of Approximation.

Art. 16. This example fhall be one that is given by Monfieur de Lagney himfelf, in his book intitled, Nouveaum Eiennents d'Arithbnétique et d'Algébre, which was publithed at Paris in Duodecimo, in the year 1697. It is to find the cube-root of the number \(696,536,483,318 ; 640,035,073\), 641,037, which confifts of twenty feven figures, and may be expreffed in the words following, to wit, \(696^{\circ}\) quadrillions, or fourth powers of a million, 536,483 trillions, or third powers of a million, 318,640 billions, or fecond porvers of a million, 035,073 millions, and \(64 \mathrm{I}, 037\) units.

This number is fo great that it will be convenient to divide it into thefe two parts, \(696,536,483,000,000,000,000,000,000\) and \(318,640,035,073,641,037\), and to begin by feeking the cube-root of 'he firft part, \(696,536,483,000,000,000,000\), 000,000.

Now this number \(696.535,4.83,000,000,000,000,000,000\) is \(=696,536,483 \times 1,000,000,000,000,000,000\), or \(696,535,483 \times\) the cube of \(1,000,000\). Therefore its cuberoot will be equal to i,000,000 \(\times\) the cube root of \(696,536,483\). Therefore, if we can find the cube-root of \(696,536,483\), we need only multiply it by \(1,000,000\), in order to obtain the cube root of \(6 \mathrm{~g} 6,53^{6,483,000,000,000 \text { i }}\) \(000,000,000\). We will therefore endeavour to find the cuberoot of \(696,53^{6,483}\).

Now this number \(696,536,483\) is greater than \(696,536,000\), or than \(696,536 \times 1000\), or than \(696,536 \times\) the cube of 10. Therefore the cube-root of \(696,536,483\) will be greater than the product of the multiplication of the cube root of 696,536 into 10 . Therefore, if we can find the cube-root of 696,536 , we need only multiply it by 10 , in order to obtain the cube-root of \(696,536,000\), which will be fomething
lefs than the cube-root of \(696,536,483\), and may ferve as a bafis from which to begin our approximation to the true value of the faid cuberoot. We will therefore now endeavour to find, to a fmall degree of exactnefs, the cube-root of 696,536 .

Art. I7. Now, if we look into the foregoing table of the cubes of the natural numbers \(1,2,3,4,5,6,7, \& \in \mathrm{c}\), as far as 100 , we flall find that 681,472 is the cube of 98 , and that 704,969 is the cube of 89 . It follows therefore that the cube root of 696,536 , (which is greater than 681,472 , but lefs than 704,969 ,) mult be greater than 83 , but lefs than 89 , and confequently that the two firft figures of it mult be 88 . Therefore the cube-root of \(696,536,000\) mult be greater than \(88 \times 10\), or 880 , but lefs than \(99 \times\) 10 , or 890 , and confequently the tivo firft figures of it will be 38. Therefore 880, being lefs than the cube-root of the number \(696,536,000\), will be lefs alfo than the cuberoot of the number \(696,536,4^{8} 3\), which is greater than \(696,536,000\); but it will approach fufficiently near to it to enable us to begin a further approximation to it by means of the foregoing expreffions of Monfieur de Eagney.

Art. 18. Let us therefore fuppofe a to be \(=880\); and, in order to find a fecond near value of the cube-root of \(c\), or \(696,536,483\), let us compute the expreffion \(a+\) \(\frac{a-a^{3} \times a}{c+2 a^{3}}\).

Here then we fhall have \(a^{3}\left(=\overline{880}{ }^{3}\right)=68 \mathrm{I}, 472,000\), and \(2 a^{3}=1,362,944,000\), and \(c+2 a^{3}(=696,536,483\) \(+1,362,944,000)=2059,480,433\), and \(c-a^{3}(=\) \(\left.6,6,536,483-68_{1,472,000}\right)=15,064,483\), and \(\overline{c-a^{3}}\) \(\times a(=15,064,483 \times 880)=13,256,745,040\), and confequently \(\frac{\left.\overline{c-a^{3}}\right) \times a}{c+2 a^{3}}\left(=\frac{13,256,745,0+0}{2059,48,483}\right)=6.436,9\). Therefore \(a+\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\) will be \((=880+6.436,9)=886.4369\); and confequently 886.4369 will be a fecond near value of the cube-root of the number \(c_{2}\) or \(696,536,483\).

Art. Ig.

Art. 19. Therefore (by what is thewn in art. 16,) \(\$ 86.4369 \times 1000,000\), or \(886,436,900\) will be nearly equal to, but fomewhat lefs than, the cube-root of the number \(696,536,483,000,000,000,000,000,000\), and, à fortiori, will be lefs than the cube-root of the propofed number \(696,536,483,318,640,035,073,641,037\). And, as 886,436 , 900 is not much lefs than \(886,437,000\), it feems probable that \(886,437,000\) will likewife be fomewhat lefs than the cube-root of the faid number \(696,536,483,318,640,035,073\), 641,037. And fo upon trial we fhall find it to be. For the cube of \(886,437,000\) is \(696,535,206,998,055,453,000\), 000,000 , which is lefs than the faid propofed number.

Art. 20. Now let a be fuppofed to be \(=886,437,000\), and let us endeavour to find a nearer value of the cube-root of the propofed number \(695,536,483,318,640,035,073,641\), 037, by computing the expreffion \(\frac{a}{2}+\sqrt{\frac{4-a^{3}}{12 a}}\).

Then, fince \(c\) is \(=696,536,483,318,640,035,073,641\), 037, and \(a\) is \(=886,437,000\), and confequently \(a^{3}\) is \(=\) \(696,535,206,998,055,453,000,000,000\), we fhall have \(\frac{a}{2}\) \(\left(=\frac{886,437,000}{2}\right)=443,218,500\), and
\(4^{6}(=4 \times 6,6,536,483,318,640,035,073,64 \mathrm{~T}, 037)\)
\[
=\quad 2,786,145,933,274,560,140,294,564,148
\]
and \(4 c-a^{3}(=2,786,145,933,274,560,140,294,564,148\), - 696,535,206,998,055,453,000,000,000)
\(=2,089,610,726,276,504,687,294,5^{64}, 148\), and \(12 a(=\) \(12 \times 886,437,000)=10,637,244,000\), and \(\frac{4^{c}-a^{3}}{12 a}(=\) \(\left.\frac{2,089,610,726,2 ; 6,74+, 687,294,564,149}{10,63_{i}, 2+4,000}\right)=196,442,868,686,33^{2}\),
983 , and \(\sqrt{\frac{4 c-a^{3}}{12 a}}(=\sqrt{196,442,868,686,332,983})=\) \(=443,218,759\). Therefore \(\frac{a}{?}+\sqrt{\frac{4 c-a^{3}}{12 a}}\) will be \((=\) \(3 Q^{2}\) 443.
\(443,218,500+443,218,759)=886,437,2,59\); and conn lequently the cube-root of the propofed long number \(696,536,483,318,640,035,073,641,037\), will be very nearly equal to \(886,437,259\). e. E. I.

Monfieur de Lagney determines this cube-root to be only \(886,437,166\). But this is owing, as I apprehend, to his intirely neglecting the laft eighteen figures, \(318,640^{2}\) \(035,073,64 \mathrm{r}, 037\), of the propofed number, and confequently giving us only the cube-root of the number \(696,536,483,000,000,000,000,000,000\), which is lefs than the propofed number: whereas in the laft operations of the foregoing procefs we took notice of all the figures of the propofed number, when we found the value of \(4 c\), and extracted the fquare-root of the fraction \(\frac{4 c-a^{3}}{12 a}\).

Mr. de Lagney adds, as a proof of the great ufefulnefs of this method of extracting cube-roots, that the moft fkilful Arithmetician would not be able to find the cube root of this long number, \(696,536483,318640,035073,641037\), to, the fame degree of exactnefs, or to nine places of figures, by the common method of extracting the cube-root, in the fpace of a whole month. See Monfieur de Lagney's Nous qeaux Eléments d'Aritbmétique et d'Algébre, page 307.

\section*{A S C H O L I U M.}

Art. 21. This very ufeful method of approximating \(\}\) the cube-roots, and other roots, of numbers was firt publifhed by Mr. de Lagney, at Paris, in the fournal des Sfavants for the 14th of May \(¥ 69 \mathrm{I}\), and afterwards was publifhed again at greater length, and with a demonftration, in a feparate tract in quarto, in the month of May of the following year 1692. But Mr. Jofeph Raphfon had publifhed his Analyfs Equationum Universalis, (which contains
\&ains a general method of finding the roots of all forts of equations by approximation,) in the year 1690 : and his method of approximation is not very different from this of Mr. de Lagney; and the ground, or principle, of it is exactly the fame. So that, if Mr. de Lagney had feen Mr. Raphfon's Analyfis Equationum before he had difcovered his own method of approximation, it would have been ealy for him to have deduced his own method from Mr. Raphfon's; and in that cafe it would have been candid in him to acknowled \(\mathfrak{c}\) e that he had feen Mr. Raphfon's book, and had been led by it to the difcovery of his own mechod. This, however, he has not done ; at leaft, not in his Nouveaure Eléments d'Aritbmétique et d'Algébre, which is the only book of his that I have feen. And therefore I fuppofe he invented his method of approximation by his own efforts, and without having met with Mr. Raphfon's book.

Art. 22. It may further be obferved, that Mr. Raphfon himfelf was not the firt inventor of the method of refolving equations by approximations of the kind he has made ule of, that is, by approximations performed by transforming the original equation into another equation that involves in it the powers of the unknown difference between the firft near value (already obtained, by conjecture or otherwife, of the root of the firft equation and its true value, and by refolving the faid transformed equation in the manner of a fimple equation, or by dropping all the terms that involve in them any higher powers of the faid unknown difference, or root of the fecond equation, than its fimple power. But this excellent method of difcovering the roots of high equations had been found out by the great Sir Ifaac Newton more than twenty-four years before the publication of Mr . Raphfon's Anolyfis Requationum Univerfalis, to wit, in the year. 1666, when he wrote his learned little tract, intitled De Analys per aquationes numero terminorum infinitas, which is printed in the Commercium Epifolicum of Mr John Collins and other Mathematicians, pages \(67,68,69, \& c .--\) 93, of the 2d edition. This tract was firft printed in the year 1 li2, in the firt edition of the faid Commercium-Epitolicum.
licum. But it had been flewn in manufrript to Dr. Ifaac Barrow, and by him fent to the faid Mr. John Collins, with Mr. Newton's leave, in the month of July 1669, and hewn to the Lord Vifcount Brouncker, (a great Mathematician of that time, \({ }_{2}\) ) and, probably, to many orher learned Marhematicians that were Fellows of the Royal Society, to which Mr. Collins was then a Secretary. And afterwards a part of it, containing a flort fpecimen of Mr. Newton's method of refolving equations by approximation, was publifhed by Dr. Wallis in the 94th chapter of his Algebra in the year 1685, which was five years before the publication of Mr . Raphfon's Analyfis 府quationun Univerfalis. Whether this fpecimen fuggefted to Mr. Raphfon the difcovery of his method of approximating to the roots of equations, (which differs but little from that of Sir Iraac Newton,) it is difficult to determine. He has not mentioned Newton's method in his treatife on this fubject, though he was a great admirer of his genius, and ever ready to commend him: and therefore I am inclined to think that the above-mentioned fpecimen of Newton's method of approximation was not the circumftance that led him to the difcovery of his own. But, whether it was or not, it is certain that the honour of priority with refpect to this very uffeful invention is due to Sir Ifaac Newton.

Of the Ground, or Principle, of the invefigation of the foregoing Expreffions, invented by Monfeur de Lagney, for Approximating to the Value of the Cube-root of a given Number.

Art. 23. The inveftigation of all the foregoing expreffions invented by Monfieur de Lagney for approximating to the cube-root of a given number, when a firt near value of the faid cube-root that is exact to one, or two, or more,
places
places of decimal figures, is already known, is not difficult. It refults from the contemplation of the compound quantities that are equal to the cubes of a binomial quantity, (fuch as \(a+b\), ) and a refidual quantity, (fuch as \(a-b\), according as \(a\), or the firft near value of \(\sqrt{3} \sqrt{c}\) which is already known, is lefs, or greater, than \(\sqrt{3} \sqrt{c}\); and therefore it ought properly to be divided into two parts, the one relating to the cafe in which \(a\), or the firft near value of the cube-root of the given number \(c\) that is already known, is lefs than the cube-root of \(c\), and the other relating to the cafe in which \(a\), or the faid firt near value of \(\sqrt{3}^{3} \sqrt{c}\), is greater than the faid cube-root. The firft of thefe inveftigations, (by which we flall alfo obtain Mr. Raphfon's approximation to the value of the faid cube-root, in the fame care, or when \(a\) is lefs than \(\sqrt{3}^{3}(\sqrt{c}\) ) is as follows.

An Invefigation of the two Exprefions, \(a+\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\), and \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\), given by Monfieur de Lagney, for a Second near Value of the Cube-root of a given Number c, when a, or a Firft near Value of it that is already kiowon, is le/s than its true Value.

Art. 24. Let \(z\) be put for the unknown difference by which \(a\), or the firtt near value of the cube root of the given number \(c\), falls thort of its true value ; fo that, \(a+z\) fhall be \(=\sqrt[{\sqrt{3}}]{c}\).

Then will \(a+z a^{3} b c=c\). But \(\overline{a+2} a^{3}\) is \(=a^{3}+3 a z\) \(+3 a z z+z^{3}\). Therefore \(a^{3}+3 a a z+3 a z z+z^{3}\) will alfo be \(=c_{0}\). This cubick equation is the foundation both
of Mr. Raphfon's and of Monfieur de Lagney's methods of approximating further to the true value of \(\sqrt{3} \sqrt{c}\).

Art. 25. Mr. Raphfon's approximation is obtained as follows. Since \(z\) is lefs, and ufially much lefs, than \(a\), to wit, about a roth or a looth part of it, or, perhaps, ftill lefs, \({ }^{\prime}\) it follows that both \(3 a z z\) and \(z^{3}\) will be lefs, and ufually much lefs, than \(3^{a} a z\), and confequently that \(a^{3}+3^{a} a z\) will be nearly equal to \(a^{3}+3 a a z+3 a z z+z^{3}\), and therefore to \(c\). Let them therefore be fuppofed to be equal to \(c_{0}\) Then, fince \(a^{3}+3 a a z\) are \(=c\), we thall have \(3 a a z=\) \(c-a^{3}\), and confequently \(z=\frac{c-a^{3}}{3^{a a}}\), which fraction confifts intirely of known quantities. Therefore \(a+z\) will bc \(=a+\frac{c-a^{3}}{3 a a}\), and \(a+\frac{c-a^{3}}{3 a a}\) will be a fecond near value of \(\sqrt{3} \sqrt{c}\), or the cuberoot of the given number \(c\). ©. E. I.

This is Mr. Raphfon's approximation to the cube-root of \(c\), when \(a\) is lefs than the faid cube-root; and it is the fimpleft and eafieft approximation that can well be imagined; and approaches very confiderably beyond \(a\) to the true value of \(\sqrt{ }^{3} \sqrt{c}\). For it ufually gives us twice as many figures exact as we had before in \(a\), or the firft near value of \(\sqrt{3} \sqrt{c}\). And it is lefs operofe, or difficult to compure, than Mr. de
Lagney's firf, or rational, exproffion \(a+\frac{c-a \times a}{c+2 a^{3}}\); bed caufe it is eafier to divide \(c-a^{3}\) by \(3 a a\), or three times the fquare of \(a\), than, firft, to multiply \(c-a^{3}\) by \(a\), and then to divide the product by \(c+2 a^{3}\), which is a longer number than 3 aa. And for thefe reafons Mr. Raphfon, in the Appendix to the fecond edition of his Analyis Equationum Univerfalis, (which was publifhed in the year 1697, feveral years after the publication of Mr. de Lagney's method of approximation,) declares that he continued to prefer his own approximation to thofe of Mr. de Lagney, notwithftanding their greater exactnefs。

We will now proceed to inveftigate Mr. de Lagney's firt, or rational, expreffion above-mentioned, in obtaining which Mr . Raphfon's approximation is made ufe of as a neceffary ftep.

Art. 26. Mr. de Lagney's firt, or rational, expreffion; \(a+\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\), is obtained by preferving the term \(3 a z z\), is well as the term \(3 a a z\), of the cubick equation \(a^{3}+3 a a z+\) \(3 a z z+z^{3}=c\), or by fuppofing \(a^{3}+3 a a z+3 a z z\) to be equal to \(c\), and refolving the quadratick equation \(a^{3}+3 a a z\) \(+3 a z z=c\), refulting from that fuppofition, in an imperfect, or inaccurate, manner, by proceeding as follows.

Since \(a^{3}+3 a a z+3 a z z\) is \(=c\), we fhall lave \(3 a a z+\) \(3 a z z=c-a^{3}\), and (dividing both fides by \(3 a a+3 a z\) ) \(z=\frac{c-a^{3}}{3 a a+3 a z}\). Let us now fubftitute, inftead of \(z\), in the denominator of this fraction \(\frac{c-a^{3}}{3 a a+3 a z}\), the near value of \(z\) already obtained by the refolution of the fimple equation \(a^{3}+3 a a z=c\), to wit, the fraction \(\frac{c-a^{3}}{3 a a}\); and we thall thereby obtain the equation \(z=\frac{\varepsilon-a^{3}}{3^{a a}+3 a \times \frac{c-a^{3}}{3 a a}}\); which
laft quantity is cqual to \(\frac{c-a^{3}}{3 a a+\frac{c-a^{3}}{a}}=\frac{c-a^{3}}{\frac{3 a^{3}+\frac{a}{a}}{a}-a^{8}}=\) \(\left.\frac{c-a^{3}}{c+2 a^{3}}=\overline{c-a^{3}} \times \frac{a}{c+2 a^{3}}\right)=\frac{\left.\overline{c-a^{3}}\right) \times a}{c+2 a^{3}}\). Therefcre \(z\) will be \(=\frac{c-a^{3}}{c+2 a^{3}}\), and confequently \(a+\dot{z}\) will be \(=\) \(a+\frac{c-a^{3} \times a}{c+2 a^{3}}\). Therefore the true value of \(a+z\), or the cube-root of the given number \(c\), will be nearly \(=\) \(a+\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\). Q. E. I.

Art. 27. This expreffion \(a+\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\) of the fecond near value of \(\sqrt{3} \sqrt{c}\), will always be lefs than its true value ; as may be demonftrated in the manner following.

Since \(c-a^{3}\) is \(=3 a a z+3 a z z+z^{3}\), and \(3 a a z+3 a z z\) \(+z^{3}\) is \(=3 a a z+a z z+2 a z z+z^{3}\), it follows that \(c-a^{3}\) will be \(=3 a a z+a z z+2 a z z+z^{3}\), and confequently will be greater than \(3 a a z+a z z\). Therefore \(\frac{c-a^{3}}{a}\) wil! be greater than \(\frac{3 a a z+a \approx z}{a}\), or than \(3 a z+\approx z\). But \(\frac{c-a^{3}}{a}\) is
 than \(3 a z+z=\); and confequently (adding 3 aa to both fides,) \(3 a a+3 a \times \sqrt{\frac{c-a^{3}}{3 a a}}\) will be greater than \(3 a a+3 a z+z z\). Therefore \(\frac{c-a^{3}}{3 a a+3 a \times \sqrt{\frac{c-a^{3}}{3}}}\) will be lefs than \(\frac{c-a^{3}}{3 a a+3 a z+z a}\).
\[
3 a a+3 a \times \sqrt{\frac{c-a^{3}}{3 a a}} \text { will de lels than } \overline{3 a a+3 a z+z a}
\]

But \(\frac{c-a^{3}}{3 a a+3 a \times \sqrt{\frac{c-a^{3}}{3 a a}}}\) is \(=\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\), and \(\frac{c-a^{3}}{3 a a+3 a z+z z}\)
is \(=\) the true value of \(z\). Therefore \(\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\) will be lefs than the true value of \(z\). Therefore \(a+\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\) will be lefs than the true value of \(a+z\), or than \(\sqrt{3} \sqrt{c}\).
Q. E. D.

This expreffion, \(a+\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\), gives ufually three times as many figures of the value of \(\sqrt{3} \sqrt{C}\) exact as were given exactly by \(a\), or the firft near value of the faid cube-root. But in fome cafes the figures which it gives exactly are only three times as many wanting one, and in fome unfavourable cafes only three times as many wanting two, as were exact
exact in \(a\); as we have feen in fome of the foregoing examples.

Art. 2S. Mr. de Lagney's fecond, or irrational, expreffion, \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\), for the fecond near value of the cuberoot of \(c\), when \(a\) is lefs than the faid cube-root, is obtained by preferving the term \(3 a z z\), as well as the term \(3 a a z\), of the cubick equation \(a^{3}+3 a a z+3 a z z+z^{3}=c\), and refolving the equation thence refulting, to wit, the quadratick equation \(a^{3}+3 a a z+3 a z z=c\), in an accurate manner. This may be done as follows.

If we fuppofe \(a^{3}+3 a a z+3 a z z\) to be equal to \(c\), we fhall have \(3 a a z+3 a z z=c-u^{3}\), and (dividing all the terms by \(3^{a}\) ) \(a z+z z=\frac{c-a^{3}}{3^{a}}\). Therefore (adding \(\frac{a a}{4}\) to both fides,) we fhall have \(\frac{a a}{4}+a z+z z=\frac{c-a^{3}}{3^{a}}+\frac{a a}{4}\)
 ing the fquare-roots of both fides,) \(\frac{a}{2}+z=\sqrt{\frac{4 c-a^{3}}{12 a}}\). Therefore \(z\) will be \(=\sqrt{\frac{+c-a^{3}}{12 a}}-\frac{a}{2}\), and \(a+z\) will be \(\left(=a+\sqrt{\frac{4 c-a^{3}}{12 a}}-\frac{a}{2}\right)=\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\). Therefore \(\sqrt{ } \sqrt[3]{c}\) will be nearly equal to the fame quantity \(\frac{a}{2}+\) \(\sqrt{\frac{4 c-a^{3}}{12 a}}\).
Q. E. I.

Art. 29. This éxpreffion \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\) muft always be greater than the true value of \(\sqrt{3} \sqrt{c}\), or than the true value of \(a+z\) in the original cubick equation \(a^{3}+3 a a z\) \(+3 c 2 z+z^{3}=c\).

For it is derived from a fuppofition that \(a^{3}+3 a a z+\)
\[
3 \mathrm{R}_{2}
\]
\(3 a z z\) is equal to \(c\), or to \(a^{3}+3 a a z+3 a z z+z^{3}\), or is greater than it really is: from which it will neceffarily follow that the value of \(z\) deduced from that fuppofition muft be greater than its true value, and confequently that the val.e of \(a+z\) deduced from that fuppofition, that is, the expreffion \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\), will be greater than the true value of \(a+z\), or than \(V^{3} \sqrt{c}\). C. E. D.

Art. 30. The irrational expreffion \(\frac{a}{2}+\sqrt{\frac{1 c-a^{3}}{12 a}}\) will approach a little nearer than the rational expreffion \(a+\) \(\frac{\left.\overline{c-a^{3}}\right) \times a}{c+2 a^{3}}\) to the true value of \(\sqrt[3]{ } \sqrt{c}\), becaufe it is obtained by refolving the quadratick equation \(a^{3}+3 a a z+3 a z z\) \(=c\) accurately, whereas the rational expreffion \(a+\) \(\overline{\frac{c-a^{3}}{c+2 a^{3}}}\) is obtained by refolving the fame quadratick equation inaccurately, by fubftituting \(\frac{c-a^{3}}{3^{a a}}\) inftead of \(z\) in the quantity \(3^{a z}\) in the denominator of the fraction \(\frac{c-a^{3}}{3^{a a}+3^{a z}}\) in art. 26. But the difference of the two expreffions in point of exactnefs is not conflderable; and the principal reafon for preferring the irrational expreffion \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\) to the rational expreffion \(a+\frac{\left.\overline{a^{3}}\right) \times a}{c+2 a^{3}}\), is, that there is much lefs labour in extracting the fquare-root of the fraction \(\frac{4 c-a^{3}}{12 a}\), than in dividing the numerator \(c-a^{3} \times a\) by the denominator \(c+2 a^{3}\), when that denominator is a very long number,

An Invefigation of the \(\mathcal{T}\) woo Exprefions, \(a-\frac{\sqrt{a^{3}-a} \times a}{c+2 a^{3}}\), and \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\), given by Monfieur de Lagney for a Second near Value of the Cube-root of a given Number c, when a, or a Firft near Value of it that is already known, is greater thain its true Value.

Art. 31. Let \(z\) be put for the unknown difference by which \(a\), or the firft near value of the cube-root of the given number \(c\), exceeds its true value; fo that \(a-z\) fhall be \(=\sqrt{3} \sqrt{c}\).

Then will \(a-2]^{3}\) be \(=c:\) But \(a-\left.2\right|^{3}\) is \(=a^{3}-\) \(3 a a z+3 a z z-z^{3}\). Therefore \(a^{3}-3 a a z+3 a z z-z^{3}\) will alfo be \(=c\). This cubick equation is the foundation both of Mr. Raphfon's and of Monfieur de Lagney's methods of approximating further to the true value of \(\sqrt{3} \sqrt{c}\).

Art. 32. Mr. Raphfon's approximation is obtained as follows.

Since \(z\) is lefs, and ufually much lefs, than \(a\), (to wit, about a luth, or a looth, part of it, or, perhaps, ftill lefs,) it follows that both \(3 a z z\) and \(z^{3}\) will be lefs, and ufually much lefs, than \(3 a a z\), and confequently that \(a^{3}-3 a a z\) will be nearly equal to \(a^{3}-3 a a z+3 a z z-z^{3}\), and therefore to \(c\). Let them therefore be fuppofed to be equal to \(c\). Then, fince \(a^{3}-3\) caz are \(=c\), we thall have \(a^{3}=c\) +o \(3 a a z\), and \(3 a a z=a^{3}-c\), and confequently \(z=\frac{a^{3}-c}{3^{a a}}\). Therefore \(a-z\) will be \(=a-\sqrt{\frac{a^{3}-c}{3^{a a}}}\), and confequiently the expreffion \(a-\sqrt{\frac{a^{3}-\bar{c}}{3^{a a}}}\) will be a fecond, near value of \(\sqrt{3} \sqrt{c}\), or the cube-root of the given number \(c\). \&. E. r.

Thịs

This is Mr. Raphfon's approximation to the cube-root of \(c\), when \(a\) is greater than the faid cube-root; and it is the fimpleft and eafieft approximation that can well be imagined, and approaches much nearer than \(a\) to the true value of the faid cube-root. For it ufually gives us the value of the faid cube-root exait to twice as many decimal places of figurcs as were exact in \(a\), or the firft near value of the faid cube-root. And it is lefs operofe, or difficult to compute, than Mr. de Lagney's firt, or rational, expreffion, a -\(\frac{\sqrt{a^{3}-a} \times a}{c+2 a^{3}}\); becaufe it is eafier to divide \(c-a^{3}\) by \(3 a a\), or three times the fquare of \(a\), than, firft, to multiply \(a^{3}-c\) by \(a\), and then to divide the product by \(c+2 a^{3}\), which is a longer number than 3aa. And for thefe reafons Mr. Raphfon always preferred it to Mr. de Lagncy's approximations, notwithftanding their greater exactnefs.

We will now proceed to inveftigate Mr. de Lagney's firft exprefion above mentioned, to wit, the rational expreffion \(\dot{a}-\frac{\sqrt{a^{3}-c} \times a}{c+2 a^{3}}\), in obtaining which Mr. Raphfon's approximation is made ufe of as a neceflary ftep.

Art. 33. Mr. de Lagney's firft, or rational, expreffion, \(a-\frac{\sqrt{a^{3}-a} \times a}{c+2 a^{3}}\), is obtained by preferving the term \(3 a z z\), as well as the term \(3 a a z\), of the cubick equation \(a^{3}-3^{a a z}\) \(+3 a z z-z^{3}=c\), or by fuppofing \(a^{3}-3 a a z+3 a z z\) to be equal to \(c\), and refolving the quadratick equation \(a^{3}\) \(\hat{3} a a z+3 a z z=c\), refulting from that fuppofition; in an imperfeet, or inaccurate, manner, by proceeding as follows.

Since \(a^{3}-3 a a z+3 a z z\) is fuppofed to be equal to \(c\), we fhall have \(a^{3}+3 a z z=c+3 a a z\), and \(a^{3}=c+3 a a z\) \(-3 a z z\), and \(a^{3}-c=3 a a z-3 a z z\), or \(3 a a z-3 a z z\) \(=a^{3}-c\), and (dividing both fides of the equation by \(3^{a a}-3^{a z}, z=\frac{a^{3}-c}{3^{a a}-3^{a z}}\). Mr. de Lagncy then fubfti-
tutes, inftead of \(z\), in the denominator of the fraction \(\frac{a^{3}-c}{3 a_{t}-3 a z}\), the near value of \(z\) already obtained by the refolution of the fimple equation \(a^{3}-3^{a a z}=c\), to wit, the fraction \(\frac{a^{3}-c}{3^{a a}}\), and thereby obtains the equation \(z=\) \(\frac{a^{3}-c}{3 a a-3 a \times \sqrt{\frac{a^{3}-c}{3^{a a}}}}\); which laft quantity is equal to \(\frac{a^{3}-c}{3^{a a-}-\sqrt{\frac{a^{3}-c}{a}}}\) \(c=\frac{a^{3}-c}{\frac{3 a^{3}-\sqrt{a^{3}}-c}{a}}=\frac{a^{3}-c}{\frac{3 a^{3}-a^{5}+c}{a}}=\frac{a^{3}-c}{\frac{2 a^{3}+c}{a}}=a^{3}-d \times\) \(\left.\frac{a}{c+2 a^{3}}\right)=\frac{a^{3}-c \times a}{c+2 a^{3}}\). Therefore \(z\) will be \(=\frac{a^{3}-c \times a}{c+2 a^{3}}\), and confequently \(a-z\) will be \(=a-\frac{a^{3}-a \times a}{c+2 a^{3}}\). Therefore the true value of \(a-z\), or of the cube-root of the given number \(c\), will be nearly \(=a-\frac{\sqrt{a^{3}-a} \times a}{c+2 a^{3}}\).
Q. E. I.

Art. 34. This expreffion, \(a-\frac{\sqrt{0^{3}-a} \cdot x a}{c+2 a^{3}}\), of the fecond near value of \(\sqrt{3} \sqrt{c}\), will always be greater than its true value; as may be demonftrated in the manner following.

It has been hewn above in art. 3 I , that \(a^{3}-3 a a z+\) \(3^{a z z}-z^{3}\) is \(=c\). Therefore \(a^{3}+3 a z z\) will be \(=c+\) \(3^{a} a z+z^{3}\), and \(a^{3}\) will be \(=c+3 a a z-3 a z z+z^{3}\), and \(a^{3}-c\) will be \(=3 a a z-3 a z z+z^{3}\). But \(3 a a z-3 a z z\) \(+z^{3}\) is \(=3 a a z-a z z-2 a z z+z^{3}\). Therefore \(a^{3}-c\) will be \(=3 a a z-a z z-2 a z z+z^{3}\). But, becaufe \(z\) is lefs than \(a, z^{3}\) will be lefs than \(a z z\), and, à fortiori, lefs than \(2 a z z\). Therefore \(3 a a z-a z z-2 a z z+z^{3}\) will be lefs than \(3 a a z-a z z\); and confequently \(a^{3}-{ }^{c}\) (which is \(=3 a a z\) - \(a z z-2 a z z+z^{3}\), ) will be lefs than \(3 a a z-a z z\). Therefore \(\frac{a^{3}-c}{a}\) will be lefs than \(\frac{3 a a z-a z z}{a}\), or than \(3 a z-\)
zz. But \(\frac{a^{3}-c}{a}\) is \(=3 a \times \sqrt{\frac{a^{3}-c}{3 a a}}\). Therefore \(3 a \times \sqrt{\frac{a^{3}-c}{3 a a}}\) will be lefs than \(3 a z-z z\). Therefore, if both thefe quantities be fubtracted from \(3 a a\), the remainder \(3 a a-3 a\) \(\times \sqrt{\frac{a^{3-c}}{3^{a a}}}\) will be greater than the remainder \(3^{a a}-\sqrt{3 a z-z z}\), or than \(3 a a-3 a z+z z\). Therefore \(\frac{a^{3}-c}{3 a a-3 a \times \sqrt{\frac{a^{3}-c}{3^{a a}}}}\) will
be lefs than \(\frac{a^{3}-c}{3^{a a-3 a z+z z}}\). But \(\frac{a^{3}-c}{3^{a a}-3^{a} \times \sqrt{\frac{a^{3}-c}{3^{a} a}}}\) is \(=\)
\(\frac{a^{3}-a \times a}{c+2 a^{3}}\). Therefore \(\frac{\overline{a^{3}-a} \times a}{c+2 a^{3}}\) will be lefs than \(\frac{a^{3}-c}{3 a a-3 a z+z z}\). But \(\frac{a^{3}-c}{3^{a a-}-3^{a z+z}}\) is equal to the value of \(z\) in the cubick equation \(a^{3}-3 a a z+3 a z z-z^{3}=c\), or to its true value. Therefore \(\frac{\overline{a^{3}-1} \times a}{c+2 a^{3}}\) will be lefs than the true value of \(z\). And confequently \(a-\frac{\sqrt{a^{3}-a} \times a}{c+2 a^{3}}\) will be greater than the true value of \(a-z\), or than the cube-root of \(c\). C. E. D.

Art. 35. The other, or irrational, expreffion \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\), given by Mr. de Lagney for the fecond near value of the cube-root of \(c\), when \(a\) is greater than the faid cube-root, is obtained by preferving the term \(3 a z z\), as well as the term \(3 a a z\), of the cubick equation \(a^{3}-3^{a a z}+3 a z z-z^{3}\) \(=c\), obtained in art. \(3^{11}\), or by fuppofing the trinomial quantity \(a^{3}-3 a a z+3 a z z\) to be equal to \(c\), and refolving the quadratick equation \(a^{3}-3 a a z+3 a z z=c\) in an accurate manner. This may be done as follows.

If we fuppofe \(a^{3}-3 a a z+3 a z z\) to be \(=c\), we fhall have \(a^{5}+3 a z z=c+3 a a z\), and \(a^{3}=c+3 a a z-3 a z z\), and \(a^{3}-c=3 a a z-3 a z z\), or \(3 a a z-3 a z z=a^{3}-c\).

Therefore (dividing both fides of the equation by. \(3 a_{\text {, }}\) ) we Shall have \(a \approx-z z=\frac{a^{3}-c}{3^{a}}\).

The compound quantity \(a z-z z\), which forms the lefto hand fide of this equation, is \(=\overline{a-z} \times z\), and confequently (by Euclid's Elements, Book 2d, Prop. 5,) muft be lefs than the fquare of \(\frac{a}{2}\), or than \(\frac{a a}{4}\). And confequently the other fide of the equation, or the quantity \(\frac{a^{3}-c}{j^{a}}\), will alfo be lefs than \(\frac{a a}{4}\). They may therefore both be fubtracted from \(\frac{a a}{4}\). Let them be fo fubtracted. And we fhall then have \(\frac{a a}{4}-\sqrt{a z-z z}=\frac{a a}{4}-\sqrt{\frac{a^{3}-c}{3^{a}}}\), or \(\frac{a a}{4}-a z+z z=\frac{a a}{4}-\) \(\sqrt{\frac{a^{3}-c}{3^{a}}}\left(=\frac{3 a^{3}}{12 a}-\sqrt{\frac{4 a^{3}-4 c}{12 a}}=\frac{3 a^{3}-\sqrt{4^{3}-4 c}}{12 a}=\frac{3 a^{3}-4 a^{3}+4 c}{12 a}\right)=\) \(\frac{4 c-a^{3}}{12 a}\). Therefore the fquare-root of the trinomial quantity \(\frac{a z}{4}-a z+z z\), will be equal to the fquare-root of the fraction \(\frac{4 c-a^{3}}{12 a}\). Now, if \(z\) could be of two different values, the one greater than \(\frac{a}{2}\), and the other lefs than \(\frac{a}{2}\), the trie nomial quantity \(\frac{a a}{4}-a z+z z\) might have two fquareroots, to wit, \(\frac{a}{2}-z\), and \(z-\frac{a}{2}\). But, as \(z\) in the prefent problem is fuppofed to be much lefs than \(\frac{a}{2}\), the latter of thefe fquare-roots, to wit, \(z-\frac{a}{2}\), cannot exift, and the other fquare-root, \(\frac{a}{2}-z\), will be the only one confiftent with the conditions of the Problem. Therefore we fhall
have \(\frac{a}{2}-z=\sqrt{\frac{4 c-a^{3}}{12 a}}\), and confequently (adding \(z\) to both fides, \(\frac{a}{2}=\sqrt{\frac{4 c-a^{3}}{12 a}}+z\), and (fubtracting \(\sqrt{\frac{4 c-a^{3}}{12 a}}\) from both fides,) \(z=\frac{a}{2}-\sqrt{\frac{t^{c}-a^{3}}{12 a}}\). Therefore \(a-z\) will be \(=a-\sqrt{\frac{a}{2}-\sqrt{\frac{4 c-a^{3}}{12 a}}}\left(=a-\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\right)\) \(=\frac{a}{2}+\sqrt{\frac{4 c-n^{3}}{12 a}}\). Therefore the fecond near value of \(\sqrt{3} \sqrt{c}\) will be \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\). \&. E. I.

Art. 36. This expreffion \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\) will always be lefs than the true value of the cube-root of the given number \(c\).

For, if we fuppofe \(z\) to increafe continually from \(\circ\) till it becomes equal to \(\frac{a}{2}\), the compound quantity \(a z-z z\), or \(\overline{a-z} \times z\), will increafe continually at the fame time till it becomes equal to \(\frac{\pi}{2} 7^{2}\), or \(\frac{a \pi}{4}\); and confequently the compound quantity \(3 a \times \sqrt{a z-z z}\), or the compound quantity \(3^{a a z}-3^{a z z}\), will increafe continually till it becomes equal to \(3 a \times \frac{a \pi}{4}\), or \(\frac{3 a^{3}}{4}\). Therefore, when the compound quantity \(3 a a z-3 a z z\) is equal to \(a^{3}-c\), the quantity \(z\) will be greater than when the compound quantity \(3 a a z-\) \(3 a z z\) is equal to \(a^{3}-c-z^{3}\), which is lefs than \(a^{3}-c\); that is, the value of \(z\) in the quadratick equation \(3 a a z\) \(3 a z z=a^{3}-c\) will be greater than the value of \(z\) in the cubick equation \(3^{a a z}-3^{a z z}=a_{3}-c-z^{3}\), or in the cubick equation \(3^{a a z}-3^{a z z}+z^{3}=a^{3}-c\), or in the cubick equation \(a^{3}-3 a a z+3 a z z-z^{3}=c\). But the value of \(z\) in the quadratick equation \(3 a a z-3^{a z z}=\)
\(a^{3}-c\) is \(\frac{a}{2}-\sqrt{\frac{4 c-a^{3}}{12 a}}\); and the value of \(z\) in the cubick equation \(a^{3}-3^{3} a z+3 a z z-z^{3}=c\) is the true value of \(z\), or of the excefs of \(a\) above \(\sqrt{3} \sqrt{c}\). Therefore the expreffion \(\frac{a}{2}-\sqrt{\frac{4 c-a^{3}}{12 a}}\) will be greater than the true value of \(z\). Therefore \(a-\frac{a}{2}-\sqrt{\frac{4 c-a^{3}}{12 a}}\), or \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\), will be lefs than the true value of \(a-z\), or than the cuberoot of the given number \(c\). e. E. D.

Art. 37. The irrational Formula \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\) will approach a little nearer than the rational Formula a -\(\frac{\sqrt{a^{3}-a} x a}{c+2 a^{3}}\) to the true value of the cube-root of \(c\); becaufe the irrational Formula is derived from the quadratick equation \(a^{3}-3 a a z+3 a z z=c\) by an accurate refolution of it, and the rational Formula is derived from the fame equation by an inaccurate refolution of it. But the difference of exactnefs between thefe two expreffions is not great, and either of them will ufually give us three times as many decimal figures of \(\sqrt{3} \sqrt{c}\) exact as were exact in \(a\), or the firft near value of it. But, when the given number \(c\) itfelf confifts of nine, or ten, or more figures, and alfo when a confifts of three, or four, figures, and confequently \(a^{3}\) confifts of nine, or ten, or more, figures, the irrational expreffion \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\), will be found to be much eafier to compute than the rational expreffion \(a-\frac{\sqrt{a^{3}-c} \times a}{c+2 a^{3}}\), on account of the labour of dividing \(a^{3}-a \times a\) by the long number \(c+2 a^{3}\); and therefore Dr. Halley thinks it ought to be preferred to the other.

Art. 38.

Art. 38. I have now given very full inveftigations of the four expreffions invented by Mr. de Lagney for the fecond near value of the cube-root of a given number \(c\), of which a firlt near value, denoted by che letter \(a\), is already known, to wit, the four expreffions \(a+\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\) and, \(\frac{a}{2}+\sqrt{\frac{+c-a^{3}}{c+2 a^{3}}}\), and \(a-\frac{\sqrt{a^{3}-a} \times a}{c+2 a^{3}}\), and \(\frac{a}{2}+\sqrt{\frac{+c-a^{3}}{12 a}}\); of which the two firft relate to the cafe in which \(a\), or the firft near value of the faid cube-root, is lefs than its true value; and the two laft relate to the cafe in which \(a\), or the firft near value of the faid cube-root, is greater than its true value. And I have given demonftrations of what is afferted concerning thefe four expreffions in art. 5 and 6, to wit, that the firft of them, or \(a+\frac{\overline{c-a^{3}} \times a}{c+2 a^{3}}\), is always lefs than the true value of \(\sqrt{3} \sqrt{c}\), and that the fecond of them, or \(\frac{a}{2}+\sqrt{\frac{4-a^{3}}{12 a}}\), is alway's greater than the faid true value, and that the third expreffion \(a-\frac{\sqrt{a^{3}-c} \times a}{c+2 a^{3}}\) is always greater than the faid true value, and that the fourth expreffion \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\) is always lefs than the faid true value. And the two firft of thefe affertions have been confirmed upon trial in the examples given in art. 8 , \(9,10,11,12,13,14,15,16,17,18,19\), and 20 , of the extraction of the cube-roots of the numbers \(2,231,37,945^{\prime}\), and the long number \(696,536,483,318,640,035,073,641,037\); the faid cube-roots having been extracted by means of the two firft expreffions \(a+\frac{\overline{a-a^{3}} \times a}{c+2 a^{3}}\) and \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\), which relate to the cafe in which \(a\), or the firft near value of \(\sqrt{3} \sqrt{c}\), is lefs than its true value, 1 will now therefore give an example, or two, of the extraction of the cuberouts of numbers by means of the two latter expreffions
\(a-\frac{\sqrt{a^{3}-\lambda} \times a}{c+2 a^{3}}\) and \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\), which relate to the cafe in which \(a\), or the firt near value of \(\sqrt{3} \sqrt{c}\), is greater than its true value.

An Example of the Extraction of the Cube-root of a given Numsber, by means of Mr. de Lagney's T'bird and Fourth ExprefSions \(a-\frac{\sqrt{a^{3}-c}}{c+2 a^{3}}\) and \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\), in which \(a\), or the Firft near Value of \(\sqrt{ } \sqrt[3]{ } \sqrt{c}\), is suppofed to be greater than its true Value.

Art. 39. Let it be required to find the cube-root of 2 , which was extracted above in art. 8 and 9 ; and let \(a\), or the firlt near value of the faid cube-root, be 1.26, which is fornewhat greater than its true value, which is \(1.259,921\), 049, \&c.

Here then we have \(c=2\), and \(a=1.26\). Therefore \(a^{9}\) will be \(=2.000,376\), and \(2 a^{3}\) will be \(=4.000,75^{2}\), and \(c+2 a^{3}\) will be \(\left(=2+4.000,75^{2}\right)=6.000,752\), and \(a^{3}-c\) will be \((=2.000,376-2)=0.000,376\), and \(a^{3}-1 \times a\) will be \((=0.000,376 \times 1.26)=0.000,473,76\), and confequently \(\frac{a^{3}-a \times a}{c+2 a^{3}}\) will be \(\left(=\frac{0.000,473,76}{6.000,752}\right)=\) \(0.0<0,07^{8,950}\). Therefore \(a-\frac{\sqrt{a^{3}-a} \times a}{c+2 a^{3}}\), or the fecond near value of the cube-root of 2 , will be ( \(=1.260,000,000\) - 0.000,078,950) \(=1.259,921,050\); which is a little greater than its true value \(1.254,921,049\), \&cc, agreeably to what is afferted in art. 6, and demonitrated in art. 34.

And we thall have \(4 c(=4 \times 2)=8.000,000\), and \(\frac{a}{3}\left(=\frac{1.26}{2}\right)=0.63\), and \(12 a(=12 \times 1.26)=1_{5.12}\), and
and \(4 c-a^{3}(=8.000,000-2.000,376)=5.999,624\), and \(\frac{4 c-a^{3}}{12 a}\left(=\frac{5.999,624}{15.12}\right)=0.396,800,5^{2} 9,100,529,100,529,8 c\), and \(\sqrt[V]{ } \sqrt{\frac{4 c-a^{3}}{12 a}}\left(=\sqrt{ } 0 \cdot 396,800,5^{29}, 100,529,100,529,8 \mathrm{c}\right.\), \()\) \(=0.629,921 ; 049,894,76\), and \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}(=\) \(0.630,000,000,000,00+0.629,921,049,894,76)=1.259\), \(9^{21,049,894,76 \text {. Therefore the fecond near value of the }}\) cube-root of 2 , obtained by the irrational expreffion \(\frac{a}{.2}+\) \(\sqrt{\frac{4 c-a^{3}}{12 a}}\), will be \(\mathbf{1} .259,921,049,894,76\); which is a little lefs than the true value of the faid cube-root, agreeably to what is afferted in art. 6, and demonftrated in art. 36, the more accurate value of the faid cube-root being 1.259,921, 049,894,873,164,76, \&c.

Art. 40. The foregoing more accurate value of the cuberoot of 2 , to wit, \(1.259,921,049,894,873,164,76\), was obtained by taking \(1.259,92 \mathrm{I}, 0\) for \(a\), or the firtt near value of the faid cube-root, and computing the expreffion \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\).

For, if \(a\) is \(=1.259,921,0\), or \(\mathbf{I} 259,921\), we fhall have \(\frac{n}{2}=0.629,960,5\), and \(\left.a^{3}(=\overline{1.259,921})^{3}\right)=1.999,999\), \(762,390,486,96 \mathrm{I}\), and \(4 \dot{c}(=4 \times 2)=8.000,000,000\), \(000,000,000\), and \(4 c-a^{3}=8.000,000,000,000,000,000\)
- I.999,999,762,3,90,486,961
\(=6.000,000,237,609,513,039\), and \(120(=12 \times 1.259,921)=15.119,052\), and confequently \(\frac{4 c-a^{3}}{12 a}\left(=\frac{6.000,000,237,609,513,039}{15 \cdot 119,05^{2}}\right)=\)
\(0.396,850,294,423,850,982,125,069,746,43^{6}\), and \(\sqrt{\frac{4 c-a^{3}}{12 a}}\) \((=\sqrt{ } 0.396850,294423,850982,125069,746436)=\) \(0.629,960,549,894,873,164,76\), \& c. . Therefore \(\frac{a}{2}\)
\(\sqrt{\frac{4 c-a^{3}}{12 a}}\) will be \((=0.629,960,5+0.629,960,549,8940\) \(\left.873,164,76, \& c_{,}\right)=1.259,921,049,894,873,164,76, \& c\), which therefore will be a very near value of the cube-root of 2 .

All the twenty-one figures of this number 1.259,92 I, \(049,894,873,164,76\), may be depended upon as exact, if no miftake has been made in computing the value of the expreffion \(\sqrt{\frac{4 c-a^{3}}{12 a}}\); becaufe \(a\), or the firl value of the cube-root of 2 , to wit, \(1.259,921,0\), confifts of eight figures which are all exact, and the number of figures that are exact in \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\) is always triple, or triple wanting one or two figures, of the number of figures that are exact in \(a\); as was obferved in art. 7.

Art. 4 I . And in like manner in the fecond example, relating to the extraction of the cube-root of 23 I , if we take a equal to 6.14 (which is fomewhat greater than the true value of the faid cube-root,) inftead of taking it equal to 6.13, (which is fomewhat lefs than the faid true value,) and compute the two expreffions \(a-\frac{\sqrt{a^{3}-c} \times a}{c+2 a^{3}}\) and \(\frac{a}{2}+\) \(\sqrt{\frac{4 c-a^{3}}{12 a}}\), we fhall find the former of thefe expreffions to be fomewhat greater, and the latter of them to be fomewhat lefs, than the true value of the faid cube-root, agreeably to what is afferted in art. 6. Thefe computations may be performed as follows.

If \(a\) is fuppofed to be \(=6.14\), we fhall have \(\frac{a}{2}\left(=\frac{6.14}{2}\right)\) \(=3.07\), and \(12 a(=12 \times 6.14)=73.68\), and \(a^{3}(=\) \(\left.\overline{6.14^{3}}\right)=231.475,544\), and \(a^{3}-c(=231.475,544-\) \(231)=0.475,544\), and \(a^{3}-\lambda \times a(=0.475,544 \times 6.14)\) \(=2.919,840,16\), and \(2 a^{3}(=2 \times 231.475,544)=\) 462.
\(462.951,088\), and \(c+2 a^{3}(=231+462.951,088)=\) \(693.951,088\), and confequently \(\frac{\overline{a^{3}-a} \times a}{c+2 a^{3}}\left(=\frac{2.919,8+0,16}{693.951,088}\right)=\) \(\frac{\sqrt{a^{3}-a} \times a}{c+2 a^{3}}\) will be \((=\) \(6.140,000,000-0.004,207,559)=6.135,792,441\); which is greater than the true value of the cube-root of 231, agreeably to what is affected in art. 6, and demonfiltrated in art. 34, the faid true value being only 6.135,792, \(439,661,95^{8}, \& c\). See above, art. io, page 476 .

And we thall have \(4 c\left(=4 \times 23^{1}\right)=924\), and \(4 c-a^{6}\)
 \(\frac{4 c-a^{3}}{12 a}\left(=\frac{692.524,45^{6}}{73.68}\right)=9 \cdot 399,083,279,044,516,829\), and \(\sqrt{\frac{4 c-a^{3}}{12 a}}\left(=\sqrt{ } 9.399083,279044,5^{16829}\right)=3.065,792\), 439,004. Therefore \(\frac{a}{2^{1}}+\sqrt{ } \sqrt{\frac{4 c-a^{3}}{12 a}}\) will be \((=3.07\) \(+3.065,792,439,004,)=6.135,792,439,004\); which is lefs than the true value of the cube-root of 231, to wit, \(6.135,792,439,661,958\), \&c, agreeably to what is afferted in art. 6 , and demonftrated in art. 36.

Art. 42. There two examples are fufficient to illuftrate and confirm what is afferted in art. 6, and demonftrated in art. 34 and 36 , concerning the two expreffions \(a\) -\(\frac{\sqrt{a^{3}-} \cdot \frac{a}{2 a^{3}}}{a}\) and \(\frac{a}{2}+\sqrt{\frac{4 c-a^{3}}{12 a}}\); which are given by Monfieur de Lagney for a fecond near value of the cuberoot of a given number \(c\), when \(a\), or the firth near value of it, is greater than its true value. And with them I thall conclude the prefent tract.

End of the Tract on the Cubes of the Natural Numbers 1, 2, 3, 4, 5, 6, 7, Ec, and on Mr. de Lagney's Method of Extracting the Cube-roots of Nuinbers by Approximation.

\section*{A}

\section*{GENERAL METHOD}
\[
0 \mathrm{~F}
\]

\section*{EXTRACTING THE ROOTS OF NUMBERS}

APPROXIMATION;

\section*{1NVENTED BY}

MONSIEUR DE LAGNY,

A MEMREP OF THE ROYAL ACADEMY OF SCIENCES AT PARISE

AND PUBLISHED IN THE YEAR 1697,
IN HIS

Nouveaurs Eléments d'Aritbmétique et d'Algêbreo.
\[
5
\]

\[
8
\]


\[
4
\]
aition and
\[
\text { i- } 8
\]
\[
\begin{aligned}
& \text { amminily } \\
& \text { ampritillay }
\end{aligned}
\]
\[
\sim
\]
\[
=0 .-x+\frac{1}{4}+\frac{1}{4}
\]

\[
\min \mid
\]
1 \(\qquad\)

-
.
\((-2\) ther

\section*{A}

\section*{GENERAL METHOD}
\[
0 \mathrm{~F}
\]

\section*{EXTRACTING THE ROOTS OF NUMBERS}

\author{
BI \\ APPROXIMATION.
}

Article I . \({ }^{\text {N }} \mathrm{N}\) the foregoing Tract I have inferted Monfieur de Lagny's Method of Extracting the Cube-roots of Numbers by Approximation, and have both given full inveftigations of it, and illuftrated it by feveral examples that clearly prove its great utility. But Mr. de Lagny did not confine this method to the extraction of the cube-roots of numbers, but extended it to the extraction of their fifth roots, and their feventh roots, and all higher roots of them whatfoever. This he did by purfuing the fame principle by which he had before been enabled to find his approximations to the cube-root of a given number, to wit, by confidering the confitution of the compound quantity that is equal to any given power of a binomial quantity, (fuch as \(a+b\), ) or of a refidual quantity, (fuch as \(a-b\),) and fubftituting the fum, or difference, between \(a\), the firft near value of the root fought, (which is fuppofed to be already known, ) and \(z\), its unknown difference from the true value of the faid root fought, inftead of the faid true value itfelf in the original equation derived from the conditions of the Problem, and then refolving the new equation, refult3 T2
ing
ing from fuch fubftiturion, as if it were a quadratick equation, or neglecting all the terms of it which involve any higher powers of its root, or the difference \(z\), than the \{quare. This method I thall now endeavour to explain in the folutions of the two following Prublems.

\section*{P R O B L E M I.}

Art. 2. Let \(N\) be any propofed number whatfoever, and many propofed whole number whatfoever; and let \(a\) be a known number that is nearly equal to, but lefs than, the inth root of the given number N . It is required to find a fecond near value of the faid \(w\) th root of the given number N , that fhall approach much nearer to it than \(a\), or the former near value of it that is already known.

\section*{S O L U T I O N.}

Let \(z\) be put for the unknown difference between \(a\), the firt near value of the \(m\) th root of the given number \(N\), and the true value of the faid number. Then, fince \(a\) is fuppofed to be lefs than \(V^{n 2} \mathrm{~N}\), it follows that \(a+z\) will be \(=\sqrt{ }^{m} \mathrm{~N}\), and confequently that \(\overline{a+D}{ }^{n}\) will be \(=\mathrm{N}\) 。

But, by the binomial theorem in the firft and fimpleft care of it, to wit, the cafe of integral powers, \(\left.\overline{a+z}\right|^{n 2}\) will be \(=\) the feries \(a^{m}+n a^{m-1} z+m \times \frac{m-1}{2} \times a^{m-2} z^{z}\)
\(+m \times \frac{m-1}{2} \times \frac{m-2}{3} \times a^{m-3} z^{3}+m \times \frac{m-1}{2} \times \frac{m-2}{3} \times\)
\(\frac{m-3}{4} \times a^{m-4} 2^{4}+m \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{5} \times\) \(a^{n-5} z^{5}+\& c\), continued to \(m+1\) terms; or, if, for the fake of bievity, we fubftitute the capital letters \(A, B, C\), D, E, F, \&ic, inftead of the feyeral numeral co-efficients 1, \(m, m \times \frac{{ }^{\prime} m-1}{2}, m \times \frac{m-1}{2} \times \frac{m-2}{3}, m \times \frac{m-1}{2} \times \frac{m-2}{3} \times\) \(\frac{n-3}{4}\), and \(m \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{5}\), \& c , refpectively, \(\overline{a+z} \|^{m b}\) will be \(=\) the feries \(\mathrm{A} a^{m}+\mathrm{B} a^{m-1} z\) \(+\mathrm{C} a^{m-2} z^{2}+\mathrm{D} a^{m-3} z^{3}+\mathrm{E} a^{m-4} z^{4}+\mathrm{F} a^{m-5} z^{5}\) \(+\& c\), continued to \(m+1\) terms. Therefore the faid feries \(\mathrm{A} a^{m}+\mathrm{B} a^{m-1} z+\mathrm{C} a^{m-z} z^{2}+\mathrm{D} a^{m-3} z^{3}+\mathrm{E} a^{m-4} z^{4}\) \(+\mathrm{F} a^{m-5} z^{5}+\& \mathrm{c}\), continued to \(m+1\) terms, will be \(=\mathrm{N}\). This is the original equation, by the folution of which we are to find a near value of \(z\), and confequently a fecond near value of \(a+z\), or \(\sqrt{ }^{m} \mathrm{~N}\).

Art. 3. Now, fince \(z\) is lefs than \(a\), and ufually much lefs, being about a soth or 'rooth part of it, or fome ftill. leffier part of it, it is evident that all the terms in the aforefaid feries that involve \(z z\), and \(z^{3}\), and \(z^{4}\), and the following powers of \(z\), will be lefs, and ufually much lefs, than the term \(\mathrm{B} a^{m-1} z\), which involves only the fimple power of \(z\). And therefore, if all the faid terms of the feries be neglected or omitted, the two firft terms alone, to wit, \(\mathrm{A} a^{m}+\mathrm{B} a^{m-1} z\), will be nearly equal to the given number N ; and confequently (if we fubtract \(\mathrm{A} a^{m}\) from both fides of the equation, we thall have \(B a^{m-1} z\) nearly \(=\) \(\mathrm{N}-\mathrm{A} a^{m}\), and (dividing boch fides by \(\mathrm{B} a^{m-1}\) ) \(z\) nearly
\(=\frac{N-A a^{m}}{B a^{m-1}}\), or (becaufe \(A\) is \(=1\), and \(B\) is \(=m\) ) \(z\) nearly \(=\frac{N-a^{m}}{m a^{m-1}}\); which fraction may be derived from the known quantities N and \(a\) by the operations of Multiplication, Subtraction, and Divifion. This therefore is an approximation to the true value of \(z_{x}\) and confequently \(a+\) \(\frac{\mathrm{N}-a^{m}}{m a^{m n}-1}\) will be an approximation to the true value of \(a+z\), or of \(\checkmark^{m 2} \mathrm{~N}\), or will be a fecond near value of it that will approach nearer to it than \(a\), or the firft near value of it which was already known. But it will evidently be fomewhat greater than the true value of \(V^{m 2} \mathrm{~N}\); becaufe it arofe from a fuppofition that \(\mathrm{A} a^{m}+\mathrm{B} a^{m-1} z\) were equal to the whole feries of which they are only the two firft terms, or that they were greater than they really were.
This quantity, \(a+\frac{N-a^{m}}{m a^{m-1}}\), is the expreffion given by Mr. Raphfon for the fecond near value of the \(m\) th root of the given number N . And it is a very ufeful approximation: for it ufually gives us twice as many figures of the true value of \(\checkmark^{m} \mathrm{~N}\) exact as were exact in \(a\), or the firft near value of the faid \(m\) th root. And it is evidently the moft fimple and eafy approximation to the value of the faid \(m\) th root that can well be imagined.

Art. 4. But Mr. de Lagny, being defirous of finding at once a ftill nearer value of the \(m \mathrm{th}\) root of the number N , retains the thiril term \(\mathrm{C} a^{m-2} z^{2}\), as well as the two firft terms \(\mathrm{A} a^{m}\) and \(\mathrm{B} a^{m-1} z\), of the feries \(\mathrm{A} a^{m}+\mathrm{B} a^{m-1} z\) \(+\mathrm{C} a^{m-2} z^{2}+\mathrm{D} a^{m-3} z^{3}+\mathrm{E} a^{m-4} z^{4}+\mathrm{F} a^{m-5} z^{5}+\) \(\& \mathrm{c}\), (which is equal to N, ) and thereby converts the original equation
equation \(\mathrm{A} a^{n} \cdot+\mathrm{B} a^{n-1} z+\mathrm{C} a^{m-2} z^{2}+\mathrm{D} a^{m-3} z^{3}+\) \(\mathrm{E} a^{m-4} z^{4}+\mathrm{F} a^{m-5} z^{5}+\& \mathrm{c},=\mathrm{N}\) into a quadratick equation, to wit, the equation \(\mathrm{A} a^{m}+\mathrm{B} a^{m-1} z+\mathrm{C} a^{m-2} z^{2}\) \(=\mathrm{N}\), inftead of converting it (as Mr. Raphfon does, ) into the fimple equation \(\mathrm{A} a^{m}+\mathrm{B} a^{m-1} z=\mathrm{N}\). And this quadratick equation he refolves firft imperfectly, or inaccurately, by fubftituting in one of its terms, inftead of \(z\), the inaccurare value of \(z\) already found by the refolution of the fimple equation \(\mathrm{A} a^{m}+\mathrm{B} a^{m-\mathrm{I}} z=\mathrm{N}\), to wit, the fraction \(\frac{N-a^{m}}{m-1}\), (by which fubftitution the quadratick equation is reduced to a fimple equation,) and then refolving the faid fimple equation thereby obtained; which produces a fecond value of \(z\) that is nearer than the former value \(\frac{N-a^{m}}{m a^{m-1}}\) to its true value. And this gives him a rational expreffion for the value of \(a+z\), or the fecond near value of \(V^{n z} \mathrm{~N}\). And then he refolves the fame quadratick equation, \(\mathrm{A} a^{n z}\) \(+\mathrm{B} a^{m-1} z+\mathrm{C} a^{m-2} z^{2}\), accurately, by the common methods of refolving quadratick equations; which produces a furd, or irrational, expreffion for the value of \(z\), and confequently another furd, or irrational, expreffion for the value of \(a+z\), or for the fecond near value of \(\sqrt{n}^{m} \mathrm{~N}\). Thefe refolutions of the faid quadratick equation \(\mathrm{A} a^{m p}+\) \(\mathrm{B} a^{m-1} z-\mathrm{C} a^{m-2} z^{2}=\mathrm{N}\), may be performed in the following manner.

Art. 5. Since \(\mathrm{A} a^{m}+\mathrm{B} a^{m-1} z+\mathrm{C} a^{m-2}\) is \(=\mathrm{N}\), we fhall have \(\mathrm{B} a^{m=x} z+\mathrm{C} a^{m-2} z^{2}=\mathrm{N}-\mathrm{A} a^{m}\); that
is, \(z \times \mathrm{B} a^{m-1}+z \times \mathrm{C} \times a^{m-2} z\) will be \(=\mathrm{N}-\) \(\mathrm{A} a^{m}\), or \(z \times \sqrt{\mathrm{B} a^{m-1}+\mathrm{C} \times a^{m-2} z \text { will be }=\mathrm{N}}\) \(A a^{n z}\). Therefore (dividing both fides of the equation by the compound quantity \(\mathrm{B} a^{m-1}+\mathrm{C} \times a^{m-2} z\) ) we hall have \(z=\frac{\mathrm{N}-\mathrm{A} a^{m}}{\mathrm{~B} a^{m-1}+\mathrm{C} a^{m-2} z}\).

Now let \(\frac{N-\Lambda a^{m}}{\bar{b} a^{m-1}}\), or \(\frac{N-a^{m}}{m \dot{a}-1}\), (which has already been flew to be nearly equal to \(z\), be fubftituted intend of \(z\) in the fecond term \(C a^{m-z} \approx\) of the denominator of the fraction last obtained, to wit, the fraction \(\frac{\mathrm{N}-\mathrm{A} a^{m}}{\mathrm{~B} a^{m_{1}-1}+\mathrm{c} a^{m-2}}\). And we llatl have \(z=\frac{\mathrm{N}-\mathrm{A} a^{m z}}{\mathrm{~B} a^{m-1}+\mathrm{c} a^{m-2} \times \sqrt{\frac{\mathrm{N}-a^{m}}{m a^{m-1}}}}\), or (because A is \(=1\), and B is \(=m_{\mathrm{y}}\) )
\[
z=\frac{\mathrm{N}-a^{m}}{m a^{m-1}+\mathrm{c} a^{m-2} \times \sqrt{\frac{\mathrm{N}-a^{m}}{m a^{m-1}}}} \text {; which is }
\]
\[
=\frac{\mathrm{N}-a^{m}}{\frac{m^{2} a^{2 m-2}+\mathrm{c} a^{m-2} \times \mathrm{N}-a^{m}}{m a^{m-1}}}
\]
\[
=\frac{\mathrm{N}-a^{m}}{\frac{m^{2} a^{2 m-1}+\mathrm{c}}{\mathrm{~N} a^{m-2}}-\mathrm{c} a^{2 m-2}} \underset{m a^{m-1}}{m}=
\]
\[
\left.\overline{\mathrm{N}}-a^{m}\right) \times \frac{m a^{m-1}}{m^{2} a^{2 m-2}+\mathrm{cN} a^{m-2}-\mathrm{c} a^{2 m-2}}
\]
\(=\frac{\mathrm{N}-a^{m} \times m a^{m z-1}}{m^{2} a^{2 m-2}+\mathrm{cN} a^{m-2}-\mathrm{c} a^{2 m-2}}\)
\(=-\frac{\mathrm{N}-a^{m} \mid \times 2 m a^{m-1}}{2 m^{2} a^{2 m-2}+2 \mathrm{~N} a^{m-2}-2 \mathrm{C} a^{2 m-2}}=\) (because C is
\(=3 m \times \frac{m-1}{2}\), and consequently 2 C is \(=3 n \times m \ldots\), which therefore may be fubftituted for \(\mathrm{it}_{\text {, }}\) )
\(\frac{\mathrm{N}-a^{m} \mid \times 2 m a^{m-1}}{2 m^{2} a^{2 m-2}+m \times m-1 \times \times a^{m-2}-m \times \frac{m-1}{m a^{2 m-2}}}\)
\(=\) (if we divide both the numerator and the denominator
by \(m\),) \(\frac{\mathrm{N}-a^{m} \times 2 a^{m-1}}{2 m a^{2 m-2}+m-1 \times N \times a^{m-2}-\sqrt{m-1} \times a^{2 m-2}}\)
\(=\frac{\overline{\mathrm{N}-a^{m}} \times 2 a^{m-1}}{2 m-l_{m-1}} \times a^{2 m-2}+m \overline{-1} \times \mathrm{N} \times a^{m-2}\)
\(=\frac{\mathrm{N}-a^{m} \times 2 a^{m-1}}{-m+1 \times a^{2 m-2}+m-1 \times \mathrm{N} \times a^{m-2}}\)
\(=\frac{\overline{\mathrm{N}-a^{m}} \times 2 a^{m-1}}{m+1} \times a^{2 m-2}+\overline{m-1} \times \mathrm{N} \times a^{m-2} \quad\) (if we mul-
tiply both the numerator and denominator into \(a\),
\(\frac{\overline{N-a^{m}} \times 2 a^{m}}{\overline{m+1} \times a^{2 m m-1}+\overline{m-1} \times N \times a^{m-1}}=\) (by dividing
both the numerator and the denominator of this fraction by

Therefore, \(z\) will be \(=\frac{2 a \times n-a^{m}}{\overline{m-1} \times \mathrm{N}+\overline{m+1} \times a^{m}}\), and confer=
quently \(a+z\) will be \(=a+\frac{2 a \times x-a^{m}}{m-n \times n+m+1} \times a^{m}\), or \(a+\frac{2 a \times n-a^{m}}{m-1 \times N+\overline{m+n} \times a^{m}}\) will be a fecond near value of \(a+z\), or of the \(m\) th root of the propofed number \(N\). e. E. I.

Art, 6. The quadratick equation mentioned above in art. 4, to wit, the equation \(\mathrm{A} a^{p \prime}+\mathrm{B} a^{m-1} z+\mathrm{C} a^{m-2} z^{2}\) \(=\mathrm{N}\), or (becaufe A is \(=1\), and B is \(=m\), and C is \(=\) \(m \times \frac{m-1}{2}\),) the equation \(a^{m}+m a^{m-1} z+m \times \frac{m-1}{2} \times\) \(n^{m-2} z^{2}=N\), may be accurately refolved in the manner following.

By doubling both fides of this equation we flall have \(2 a^{m}+2 m a^{m-1} z+m \times m-\mathrm{I} \times a^{m-2} z z=2 \mathrm{~N}\); and, by multiplying both fides of this equation into \(a a\), we mall have \(2 a^{m+2}+2 m a^{m+1} z+m \times \overline{m-1} \times a^{m}\) \(\times z z=2 a^{2} \mathrm{~N}\); and, by fubtracting \(2 a^{m+2}\) from both fides, we fhall have \(2 m a^{m+1} z+m \times \overline{m-1} \times a^{m} \times z z\) \(=2 a a \mathrm{~N}-2 a^{m+2}\); and, by dividing both fides of this laft equation by \(m \times m\) - \(\times a^{m}\), we thall have \(\frac{2 m a^{m+1} z}{m \times m-1 \eta \times a^{m 2}}+z z=\frac{2 a a n-2 a^{m+2}}{m \times \overline{m-1} \times a^{m}}\), or \(\frac{2 a^{m+1} z}{m-1} \times a^{m} \quad+\) \(3 z=\frac{2 a a \mathrm{~N}-2}{m \times \sqrt{m+2}}\) \(a^{m-1} \times a^{m}\), or (becaufe \(\frac{a^{m+1}}{a^{m}}\) is \(=a\), \(\frac{2 a z}{m-1}+\)
\(\dot{z}=\frac{2 a a \mathrm{~N}-2 a^{m+2}}{m \times \overline{m-1} \times a^{m}}\), or \(\frac{2 a}{m-1} \times z+2 z=\frac{2 \mathrm{~N}-2 a^{m}}{m \times \overline{m-1} \times a^{m-a^{2}}}\)
or \(\frac{2 a}{m-1} \times z+z z=\frac{2 \times \mathrm{N}-a^{m}}{m \times \overline{m-1} \times a^{m-2}}\).
Now let the fquare of \(\frac{a}{m-1}\) (which is half the coefficient of \(z\) in the term \(\frac{2 a z}{m-1}\) ) be added to both fides of this equalton. And we hall have \(\left.\frac{a}{m-1}\right|^{i}+\frac{2 a}{m-1} \times z+z z=\frac{a}{m-1}{ }^{3}\). \(+\frac{2 \times \times-a^{m}}{m \times \overline{m-1} \times a^{m-2}}=\frac{a a}{m-1}+\frac{2 \times \mathrm{a}-a^{m}}{m \times \overline{m-1} \times a^{m-2}} ;\) or \(;\) if, for the fake of brevity, we put P for the quantity \(\frac{a a}{m-11^{2}}+\frac{2 \times \overline{\mathrm{N}-a^{m}}}{m \times \overline{m-1} \times a^{m-2}}\), we hall have \(\left.\frac{a}{m-1}\right]^{2}+\frac{2 a}{m-1}\) \(x z+z z=\mathrm{P}\). Therefore, (extracting the fquare-roots of both fides, we hall have \(\frac{a}{m-1}+z=\sqrt{m}\), and \(z=\) \(\sqrt{ } \mathrm{P}-\frac{a}{m-1}\). Therefore \(\dot{a}+z\), or \(\sqrt{2}^{m} \sqrt{\mathrm{~N}}\), will be \(=\) \(a+\sqrt{ }+\frac{a}{m-1}\), or \(a+\sqrt{\frac{a a}{m-I^{2}}+\frac{2 \times N-a^{m}}{m \times m-1 \times a^{m-i z}}}\) \(-\frac{a}{m-1}\) REF. I.

Art. 7. This irrational expreffion
\(a+\sqrt{\frac{a d}{m-1}+\frac{2 \times \mathrm{N}-a^{m}}{m \times \overline{m-1} \times a^{m-2}}} \cdots \frac{d}{m-1}\), or as if \(\checkmark \mathrm{P}-\frac{a}{m-1}\), will approach fomewhat nearer to the true value of \(\sqrt{2}^{m} \sqrt{N}\) than the former, or rational, expreffion, \({ }_{3} \mathrm{U}_{2}\)
a +

516 Mr. de Lagny's Metbod of Extracting
\(a+\frac{2 a \times \overline{\mathrm{N}-\mathrm{a}^{m}}}{\overline{m-1} \times N+\overline{m+1} \times a^{m i n}}\); becaufe it proceeds from the accurate refolution of the quadratick equation \(a^{m}+m a^{m-\mathrm{I}} z\) \(+m \times \frac{m-1}{2} \times a^{m-2} z z=\mathrm{N}\), whereas the rational ex-
 accurate refolution of the fame quadratick equation. But the difference of the two expreflions; in point of exactnefo; is not great; and either of them will ufually give us three times as many decimal figures of the true value of \(\sqrt{m}^{m} \sqrt{\mathrm{M}}\) exact as were exact in \(a\), or the preceeding near value of it.

> Examples of the Extraction of the Roots of Numbers by Means of the foregoing Exprefions.

\section*{EXAMPLEI.}

Ait. 8. Let ir be required to find the cube-root of the number 2 , having I .259 for \(a\), or the firft near value of the faid cube-root.

Here N is \(=2\), and \(m\) is \(=3\), and confequently \(m\) - I is \((=3-1)=2\), and \(m+1\) is \((=3+1)=4\), and the expreffion \(a+\frac{2 a \times N-a^{m}}{\overline{m-n} \times N+m+1} \times a^{m}\) becomes \(=a+\)
\(\frac{2 a \times \overline{\mathrm{N}}-a^{3}}{2 \mathrm{~N}+4 a^{3}}\), or \(a+\frac{a \times \overline{\mathrm{x-a}}}{\mathrm{~N}+\frac{a^{3}}{2 a^{3}}}\), or \(a+\frac{\overline{N-a^{3}} \times a}{\mathrm{~N}+2 a^{3}}\), or, (if we fubftitute the fmall letter 6 inftead of the capital Ietter

IV, \(a+\frac{\left.\overline{c-a^{3}}\right) \times a}{c+2 a^{3}}\); which is the firf, or rational, expreffion, given in the preceeding tract for the cube-root of the number \(c\). And as \(a\) is fuppofed to be \(=\mathbf{1 . 2 5 9}\), this exprefion \(a+\frac{\overline{\left.c-a^{3}\right)} \times a}{c+2 a^{3}}\) will be \(=1.259+\frac{2-1.259^{3}}{2+2 \times 1.259}\)
\(=1.259+\frac{2-1.995,616,979) \times 1.259}{2+2 \times 1.995,616,979}=1.259+\)
\(\frac{0.004,383,021 \times 1.259}{2+3.991,233,958}=1.259+\frac{0.005,518,223 ; 439}{5.991,233,95^{8}}=1.259\)
\(+0.000,921,049,55, \& \mathrm{c}=1.259,921,049,55, \& \mathrm{c}\). Therefore \(1.259,921,049,55\), \& c , will be a near value of the cuberoot of 2 . C. E. I.

See the preceeding Tract, page 474.
Arr. 9. And if we compute this cubê-root by means of the irrational expreffion \(a+\sqrt{ } \mathrm{P}-\frac{a}{m-1}\), or \(a-\frac{a}{m-1}+\) \(\sqrt{ } \mathrm{P}\); or \(a-\frac{a}{m-1}+\sqrt{\frac{a a}{\left.\frac{m-1}{}\right)^{2}}+\frac{2 \times \overline{\mathrm{N}-a^{m}}}{m \times \overline{m-1} \times a^{m-2}}}\), we fhall find that this expreffion will, upon making the proper fubttitutions, co-incide with the irrational expreffion given for the cube-root of a given number \(c\) in the foregoing tract, to wit, the expreffion \(\frac{a}{2}+\sqrt{ } \frac{4 c-a^{3}}{12 a}\), and confequently give the fame value of the cube root of 2 , as was obtained in the foregoing tract by means of that expreffion.

For, fince \(m\) is \(=3\), we fhall have \(m-1=2\), and \(x_{2}-\left.1\right|^{2}=4\), and \(m \times m-1(=3 \times 2)=6\), and \(m-2(=3-2)=1\), and \(a^{m-2}=a\), and confequently

and P , or \(\frac{a \operatorname{co}}{\overline{m-1}}+\frac{2 \times \overline{\mathrm{N}-a^{n}}}{n \times \overline{m-1} \times a^{m-2}}\left(=\frac{a a}{4}+\frac{\mathrm{N}-a^{3}}{3^{a}}\right.\)
\(=\frac{3 a^{3}}{12 a}+\frac{4^{N}-4 a^{3}}{12 a}=\frac{3^{a^{3}+4 N}-4 a^{3}}{12 a}\) ) \(=\frac{4^{N}-a^{3}}{12 a}\), or, (if we
fubftitute \(c\) inftead of N , in order to adopt the notation ufed in the foregoing tract, \(\mathrm{P}=\frac{4 c-a^{3}}{12 a}\), and \(a-\frac{a}{m-1}\) \(+\sqrt{ }\left(=a-\frac{a}{2}+\sqrt{ } \mathrm{P}=\frac{a}{2}+\sqrt{ } \mathrm{P}\right)=\frac{a}{2}+\) \(\sqrt{\frac{4 c-a^{3}}{12 a}}\); which is the irrational expreffion given in the foregoing tract for the fecond near value of the cube-root of the number \(c\). So that the general, irrational, expreffion \(a-\)
\(\frac{a}{m-1}+\sqrt{ } \mathrm{P}\), or \(a-\frac{a}{m-1}+\sqrt{\left(\frac{a a}{\overline{m-1})^{2}}+\frac{2 \times \overline{\mathrm{N}-a^{m}}}{m \times \overline{m-I} \times a^{m-2}}\right.}\), which is obtained by the general inveftigation of the \(m\) th root of the given number N in the prefent tract, agrees perfectly with the particular, irrational, expreffion \(\frac{a}{2}+\) \(\sqrt{\frac{4 c-a^{3}}{12 a}}\), which was obtained in the foregoing tract, by the particular inveftigation of the cube-root of the given number \(c_{0}\)

And, fince \(c\) is \(=2\), and \(a\) is \(=1.259\), we fhall have \(a^{3}\left(=1.259^{3}\right)=1.995,616,979\), and \(4 c-a^{3}(=8.000\), \(000,000-1.995,616,979)=6.004,383,021\), and 129 \((=12 \times 1.259)=15.108\), and \(\frac{4 c-a^{3}}{12 a}\left(=\frac{6.004,383,021}{15.108}\right)=\) \(0.397,430,700,3\), and \(\sqrt{\frac{4 c-a^{3}}{12 a}}(=\sqrt{ } 0.397430,7003)=\) \(0.630,421,050,01\), and \(\frac{a}{2}\left(=\frac{1.2590}{2}\right)=0.6295\), and \(\frac{a}{2}\) \(+\sqrt{\frac{44-a^{3}}{12 a}}(=0.6295+0.630,421,050,01)=1.259 z\)

9er,050,01. Therefore \(1.259,92\) I,050,01 will be a fecond near value of the cube-root of 2 . R.E.I.

The firt eight figures \(1.259,921,0\), of this number \(1.259,921,050,01\), are exact, the more accurate value of the cube-root of 2 being \(1.259,921,049,894,873,164,76\), \&c, of which I believe all the figures to be exact. See above, pages 502 and 503 .

\section*{EXAMPLE II.}

Art. 10. Let it be required to find the fifth root of the number 2, which the celebrated Vieta, or Monfieur Viete, has found to be I.I48,697.

Here \(m\) is \(=5\), and confequently \(m-I\) is \(=4\), and \(m_{n}+1\) is \(=6\), and the firft general expreffion \(a+\) \(\frac{2 a \times N-a^{m}}{m-n \times \mathrm{N}+\overline{m+1} \times a^{m}}\) will be \(\left(=a+\frac{2 a \times \overline{N-a^{5}}}{4 \mathrm{~N}+6 a^{5}}\right)=a+\) \(\frac{a \times \overline{\mathrm{N}-a^{5}}}{2 \mathrm{~N}+3^{5}}\), or \(a+\frac{\overline{\mathrm{N}-a^{5}} \times a}{2 \mathrm{~N}+a^{5}}\); and the other general expreffion \(a-\frac{a}{m-1}+\sqrt{ } \mathrm{P}\), or \(a-\frac{a}{m-1}+\sqrt{\left(\frac{a a}{(m-1)^{2}}+\frac{2 \times N-a^{m}}{m \times \overline{m-1}) \times a^{m-2}}\right.}\) will be \(\left(=a-\frac{a}{4}+\sqrt{\frac{a a}{16}+\frac{2 \times \overline{N-a^{5}}}{5 \times 4 \times a^{3}}}=\frac{3 a}{4}+\right.\) \(\sqrt{\frac{a a}{16}+\frac{N-a^{5}}{10 a^{3}}}=\frac{3 a}{4}+\sqrt{\frac{10 a^{5}}{160 a^{3}}+\frac{16 \mathrm{~N}-16 a^{5}}{160 a^{5}}}=\frac{3 a}{4}+\) \(\left.\sqrt{\frac{10 a^{5}+16 N-16 a^{5}}{160 a^{3}}}=\frac{3 a}{4}+\sqrt{\left(\frac{16 N-6 a^{5}}{100 a^{3}}\right.}\right)=\frac{3 a}{4}+\sqrt{\frac{8 N-a^{3}}{80 a^{3}}}\). We mut therefore compute one of the two expreffions \(a+\frac{a \times \bar{N} \frac{T^{a^{5}}}{2 N+3 a^{5}}}{3}\) and \(\frac{3 a}{4}+\sqrt{\frac{8 N-3 a^{5}}{8 a a^{3}},}\), in order to obtain a fecond
fecond near value of the fifth root of N , or 2 , when we fhall have firft found \(a\), or a firft near value of the faid fifth root that is lefs than its true value, to a fmall degree of exactnefs.

Art. ir. The value of \(a\), or the firf approximation to the fifth root of 2 , may be found in the following manner.

The fifth root of 2 is the fecond of fix quantities in continued geometrical proportion, of which 1 is the firft, or leaft, and 2 is the fixth, or greateft. Now the excefs of the fecond of thefe proportionals above the firft, is necefarily lefs than the fitth part of the excefs of the greaceft above the leaft, becaufe the excetfes increafe in the fame proportion as the terms themfelves. The exceis of the greatelt of thefe fix terms, to wit, 2, abore the lealt of them, or 1 , is 1 ; of which the fifth part is \(\frac{1}{5}\), or \(\frac{2}{10}\), or 0.2 . Therefore the excels of the fecond term abore the firt will be lefs than \(\frac{2}{10}\), or 0.2 ; and confequently the fecond term itfelf will be lefs than \(1+\frac{2}{10}\), or than 1.2 . Let us therefore fuppofe this fecond term, or the fifth root of 2 , which we are feeking, to be equal to I.I; and let us raife this number to the fifth power, in order to try how nearly it approaches to the truth.

Now, if we raife I.I to the fifth power, or multiply it four times into itfelf, we thall find that \(\overline{1.1)^{s}}\) is \(=1.61051\); which is confiderably lefs than 2. Therefore 1.I muft be conficterably lefs than the true value of the \(5^{\text {th }}\) root of 2 . But we have feen that the faid true value muft be lefs than 1.2. Leet us therefore fuppofe it to be equally diftant from I. I and 1.2 , or to be \(=1.15\), and try whether this will not be pretty near the truth.

Now \(1.15^{\text {s }}\) is \(=2.011,357,187,5\); which is a little bigger than 2. Therefore i.I 5 mutt be fomething greater thats the 5 th root of 2 . But the difference can be but fmall.

We will therefore, in the next place, fuppofe the faid 5 th root to be \(=1.14\), and raife this number to the firth power, in order to difcover whether the faid fifih power will be greater, or lefs, than 2, and confequently wherher 1.14 will be greater, or lefs, than the fifth root of 2 .

Now, if we multiply 1.14 four times fucceffively into itfelf, we fhall find that 1.14\()^{5}\) is \(=1.925,4,14,582,4\); which is fomewhat lefs than 2. Therefore the \(5^{\text {th }}\) root of 2 will be greater than 1.14 , hut lefs than I.I5; and therefore 1.14 will be a very convenient firt near value of the 5 th root of 2 , and will be very fit to be made the bafis: of a further approximation to the true value of the faid 5 th root, by fubfituting it inftead of \(a\) in either of the two exprefions \(a+\frac{\overline{N-a^{5}} \times a}{2 N+3 a^{5}}\) and \(\frac{3 a}{4}+\sqrt{\frac{8:-3 a^{5}}{80 a^{3}}}\), which have been derived frum the foregoing Problem.

Art. 12. Now, if we fuppofe a to be \(=1.14\), we fhall have \(a a=1.2095\), and \(a^{3}=1.4^{81}, 544\), and \(a^{5}=1.925\), \(414,582,4\), and confequently \(\mathrm{N}-a^{5}(=2.000,000,000,0\) \(-1.925,414,582,4)=0.074,58 j, 417,6\), and \(N-a^{5} \times a\) \((=0.074,585,417,6 \times 1.14)=0.085,027,3,76,064\), and \(2 N(=2 \times 2)=4\), and \(3 a^{5}(=3 \times 1.925,414,582,4)=\) \(5 \cdot 776,243,747,2\), and \(2 N+3 a^{5}(=4+5 \cdot 776,243,747,2)\) \(=9.77^{6,243,747,2,}\) and \(\frac{\overline{N-a^{5}} \times a}{2 \mathrm{~N}+3^{a^{5}}}\left(=\frac{0.085,027,376,064}{9.776,243,747,2}\right)=\) \(0.008,697,34\). Therefore \(a+\frac{N-a^{3} \times a}{2 N+3 a^{5}}\) will be \((=1.14\) \(+0.008,697,34)=1.148,697,34\); and confequently r.148,697,34 will be very nearly equal to the 5 th root of 2 . Q. E. I.

This number 1.148,697,34 agrees with that found by Vieta, to wit, \(1.148,697\), in all its feven figures, but is carried to two more figures.

The other expreffion \(\frac{3 a}{4}+\sqrt{ } \frac{8 N-3 a^{5}}{50 a^{3}}\), may be computed as follows.

Since \(a\) is \(=1.14\), we thall have \(3 a(=3 \times 1.14)=\) 3.42 , and \(\frac{3 a}{4}\left(=\frac{3.42}{4}\right)=0.855\), and \(8 \mathrm{~N}(=8 \times 2)=\) 26, and \(3 a^{5}(=3 \times 1.925,414,582,4)=5.776,243,747,2\), and \(8 \mathrm{~N}-3^{a^{5}}(=16.000,000,000,0-5 \cdot 776,243,747,2)\) \(=10.223,756,252,8\), and \(50 a^{3}(=80 \times 1.48 \mathrm{I}, 544)=\) in \(8.52 \hat{3}, 520\), and \(\frac{8 x-3 a^{5}}{80 a^{3}}\left(=\frac{10.223,756,252,8}{118.523,520}\right)=0.086\), \(259,303,240,40\), and \(\sqrt{\frac{8 N-3 a^{5}}{80 a^{3}}}(=\sqrt{ } 0.086259,303240\), 40) \(=0.293,699,34\), and confequently \(\frac{3 a}{4}+\sqrt{\frac{3 N-3 a^{5}}{80 a^{3}}}\) \((=0.855+0.293,699,34)=1.148,699,34\). Therefore the fifth root of 2 will be very nearly equal to \(1.148,699,34 \cdot\) Q.E.I.

\section*{EXAMPLEII.}

Art. I3. Let it be required to find the 5 th root of the number \(307,68282,11067,15625\).

In order to find a firft near value of the 5 th root of this long number, we may begin by comparing it with the fifth powers of the numbers 10,100 , and 1000 , and the following powers of 10 . Now the fifth power of 10 is 100,000 ; which is very much lefs than the propofed number: and the fifth power of 100 is \(10,000,000,000\); which is alfo much lefs than the propofed number: and the fifth power of 1000 is \(1000,000,000,000,000\); which is alfo lefs than the propofed number: but the fifth power of 10,000 is \(100,000,000,000,000,000,000\); which is greater than the propofed number. We may therefore conclude that 1000 muft be lefs, and that 10,000 muft be greater than the fifth
root of the propofed number. Therefore the fifth roor of the faid number muft be of an intermediate magnitude between 1000 and 10,000 .

Further, the propofed number \(307,68282,11067,15625\) is greater than \(307,00000,00000,00000\), or than \(307 \times 1000\), . Therefore the fift root of the faid number will be greater than the product of the multiplication of the fifth root of 307 by 1000 . We will therefore inquire what is the fifth root of 307.

Now the fifth power of 2 is 32 , and the fifth power of 3 is 243 , and the fifth power of 4 is 1024 . Therefore the fifth power of 4 is much greater than 307, and the fifth power of 3 is a little lefs than 307. We may therefore conclude that the fifth root of 307 will be much lefs than 4, and a little greater than 3 ; and confequently the fifth root of the number \(307,00000,00000,00000\) will be much lefs than \(4 \times 1000\), or 4000 , and a little greater than \(3 \times 1000\), or 3000 . We may therefore reafonably conjecture that the fifth root of the propofed number 307, \(68282,1106 /, 15625\), will be nearly equal to 3100 . And accordingly, if we raife this number 3 roo to the fifth power, we thaill find the faid power of it to be \(=286,29151,00000\), 00000 , which is pretty nearly equal to, but fomewhat lefs than, the propofed number \(307,68282,11067,15625\). Therefore \(3 \pm 00\) will be a proper number to make the bafis of a further approximation to the true value of the fifth root of the faid propofed number, by means of either of the two expreffions above-mentioned, to wir, \(a+\frac{\overline{4-a^{5}} \times a}{2 N+3 a^{5}}\), and \(\frac{34}{4}\). \(+\sqrt{\frac{8 \pi-3 a^{5}}{80 a^{3}}}\)

Art. 14. Here then we have \(N=307,68282,11067,1,5625\), and \(a=3100\), and confequently \(a^{4}=286,2915^{1,00000}\), 00000 , and \(3 a^{5}(=3 \times 286,29151,00000,00000)=\) \(858,87453,00000,00000\), and \(2 \mathrm{~N}(=2 \times 307,68282\), \(11067,15625)=615,36564,22134,31250\), and \(2 \mathrm{~N}+3 a^{5}\) \(3 \mathrm{X}_{2}\)
\(\left(=615,3^{6} 564,22134,31250+858,87453,00000,00000\right)\) \(=1474,24017,22134,31250\), and \(\mathrm{N}-a^{5}(=307,68282\). 11067,15625-286,29151,00000,00000) \(=21,39131\), 11067,15625, and \(\sqrt[N]{-a^{5}} \times a(=21,34131.11067,15625\)
\(\left.\times 3^{100}\right)=66313,06443,08184,37500\), and \(\frac{N-a^{5} \times a}{2 N+3^{5}}(=\) \(\left.\frac{56313,0644,3,08184,37500}{1474,240 \cdot 17,22134,31250}\right)=44.98\). Thercfore \(a+\frac{\overline{N-a^{3}} \times a}{2 N+3 a^{5}}\) will be \((=3100+44.98)=3144.98\), which will therefore be nearly equal to the fifth root of the propofed number 307,68282,11067,15625. C. E. I.

The three firft figures, \(3^{14}\), of this number 3144.98 , or, rather, the five firlt figures of it, 3:44-9, are exact, the error being only in the fixth figure 8 , which ought to be a 9 inftead of an 8. For the exact root of the propofed number \(307,68282,11067,15625\) is \(3144.999,999\), ad infnitum, or the whole number 3145 , as will appear by raifing the faid number \(3^{1} 45\) to the fifth power.

Art. 15. The other, or irrational, expreffion for the fecond near value of the fifth root of this number 307,68282, \({ }^{11067,15625}\), to wit, the expreffion \(\frac{3^{a}}{4}+\sqrt{ }\left(\frac{8 N-3 a^{5}}{80 a^{3}}\right.\), may be computed as follows.

Since \(a\) is \(=3100\), we fhall have \(3 a(=3 \times 3100)=\) 9300 , and \(\frac{3 a}{4}\left(=\frac{9300}{4}\right)=2325\), and \(a^{3}=2,97910,00000\), and \(a^{5}=286,29151,00000,00000\), and \(80 a^{3}(=80 \times\) \(2,97910,00000)=238,32800,0=000\), and \(8 \mathrm{~N}(=8 \times\) \(307,68282,11067,15025)=2461,462,66,8853,7,25000\), and \(3^{a^{5}}=858,87453,00000,00000\), and \(S N-3 a^{5}(\) (, \(2+61\), \(46256,88537,25000-858,87453,00000,00000)=1602\), \(58803,88537,25000\), and \(\frac{8 \kappa-3 a^{5}}{80 a^{3}}\left(=\frac{1602,58807,8853^{-}, 2,5000}{239,32,00,00000}\right)\)
\(=672.29 .6091\), and \(\sqrt{ } \frac{8 N-3 a^{5}}{803^{3}}(=\sqrt{672429.6091})\)
820.0.1; and confequently \(\frac{3 a}{4}+\sqrt{\frac{8 N-3 a^{5}}{80 a^{3}}}(=2325+\) \(\left.\delta_{20.01}\right)=3145.01\). Therefore 3145.01 will be a fecond near value of the fifth root of the propofed number \(30 \%\), \(68282,11067,15625\). C. E. I.

Art. 16. If we fhould chufe to find the fifth root of this number \(307,68282,11067,15625\), by means of Mr. Raphfon's expreffion for its value, to wit, the expreffion \(a+\) \(\frac{\mathrm{N}-a^{n g}}{a^{m-1}}\), or \(a+\frac{N-a^{5}}{5 a^{4}}\), (which certainly has the merit of being much fimpler, and eafier to be remembered, than either of Mr. de Lagny's expreffions, and likewife much eafier to compute,) the computation will be as follows.

Since \(a\) is \(=3100\), we fhall have \(a^{4}=9235,21000,00000\), and \(a^{5}=285,29151,00000,00000\), and \(5 a^{4}=46176\), \(05^{\prime} 000.00000\), and \(\mathrm{N}-a^{5}(=307,68282,11067,15625\) - 86. 9151,00000,00000) \(=21,39131,11067,15625\), and \(\frac{N-a^{5}}{j^{4}}\left(=\frac{21,29131,11067,15625}{46176,05000,00000}\right)=46\). Therefore \(a+\) \(\frac{3 i-a^{5}}{5^{4}}\) will be \((=3100+46)=3^{146}\); which therefore will be the fecond near value of the fifth root of the propofed number 307,68282,11067,15625, obtained by Mr. Raphlon's approximation. e. E. .

\section*{A S CHOLIUM.}

This laft near value of the fifth root of the faid propofed number, which has been obtained by Mr. Raphfon's approxination, is greater than its true value, 3145 , by only an unit, or the \(3145^{\text {th }}\) part of the faid true value. So that this vesy fimple method of approximating to the roots of numbers
bers may be juftly confidered as extremely ufeful as well as eafy. And, if this procefs were to be repeated, by taking 3146 for the value of \(a\), and fuppofing \(a-z\) to be equal to \(\sqrt{ }^{5} \mathrm{~N}\), (a, or \(3^{1} 4^{6}\), being fomewhat greater than the true value of the fifth root which we are in fearch of,) and by computing the expreffion \(a-\frac{N-a^{5}}{5 a^{4}}\), that would refult from that fuppofition, this fecond procefs would double the number of figures that are exact in \(a\), or 3146 , or give us about four times the number of figures that were exact in 3100 , or the former value of \(a\); which is more than is done by either of the two expreffions, \(a+\frac{\sqrt{N-a^{3}} \times a}{2 N+3 a^{5}}\), and \(\frac{3 a}{4}+\sqrt{\frac{8 N-a^{a^{5}}}{80 a^{3}}}\), given us by Mr. de Lagny: So that two fteps of Mr. Raphfon's method of approximation are more than equivalent to one ftep of Mr. de Lagny's method. It may therefore be doubted, whether Mr. Raphfon's method is not, upon the whole, to be preferred to Mr. de Lagny's, as Mr. Raphfon himfelf always thought it to be. For he tells us in the Appendix to the fecond edition of his excellent Treatife, insitled, Analyis Equationum Univerfalis, (which fecond edition was publifhed in the year 1697, feven years after the firft edition of it, and five or lix years after the publication of Monfeur de Lagny's method,) that he himfelf had had thoughts of refolving the quadratick equation \(\mathrm{A} a^{m}+\mathrm{B} a^{m-1} z\) \(+\mathrm{C} a^{m-2} z^{2}=\mathrm{N}\), or \(a^{m}+m a^{m-\mathrm{r}} z+m \times \frac{m-\mathrm{I}}{2} \times\) \(a^{m-2} z^{2}=\mathrm{N}\), in the imperfect manner adopted by Mr. Lagny, in order to obtain his rational value of \(z\), to wit, \({ }_{N \rightarrow a^{m}} \times 2 a\)
\(\frac{N-a}{m-1} \times \frac{N+m}{n+1} \times a^{m m}\), to wit, by fubftituting in the term
\(m \times \frac{n-1}{2} \times a^{n-2} z^{1}\) of the faid quadratick equation, inftead of \(z\), the value of \(z\) already obtained by the refolution of the fimple equation \(a^{n}+m a^{n-\mathrm{s}} z=\mathrm{N}\), to wit, the fraction
fraction \(\frac{N-a^{m}}{m a^{m-1}}\), (by which fubftitution the faid quadratick equation would be converted into the following fimple equaLion, \(a^{m}+m a^{m-\mathrm{I}} z+z_{3} \times \frac{m m-T}{2} \times a^{m-2} z \times \sqrt{\frac{\mathrm{N}-a^{m}}{m a^{m-I}}}\) \(=\mathrm{N}\),) and then refolving the fimple equation thence refulting, to wit, the fimple equation \(a^{m}+m a^{m-1} z\) \(+m \times \frac{m-1}{2} \times a^{m-2} z \times \frac{N-a^{m}}{m a^{m-1}}=\mathrm{N}\), or \(m a^{m-1} z\) \(+m \times \frac{m-1}{2} \times a^{m-2} \times \sqrt{\frac{\mathrm{N}-a^{m i}}{m a^{m-1}}} \times z=\mathrm{N}-a^{m}\), or \(z \times \sqrt{m a^{m-1}+m \times \frac{m-1}{2} \times a^{m-2} \times \sqrt{\frac{\mathrm{N}-a^{m}}{m a^{m-1}}}}=\mathrm{N}-a^{m}\), in the ufual way, or by the fingle operation of Divifion, which would give us \(z\) (=
\[
\begin{aligned}
& \mathrm{N}-a^{m} \\
& m a^{m-1}+m \times \frac{m-1}{2} \times a^{m-2} \times \sqrt{\frac{N-a^{m}}{m-I}} \\
& =\frac{N-a^{m}}{m a^{m-1}+\frac{m-1}{2} \times a^{m-2} \times \sqrt{\frac{N-a^{m}}{a^{m-1}}}} \\
& =-2 \times N-a^{m} \\
& \overrightarrow{7} \sqrt{2 m-1}+\overline{m-1} a^{m-2} \times \sqrt{\frac{N-a^{m}}{a^{m-1}}} \\
& =\frac{2 \times \frac{\mathrm{N}-a^{m}}{2 m a^{2 m-2}+m-1 \times a^{m-2} \times N-a^{m}}}{a^{m-1}}
\end{aligned}
\]
\(=\frac{2 m a^{2 m-2}+m \times \mathrm{N}^{2}-a^{m}}{a^{m-1}} \times \frac{a^{m-2} \times \mathrm{N}-12 a^{2 m-2}+a^{2 m-2}}{a^{m-1}}\)
\(2 \times \mathrm{N}-a^{m m}\)

\[
a^{m-\mathrm{I}}
\]
\(=\frac{2 a \times \mathrm{N}-a^{2}}{m a^{2 m}-\mathrm{I}+a^{2 m-1}+a^{m-1} \times a^{m-1} \times \mathrm{N}}-\cdots\)
\(\left.=\frac{2 a \times \mathrm{N}-a^{m}}{-m a^{m}+a^{m}+m-1} \times \frac{2 a^{n} \times \mathrm{N}-a^{m}}{m+1+\times a^{m}+\sqrt{m m-1} \times \mathrm{N}}\right)\)
\(=\frac{\mathrm{N}-a^{m \prime} \times 2 a}{m-1 \times \mathrm{N}+\overline{m+1} \times a^{m}}\), and confequently \(a+\dot{z}=a+\)
\(\frac{\mathrm{N}-a^{m} \times 2 a}{m-1 \times N+m+1 \times a^{m}}\); which is Mr. de Liagnys rational exprefinon for the fecond near value of the mth root of \(N\). Mr. Rapbon (I fay,) tells us that he himfelf had had thoughts of refolving the quadratick equation \(a^{m}+m a^{m-1} \approx+\) \(m \times \frac{m-1}{2} \times a^{m-2} z^{2}=\mathrm{N}\) in this manner, in order to obtain a value of \(z\) fomewhat nearer to the truth than the fraction \(\frac{\mathrm{N}-a^{m}}{m a^{m}-1^{2}}\), which he had obtained by the refolution of the fimple equation \(a^{m}+m a^{\bar{m}-1} z=N\); but that he did not think proper to adopt this: methorl, becaufe he thought his own method of approximation, (which he publifhed in the firft edition of his Analyis AEquationum Ün=er: falis, in the year 1690 , and which is derived from the fimple equation \(a^{m^{2}}+m a^{m-1} z=N\), the eaficft and cleareft, and, upon the whole, the bett, and fitteft for practice, that could be followed. His words, in his Appendix, celating
relating to this fubject, are as follows. An Dominus de Lagny Librum meuni unquam viderat, néc-ne, prorsùs nefcio. Quibüfce modis non folùm fua metbodus, fed et etiàm alice quam-plurima, eodem prorsùs proce \(\int u\), et perpetuà inde derivatã graduum fcalà, inveriviri poffint, bujüjce Appendicis eft oftendere; ídque, quàna polvimus, brevifimè.
ıpse equidem de gradatim inferendis (quas priùs rejeceram in Thecremate Vietæo,) poteftatibus olinn cogitavi: Sed tamen non profecutus fui; utpote qui metbodunn mean, barum omnium fundamentalem, veluti facillimams Semper exiftimavi. Subfequenti proceflu earum omnium inventionem indagare cuilibet liceat. See Mr. Raphfon's Analy/s 压quationum Univerfalis, Edition 2d, 1697, page 4.9. And again, in page 55 , he concludes his Appendix with thefe words: Innumeras etiom alias metbodos et abbreviationes (novarum quiden methodorum nomine inffgniendas,) adinvenire liceat; que tamen omnia fundamentali buic Superiorım poteftatum imprimis rejeçionis metbodo, pofteáque gradatim retinendorum, innitantur. Noftram tamen fimpliciffimamo fore et facillimam, cuivis pateat.

\author{
E X A M P L E IV.
}

Alt. 17. Let it be required to find the feventh root of the number \(34,487,717,467,307,513,182,492,153,794,673\); which, Mr. Bomycafte, of the Royal Military Academy at Woolwich, in his Scholar's Guide to Arithmetick, page 18y, tells us, is 32017.

This number mult, in the firf place, be compared with the \(\{e v e n t h\) powers of \(10,100,1000,8 x\), to which it approaches neareft, in order to know between which two of thofe numbers \(10,100,1000,8 \mathrm{c}\), its feventh root will lie. Now the feventh power of 10 is \(10,000,000\), which is very much lefs than the faid propofed number; and the feventh
\[
3 Y
\]
power
power of 100 is \(100,000,000,000,000\), which is likewife much lefs than the faid propofed number; and the feventh power of 1000 is \(1000,000,000,000,000,000,000\), which is likewife lefs than the faid propofed number; and the feventh power of 10,000 is \(10,000,000,000,000,000,000,000,000,000\), or I with twenty-eight cyphers annexed to it; which is likewife lefs than the faid propofed number, which confifts of 32 figures. But the feventh power of 100,000 is 100,000 , \(000,000,000,000,000,000,000,000,000,000\), or 1 with 35 cyphers annexed to it, and is therefore greater than the faid propofed number, which confifts of only 32 figures. Therefore 10,000 will be lefs, and 100,000 will be greater, than the feventh root of the faid propofed number.

Further, the propofed number \(34,487,717,467,307,513\), \(182,492,153,794,673\), is greater than the number 34480 , \(000,000,000,000,000,000,000,000,000\), or than \(3448 \times\) \(10,000,000,000,000,000,000,000,000,000\), or than 3448 \(x\) the feventh power of 10,000 : but the difference between them is not great. Therefore the feventh root of the faid propofed number will be greater than 10,000 times the feventh root of \(344^{8}\) : but the difference between them will not be great. And confequently, if we can find the feventh root of the number 3448 exact to two, or three, places of figures, we need only multiply the faid feventh root by 10,000 , in order to obtain the feventh root of 34480,000 , \(000,000,000,000,000,000,000,000\), exact to two or three places of figures. And, when we have obtained the faid near value of the feventh root of the number 344.80,000, \(000,000,000,000,000,000,000,000\), the faid near value will likewife be a near value of the feventh root of the propofed number \(34487,717,467,307,5^{1} 3,182,492,153,794,673\), and will be lefs than the true value of the feventh root of the faid number, and therefore will ferve as a convenient bafis of a further approximation to the true value of the feventh root of the faid propofed number, by means of one of Monfieur de Lagny's two expreffions found above in the folution of the foregoing Problem. We muft therefore now endeavour to find a near value of the feventh root of the number:
number 3448. Now this may be done in the manner following.

Art. 18. The feventh power of the number 2 is 128 , and the leventh power of 3 is 2187 , and the feventh power of 4 is 16384 . Therefore, fince 3448 is greater than 2187 , or the feventh power of 3 , but is much lefs than 16384 , or the feventh power of 4 , it follows that the feventh root of 3448 muft be greater than 3, but much lefs than 4 . We may therefore reafonably conjecture, that it will be nearly equal to \(3 \frac{1}{5}\), or 3.2 . And accordingly, upon trial, we fhall find it to be fo. For, if we raife 3.2 to its feventh power, we thall find the faid power to be \(=3435 \cdot 973,836,8\); which is lefs than \(344^{8}\), but very nearly equal to it. Therefore 3.2 is a very near firft value of the feventh root of the number 3448 ; and confequently \(3.2 \times 10,000\), or 32000 , will be a very near firf value of the number 34480,000 , \(000,000,000,000,000,000,000,000\), and therefore will be alfo a pretty near firft value of the propofed number \(34487,717,467,307,513,182,492,153,794,673\). We will therefore fuppofe \(a\) to be \(=32000\), and proceed, upon that fuppofition, to compute the two expreffions given in the folution of the foregoing Problem, for a fecond value of the feventh root of the faid propofed number that thall approach nearer than \(a\), or 32000 , to its true value. Thefe computations will be as follows.

Art. 19. The firft, or rational, expreffion, given in the folution of the foregoing Problem, for the fecond near value of the \(m\) th root of any propofed number N , is \(a+\). \(\frac{N-a^{m} \times 2 a}{\overline{m-1} \times s+\overline{m+1} \times a^{n 2}}\). Now, when \(m\) is \(=7\), this expreffion will be \(\left(=a+\frac{\overline{N-a 7} \times 2 a}{7-1 \mid \times N+7+1 \times a^{7}}=a+\right.\) \(\left.\frac{\overline{M^{-a^{7}}} \times 2 a}{6 \times+8 a^{7}}\right)=a+\frac{\overline{N-a^{7}} \times a}{3 N+4 a^{7}}\).

Now, fince \(N\) is, in this cafe, \(=34,487,717,467,307\),
\[
3 \mathrm{Y}_{3}
\]

513,
\(513,182,492,153,794,673\), and \(a\) is \(=32000\), we thall have \(a^{7}\left(=3^{2000}{ }^{7}\right)=34,357,738,368,000,000,000,000,000\), 000,000, and N - \(a^{7}\)
\((=34,487,717,467,307,513,182,492,153,794,673\)
- \(34,359,738,368,000,000,000,000,000,000,000)\)
\(=127,979,099,307,513,182,492,153,794,673\), and
\(\overline{\mathrm{N}-a^{7}} \times a(=\mathrm{r} 27,979,099,307,513,182,492,153,794,673\) \(\times 32000)=4,095,331,177,840,421,839,748,921,429\), 536,000 , and \(3 \mathrm{~N}(=3 \times 34,487,717,467,307,513,182\), \(492,153,794,673)=103,4^{5} 3,15^{2}, 401,922,539,547,476\), \(461,3^{8} 4,019\), and \(4 a^{7}\)
\(\left(=4 \times 34,359,73^{8}, 368,000,000,000,000,000,000,000\right)\)
\(={ }^{1} 37,438,945,47^{2}, 000,000,000,000,000,000,000\), and \(3 \mathrm{~N}+4 a^{7}\)
(二 \(=103,463,15^{2}, 401,922,539,547,4,76,461,3^{84}, 019\)
\(\left.+137,43^{8}, 945,472,000,000,000,000,000,000,000\right)\)
\(=240,902,097,873,922,539,547,476,461,384,019\), and
\(\overline{\frac{N_{\mathrm{i}}-a 7}{} \times a} 3^{\mathrm{N}+4 a^{7}}\left(=\frac{4,095,331,177,8+0,421,839,748,921,429,436,000}{240,902,097,873,922,539,547,+76,401,3^{8} 4,019}=\right.\),
nearly, \(\left.\frac{4,095,331}{240,902}\right)=16.99998\). Therefore \(a+\frac{x-a^{77} \times a}{3 x+44^{7}}\) will be \((=32000+16.9098)=32016.9998\), and confequently the fecond near value of the feventh root of the propofed number \(34,487,717,467,307,5 \pm 3,182,492,153,794\), 673 will be \(32016.99 y 8\). C. E . I .

This number is trae in all the figures but the laft, which ought to be a 9 inftead of an \(\delta\), the true value of the feventh root of the faid propofed number being 32016.999,999,999: 999, \&cc, ad infinitum, or the whole number 32017.

Art. 20. The fecond, or irrational, expreffion, given in the folution of the foregoing Problem, for the fecond near value of the \(m\) th root of any propofed number N , is a -
\(\frac{a}{m_{2}-1}+\sqrt{\frac{a a}{m-1)^{2}}+\frac{2 \times \overline{N-a^{m}}}{m \times \overline{m_{2-1}} \times a^{m-2}}}\); which, when \(m\) is
\[
=7,
\]
\(=7\), (as is the cafe in the prefent example,) is ( \(=a-\) \(\frac{a}{7-1}+\sqrt{\frac{a a}{\sqrt{7-1})^{2}}+\frac{2 \times \overline{N-a^{7}}}{7 \times \overline{7-1} \times a^{5}}}=a-\frac{a}{6}+\)
\(\sqrt{\frac{a a}{6)^{2}}+\frac{2 \times \overline{-a} a^{7}}{7 \times 6} \times a^{5}}=\frac{5 a}{6}+\sqrt{\frac{a \pi}{36}+\frac{N-a^{7}}{7 \times 3 \times a^{5}}}=\frac{5 a}{6}\).
\(+\sqrt{\sqrt{\frac{a a}{36}+\frac{N-a^{7}}{21 a^{5}}}}=\frac{5 a}{6}+\sqrt{\frac{21 a^{7}}{2 I \times 36 a^{5}}+\frac{36 \mathrm{~N}-36 a^{7}}{21 \times 36 a^{5}}}=\frac{5 a}{6}+\)
\(\sqrt{\frac{7 a^{7}}{7 \times 3^{6 a^{5}}}+\frac{12 \mathrm{~N}-12 a^{7}}{7 \times 3^{6} a^{5}}}=\frac{5 a}{6} \div \sqrt{\left.\frac{12 \mathrm{~N}-5 a^{7}}{7 \times 3 a^{5}}\right)}=\frac{5 a}{6}+\) \(\frac{12 x-5 a^{7}}{25 a^{5}}\). This expreffion may be computed as follows.
Since \(N\) is \(=34,487,717,467,307,513,182,492,153,794\), 673 , and \(a\) is \(=32000\), we fhall have \(5 a(=5 \times 32000)\) \(=160,000\), and \(\frac{5 a}{6}\left(=\frac{160,000}{6}\right)=26,666,666,666, \& c\), and \(a^{5}\left(=320000^{5}\right)=33,554,432,000,000,000,000,000\), and \(2526^{5}(=252 \times 33,554,432,000,000,000,000,000)=\) \(8,455,716,864,000,000,000,000,000\), and \(\left.a^{7}(=32,000)^{7}\right)\) \(=34,359,73^{8}, 368,000,000,000,000,000,000,000\), and \(5 a^{7}\) \((=5 \times 34,359,738,368,000,000,000,000,000,000,000)=\) 171,798,691,840,000,000,000,000,000,000,000, and 12 N \((=12 \times 34,487,717,467,307,513,182,492,153,794,673)\) \(=413,852,609,607,690,158,189,905,845,536,076\), and \(12 \mathrm{~N}-\mathrm{Fa}^{7}(=413,852,609,607,690,158,189,905,845,536\), 0,6 - \(171,798,691,840,000,000,000,000,000,000,000\) ) \(=242,053,917,767,690,158,189,905,845,536,076\), and \(\frac{12 \mathrm{~N}-5 a^{7}}{25^{2} a^{5}}\left(=\frac{242,053,917,767,690,158,189,905,845,536,076}{8,455,716,864,000,000,000,000,000}\right)=\) \(28,626,067.033799\), and \(\sqrt{\frac{12 \mathbb{M}-5 a^{7}}{252 a^{s}}}(=\sqrt{28,626,067}\). \(033799)=5350.333,35\). Therefore \(\frac{5 a}{6}+\sqrt{\frac{12 N-5 a^{7}}{25^{2} a^{5}}}\) will be \((=26,666.666,66, \& c,+5350 \cdot 333,35)=32017\). 000,01 ; and confequently \(32017.000,01\) wili be the fecond леа:
near value of the feventh root of the propofed number \(34,487,717,467,307,5^{1} 3,182,49^{2,153,794,673 \text {. С. Е. I. }}\)

This number 32017.000 ,01 is exact in the firf nine figures, 32017.0000 , and errs only in the 10 th figure, 1 , which ought to be a cypher, 0 , inftend of a \(r\), becaule the true value of this feventh root is \(32017.000,000,000, \& \mathrm{c}\), ad infinitum, or the whole number 32017 .

Art. 2 I . If we feek the value of this feventh root by Mr. Raphfon's expreffion \(a+\frac{N-a^{m}}{m a^{m-1}}\), or \(a+\frac{N-a^{7}}{i a^{b}}\), the computation will be as follows.

Since \(a\) is \(=32,000\), we thall have \(a^{6}\left(=32,000^{16}\right)=\) 1,073,74I,824,000,000,000,000,000,000, and \(79^{6}(=7\) \(\times 1,073,741,824,000,000,000,000,000,000)=7,516,19^{2}\), \(768,000,000,000,000,000,000\), and \(a^{7}\left(=3^{2,000} 7^{1}\right)=\) \(34,359,73^{8,}, 3^{68,000,000,000,000,000,000,000 \text {, and } \mathrm{N}-a^{7} .{ }^{7} .}\) ( = 34,487,717,467,307,513,182,492,153,794,673
- 34,359,738,368,000,000,000,000,000,000,000)
\(=127,979,099,307,513,182,492,153,794,673\), and
\(\frac{\mathrm{N}-a^{7}}{7 a^{6}}\left(=\frac{127,979,099,307,513,182,492,153,794,673}{7,516,192,768,000,000,000,000,000,000}\right)=17.02\).
Therefore \(a+\frac{\mathrm{N}-a^{7}}{i a^{6}}\) is \((=32000+17.02)=32017.02\); and confequently 32017.02 will be nearly equal to the feventh root of the propofed number \(34,487,717,467,307\), 513,182,492,153,794,673. Q. E. I.

This number 32017.02 is exact in the fix firt figures 32017.0 , and errs only in the feventh figure 2 , which ought to be a cypher inftead of a 2 , becaufe the true value of this feventh root is \(32017.000,000,000, \& \%\), ad infinitum, or the whole number 32017.

Art. 22. This expreffion \(a+\frac{N-a^{m}}{m a^{m-1}}\), or \(a+\frac{N-a^{7}}{7^{a}}\), is
fo much fimpler than either of Mr. de Lagny's expreffions above-mentioned, and fo much lefs difficult to be computed, that I am inclined to agree with Mr. Raphfon in thinking it, upon the whole, preferable to them. But, perhaps, when \(a\), or the firft value of the root fought, confits of only one figure, it may fometimes be advifeable to make ufe of one of Mr. de Lagny's expreffions, in order to obtain a fecond near value of the root fought, and then to make ufe of Mr. Raphfon's expreffion in order to obtain a third near value of \(i t\).

Art. 23. Thefe four examples are, I prefume, fufficient to illuftrate Morfieur de Lagny's method of extracting the \(m\) th root of any propofed number denoted by the letter N , by means of either of the two expreffions \(a+\frac{\mathrm{N}-a^{m}}{\overline{m-1} \times \mathrm{N}+2 a}\) and \(a-\frac{a}{m-I}+\sqrt{\frac{a a}{m-1)^{2}}+\frac{\mathrm{N}-a^{m}}{m \times \frac{m-1}{2} \times a^{m-2}}}\), or \(a-\)
\(\frac{a}{m-1}+\sqrt{\frac{a a}{m-I^{2}}+\frac{2 \times N-\frac{a^{m}}{m \times \overline{m-1} \times a^{m-2}}}{m}}\), when \(a\), or the firt near value of \(\sqrt{\prime}^{m} \mathrm{~N}\), which is fuppofed to be already known, is lefs than its true value; which is the cafe fuppofed in the foregoing Problem. I fhall therefore now proceed to confider the other cafe, in which \(a\), or the firft near value of the \(m\) th root of the propofed number N , is greater than its true value, and to inveftigate fimilar expreffions for a fecond near value of the faid root that fhall approach nearer than a to its true value. This may be done by a folution of the following Problem.

\section*{\(\begin{array}{llllllll}\mathrm{P} & \mathrm{R} & \mathrm{O} & \mathrm{B} & \mathrm{L} & \mathrm{E} & \mathrm{M} & \mathrm{II} .\end{array}\)}

Art. 24. Let N be any propofed number whatfoever, and \(n\) any propofed whole number whatfoever ; and let \(a\) be a known number that is nearly equal to, but fomewhat greater than, the \(m\) th root of the given number N . It is required to find a fecond near value of the faid inth root of the given number N , that thall approach much nearer to it than \(a\), or the former near value of it that is already known.

\section*{S O L U T I O N.}

Let \(z\) be put for the unknown difference between \(a\), the firt near value of the \(m\) th root of the given number N , and the true value of the faid root. Then, fince \(a\) is fuppofed to be greater than \(\checkmark^{m z} \mathrm{~N}\), and to exceed it by the difference \(z\), it follows that \(a-z\) will be \(=\sqrt{ }^{m / 2} \mathrm{~N}\), and confequently that \(a-z]^{n z}\) will be \(=\mathrm{N}\).

But, by Sir Ifaac Newton's refidual theorem in the firft and fimpleft cafe of it, to wit, the cafe of integral powers, \(\overline{a-} 1^{m}\) will be \(=\) the feries \(a^{n z}-m a^{m-1} z+m \times \frac{m-1}{2}\) \(\times a^{m-2} z^{2}-m \times \frac{m-1}{2} \times \frac{m-2}{3} \times a^{m-3} z^{3}+m \times \frac{m-1}{2}\) \(\times \frac{m-2}{3} \times \frac{m-3}{4} \times a^{n-4} z^{4}-m \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4}\)
\(\times \frac{m-4}{5} \times a^{m-5} z^{5}+\& \mathrm{c}\), continued to \(m+1\) terms;
or, if, for the fake of brevity, we fubtitute the capital letters \(\mathrm{A}, \mathrm{B}, \mathrm{C}, \mathrm{D}, \mathrm{E}, \mathrm{F}, \& \mathrm{c}\), inttead of the feveral numeral coefficients \(1, m, m \times \frac{n-1}{2}, m \times \frac{n-1}{2} \times \frac{m-2}{3}, m \times \frac{n-1}{2} \times\) \(\frac{m-2}{3} \times \frac{m-3}{4}, m \times \frac{m-1}{2} \times \frac{m-2}{3} \times \frac{m-3}{4} \times \frac{m-4}{5}\), \&c, refpectively, \(\left.\overline{a-z}\right|^{m}\) will be \(=\) the feries \(\mathrm{A} a^{m}-\mathrm{B} a^{m-1} z\) \(+\mathrm{C} a^{m-2} z^{2}-\mathrm{D} a^{m-3} z^{3}+\mathrm{E} a^{m-4} z^{4}-\mathrm{F} a^{m-5} z^{5}\) \(+\delta \mathrm{c}\), continued to \(m+1\) terms. Therefore the faid feries \(\mathrm{A} a^{m p}-\mathrm{B} a^{m-1} z+\mathrm{C} a^{m-2} z^{2}-\mathrm{D} a^{m-3} z^{3}+\mathrm{E} a^{m-4} z^{4}\) - F \(a^{m-5} z^{5}+\& \mathrm{c}\), continued to \(m+1\) terns, will be \(=\mathrm{N}\). This is the original equation, by the refolution of which we are to find a near value of \(z\), and confequently of \(a-z\), or a fecond near value of \(\sqrt{3}^{3} \mathrm{~N}\), which will approach nearer to it than \(a\), or its former near value.

Art. 25. Now, fince \(z\) is lefs, and ufually much lefs, than \(a\), being about a ioth, or a rooth, part of it, or fome ftill leffer part of it, it is evident that all the terms in the aforefaid feries that involve \(z z\), and \(z^{3}\), and \(z^{4}\), and the following powers of \(z\), will be lefs, and ufually much lefs, than the term \(\mathrm{B} a^{m-1} z\), which involves only the fimple power of \(z\). And therefore, if all the faid terms of the feries be neglected or omitted, and the two firf terms alone, to wit, the terms \(\mathrm{A} a^{m}-\mathrm{B} a^{m-1} z\), be retained, the faid two terms alone will be nearly equal to the whole feries, and confequently to the given number N ; and therefore, if we add \(\mathrm{B} a^{m-1} z\) to both ficles, we fhall have \(\mathrm{A} a^{n n}\), nearly, \(=\) \(\mathrm{N}+\mathrm{B} a^{m-1} z\), and (fubtracting N from both fides, \(\mathrm{A} a^{n}\) -N , nearly, \(=\mathrm{B} a^{m-1} z\), or \(\mathrm{B} a^{m-1} z\), nearly, \(=\mathrm{A} a^{m}\) - \(N\), and (dividing both ficles by \(B a^{m-1}\), we thall have \({ }_{3} Z\)
\(z\), nearly, \(=\frac{\wedge a^{m}-N}{\mathrm{~B} a^{m-1}}\), or (becaufe A is \(=1\), and B is
\(=m\), ) we fhall have \(z\), nearly, \(=\frac{a^{m}-\mathrm{N}}{m^{m}-1}\); which fraction may be derived from the known quantities N and \(a\), by the common atithmetical operations of Mulciplication, Subtraction, and Divifion. This therefore is an approximation to the true value of \(z\), and confequently \(a-\sqrt{\frac{a^{m}-\mathrm{N}}{m a^{m-1}}}\) will be an approximation to the true value of \(a-z\), or of \(\sqrt{ }^{m n} \mathrm{~N}\), or will be a fecond near value of it that will approach nearer to it than \(a\), or the firft near value of it which was already known. And it will be ftill fomewhat greater (as the former value \(a\) was, ) than the true value of \(V^{72} \mathrm{~N}\); as may be demonftrated in the manner following.

The whole feries \(\mathrm{A} a^{m}-\mathrm{B} a^{m-1} z+\mathrm{C} a^{m-\overline{2}} z^{z}-\) \(\mathrm{D} a^{m-3} z^{3}+\mathrm{E} a^{m-4} z^{4}-\mathrm{F} a^{m-5} z^{5}+\& \mathrm{c}\), is \(=\mathrm{N}\). Therefore (adding \(B a^{m-1} z\) to both fides,) we fhall have the feries \(\mathrm{A} a^{m}+\mathrm{C} a^{m-2} z^{2}-\mathrm{D} a^{m-3} z^{3}+\mathrm{E} a^{m-4} z^{4}\) \(-\mathrm{F} a^{m-5} z^{5}+\varepsilon \mathrm{c},=\mathrm{N}+\mathrm{B} a^{m-1} z\), and (fubtracting N from both fides, we fhall have the feries \(\mathrm{A} a^{m}-\mathrm{N}+\) \(\mathrm{C} a^{m-2} z^{2}-\mathrm{D} a^{m-3} z^{3}+\mathrm{E} a^{m-4} z^{4}-\mathrm{F} a^{m-5} z^{5}+\) \(\& \mathrm{c},=\mathrm{B} a^{m-1} z\). But, becaufe \(\mathrm{C} a^{m-2} z^{2}\) is greater than \(\mathrm{D} a^{m-3} z^{3}\), and \(\mathrm{E} a^{m-4} z^{4}\) is greater than \(\mathrm{F} a^{m-5} z^{5}\), and, in like manner, every following term in the faid feries that is marked with the fign + , is greater than the term immediately following it, which is marked with the fign -, it follows that the feries \(\mathrm{A} a^{m z}-\mathrm{N}+\mathrm{C} a^{m-2} z^{2}-\mathrm{D} a^{m-3} z^{3}\)
\(+\mathrm{E} a^{m-4} z^{4}-\mathrm{F} a^{m-5} z 5+\& x \mathrm{c}\), will be greater than its two firtt terms \(\mathrm{A} a^{n z}-\mathrm{N}\). Therefore \(\mathrm{B} a^{m-\mathrm{I}} z\) (which is equal to the faid feries,) will be greater than \(\mathrm{A}_{a^{m}}-\mathrm{N}\). Therefore \(z\) wiil be greater than \(\frac{\wedge a^{m}-N}{\mathrm{~B} a^{m}-1}\), and confequently \(a-z\), or \(\sqrt{ }^{m} \mathrm{~N}\), will be lefs than \(a-\sqrt{\frac{\wedge a^{m}-\mathrm{N}}{\mathrm{B} a^{m-1}}}\), or than \(a-\frac{\sqrt{a^{m}-N}}{m a^{m-1}}\), and therefore \(a-\sqrt{\frac{a^{m}-\mathrm{N}}{m a^{m-1}}}\) will be greater than \(a-2\), or the true value of the \(m\) th root of the propofed number N. \&. E. D.

This quantity, \(a-\sqrt{\frac{a^{m}-N}{m a^{m-1}}}\), is the expreffion given by Mr. Raphfon for the fecond near value of the \(m\) th root of the given number N . And it is a very ufeful approximation: for it ufually gives us twice as many figures of the true value of \(V^{m} \mathrm{~N}\) exact as were exact in \(a\), or the firft near value of the faid, mith root. And it is evidently the moft fimple and eafy approximation to the value of the faid \(m\) th root that can well be imagined.

Art. 26. But Mr. de Lagny, being defirous of finding at once a fill nearer value of the \(m\) th root of the number N , retains the third term \(\mathrm{C} a^{m-2} z^{2}\), as well as the two firft terms \(\mathrm{A} a^{m}-\mathrm{B} a^{m-1} z\), of the feries \(\mathrm{A} a^{m}-\mathrm{B} a^{m-1} z\) \(+\mathrm{C} a^{m-2} \cdot z^{2}-\mathrm{D} a^{m-3} z^{3}+\mathrm{E} a^{m-4} z^{4}-\mathrm{F} a^{m-5} z^{5}+\) \(\& \mathrm{c}\), (which is equal to N ,) and thereby converts the original equation \(\mathrm{A} a^{m}-\mathrm{B} a^{m-1} z+\mathrm{C} a^{m-2} z^{2}-\mathrm{D} a^{m-3} z^{3}+\) \({ }_{3} \mathrm{Z}_{2}\)

E
\(\mathrm{E} a^{m-4} z^{4}-\mathrm{F} a^{m-5} z^{5}+\& \mathrm{c},=\mathrm{N}\) into a quadratick equation, to wit, the equation \(\mathrm{A} a^{m}-\mathrm{B} a^{m-\mathrm{I}} z+\mathrm{C} a^{m-2} z^{2}\) \(=\mathrm{N}\), inftead of converting it (as Mr. Raphfon does,) into the fimple equation \(\mathrm{A} a^{m}-\mathrm{B} a^{m-1} z=\mathrm{N}\). And this quadratick equation he refolves in two different ways, to wit, firt, imperfectly, or inaccurately, and then accurately. By the former, or inaccurate, refolution of it, he obtains a rational expreflion for the value of \(z\), and coniequently another rational expreffion for the value of \(a-z\), or for a fecond near value of \(\sqrt{3}^{3} \mathrm{~N}\), which is nearer to its true value than \(a\), or the former near value of it, was; and by the accurate refolution of the fame quadratick equation he obtains a furd, or irrational, expreffion for the value of \(z\), and confequently another furd, or irrational, expreffion for the value of \(a-z\), or for the fecond near value of \(\checkmark^{3} N\), that approaches much nearer to its true value than its former near value, \(a\), did. Thefe refolutions of the faid quadratick equation \(\mathrm{A} a^{m}-\mathrm{B} a^{m-1} z+\mathrm{C} a^{m-2} z z=\mathrm{N}\), may be performed in the following manner.

Art. 27. Since \(\mathrm{A} a^{m}-\mathrm{B} a^{m-1} z+\mathrm{C} a^{m-2} z^{2}\) is \(=\mathrm{N}\), we fhall have \(\mathrm{A} a^{m}+\mathrm{C} a^{m-2} z^{2}=\mathrm{N}+\mathrm{B} a^{m-1} z\), and \(\mathrm{A} a^{m}=\mathrm{N}+\mathrm{B} a^{m-\mathrm{I}} z-\mathrm{C} a^{m-2} z^{2}\), and \(\mathrm{A} a^{m}-\mathrm{N}\) \(=\mathrm{B} a^{m-1} z-\mathrm{C} a^{m-2} z^{2}\), or \(\mathrm{B} a^{m-1} z-\mathrm{C} a^{m-2} z^{2}=\) \(\mathrm{A} a^{m}-\mathrm{N}\); that is, \(z \times \mathrm{B} a^{m-1}-z \times \mathrm{C} a^{m-2} z\) will be \(=\mathrm{A} a^{m}-\mathrm{N}\), or \(z \times \sqrt{\mathrm{B} a^{m-1}-\mathrm{C} a^{m-2} z}\) will be \(=\mathrm{A} a^{112}-\mathrm{N}\). Therefore (dividing both fides of the equation by the compound quantity \(\mathrm{B} a^{m-1}-\mathrm{C} a^{m-2} z\) ) we Mall have \(\approx=\frac{\wedge a^{m}-\mathrm{N}}{5 a^{m-1}-\mathrm{c} a^{m-2} \approx}\).

Now let \(\frac{\mathrm{A} a^{m}-\mathrm{N}}{\mathrm{E} a^{m-1}}\), or \(\frac{a^{m}-\mathrm{N}}{m a^{m-1}}\), (which has already been Mhewn to be nearly equal to \(z\), be fubftituted inftead of \(z\) in the fecond term, \(\mathrm{C} a^{m-2} z\), of the denominator of the fraction laft obtained, to wit, the fraction \(\frac{\mathrm{A} a^{m l}-\mathrm{N}}{\mathrm{B} a^{m-1}-\mathrm{c} a^{m-2} z}\). And we hall have \(z=\frac{\mathrm{A} a^{m}-\mathrm{N}}{\mathrm{B} a^{m-1}-\mathrm{c} a^{m-2} \times \sqrt{\frac{a^{m}-\mathrm{N}}{\mathrm{a}^{m-1}}}}\), (becaule A is \(=\mathrm{I}\), and B is \(=m\),) \(z=\frac{-a^{m}-\mathrm{N}}{m a^{m-1}-\mathrm{c} a^{m-2} \times \sqrt{\frac{a^{m}-N}{m a^{m-1}}}}\); which is
\(l=\frac{a^{m}-\mathrm{N}}{\frac{m^{2} a^{2 m-2}-\mathrm{c} a^{m-2} \times a^{m}-\mathrm{N}}{m a^{m-1}}}\)
\(=\frac{a^{m}-\mathrm{N}}{\frac{m^{2} a^{2 m-2}-\mathrm{c} a^{2 m-2}+\mathrm{cN} a^{m-2}}{m a^{m-1}}}\)

\(=\overline{a^{m}}-\mathrm{N} \times \frac{2 a a \times m a^{m-1}}{2 m^{2} a^{2 m}-2 \mathrm{c} a^{2 m}+2 \mathrm{CNa}}\)
\(=a^{m}-N \times \frac{2 a \times m a^{m}}{2 m^{2} a^{2 m 2}-2 \mathrm{C} a^{2 m}+2 \mathrm{CN} a^{m}}\)
\(=\overline{a^{m}-\mathrm{N}} \times \overline{2 m^{2} a^{m}-2 \mathrm{C} a^{m}+2 \mathrm{CN}}\)
\(=a^{m}-\mathrm{N} \times \frac{2 m a}{2 m^{2} a^{m}-2 \times m \times \frac{m-1}{2} \times a^{m 2}+2 \times m \times \frac{m-1}{2} \times N}\)
\(=\overline{a^{m}-\mathrm{N}} \times \frac{2 m a}{2 m^{2} a^{m}-m \times \overline{m-1} \times a^{m}+m \times \bar{m}-\mathrm{i} \times \mathrm{N}}\)
\(=\overline{a^{m}-\mathrm{N}} \times \frac{2 a}{2 m a^{n}-\sqrt{m-1} \times a^{m}+\overline{m-1} \times \mathrm{N}}\)
\(=\overline{a^{m}-\mathrm{N}} \times \overline{2 m a^{m}-m a^{m}+a^{m}+\overline{m-1} \times \mathrm{N}}\)
\(=a^{m}-\mathrm{N} \times-\frac{2 a}{m a^{m z}+a^{m}+\overline{m-1} \times \mathrm{N}}\)
\(\left.=\overline{a^{m}-\mathrm{N}} \times \frac{2 a}{m+\eta \times a^{m}+\overline{m-1} \times \mathrm{N}}\right)\)
\(=\frac{\overline{a^{n}-n} \times 2 a}{\overline{m-1} \times \mathrm{N}+\overline{m+1} \times a^{m}}\). Therefore \(\approx\) will be \(=\)
\(\frac{\overline{a^{m}}-\mathrm{N} \times 2 a}{\overline{m-1} \times \mathrm{N}+\overline{m+1} \times a^{m}}\), or \(\frac{2 a \times \frac{a^{m}-v}{m-1} \times \mathrm{N}+\bar{m}+1 \times a^{m}}{m}\); and conequently ' \(a-z\) will be \(=\)
\(a-\frac{2 a \times a^{m}-\mathrm{N}}{\overline{m-1} \times \mathrm{N}+\overline{m+1} \times a^{m}}\), or \(a-\frac{2 a \times a^{m}-\mathrm{N}}{\overline{m-1} \times \mathrm{N}+\overline{m+1} \times a^{m}}\)
will be a fecond near value of \(V^{m} \mathrm{~N}\), or of the \(m\) th root of the propofed number \(N\). C. E. I.

Art. 28. The accurate refolution of the quadratick equation \(\mathrm{A} a^{m}-\mathrm{B} a^{m-1} z+\mathrm{C} a^{m-2} z^{2}=\mathrm{N}\), may be performed as follows.

Since \(\mathrm{A} a^{m}-\mathrm{B} a^{m-1} z+\mathrm{C} a^{m-2} z^{2}\) is \(=\mathrm{N}\), we thall have \(\mathrm{A} a^{m}+\mathrm{C} a^{m-2} z^{2}=\mathrm{N}+\mathrm{B} a^{m-1} \approx\), and \(\mathrm{A} a^{m}=\dot{\mathrm{N}}+\mathrm{B} a^{n-\mathrm{I}} z-\mathrm{C}^{m-2} z^{2}\), and \(\mathrm{A} a^{n}-\mathrm{N}\)
\(=\mathrm{B} a^{m-\mathrm{r}} z-\mathrm{C} a^{m-2} z^{2}\), or \(\mathrm{B} a^{m-\mathrm{r}} z-\mathrm{C} a^{m-2} z^{2}=\) \(\mathrm{A} a^{m}-\mathrm{N}\), or (becaufe A is \(=\mathrm{I}\), and B is \(=m\), and C is \(\left.=m \times \frac{m-1}{2}\right) m a^{n-1} z-m \times \frac{n-1}{2} a^{m_{1}-2} z^{2}=a^{m}\)
-N , and (multiplying both fides by 2 ,) \(2 m a^{m-1} z-m\) \(\times \overline{m-1} \times a^{m 2-2} z^{2}=2 \times \overline{a^{m}-N}\), and, (dividing both fides of the equation by \(m \times \overline{m-1} \times a^{m-2}\), \(\frac{2 m a^{m-1} \times z}{m \times \overline{m-1} \times a^{m-2}}-z z=\frac{2 \times a^{m z}-N}{m \times \overline{m-1} \times a^{m-2}}\), or \(\frac{2 a^{m-1} \times z}{\sqrt{n-1} \times a^{m-2}}-z z=\frac{2 \times a^{m}-\frac{\mathrm{N}}{m \times}}{m \times a^{m-1}}\), or (becaufe \(\frac{a^{m-1}}{a^{m-2}}\) is \(=a\),) \(\frac{2 a}{m-1} \times z-z z=\frac{2 \times \overline{a^{m}-\mathrm{N}}}{m \times \overline{m-1} \times a^{m-2}}\).

Now \(\frac{2 a}{m-1} \times z-z z\) is \(=z \times \sqrt{\frac{2 a}{n-1}-z .}\) And, by Euclid's Elements, Book II, Prop. 5, the rectangle or product, under \(z\) and \(\frac{2 a}{n-1}-z\), mult be lefs than the fquare of half the line \(\frac{2 a}{m-1}\). Therefore the compound quantity \(\frac{2 a z}{m-1}-z z\) will be lefs than the fquare of half \(\frac{2 a}{m-1}\), or than the fquare of \(\frac{a}{m-1}\), or than \(\frac{a a}{m-1)^{2}}\). Therefore \(\frac{2 \times \overline{a^{m}}-\frac{n}{m}}{m \times \overline{m-1} \times a^{m-2}}\), (which is equal to the compound quantity \(\frac{2 a z}{m-1}-z z\),) will allo be lefs than \(\frac{a a}{m-1)^{2}}\). Therefore both thefe quantities \(\frac{2 a z}{n-1}-z z\) and \(\frac{2 \times a^{m z}-N}{m \times \overline{m-1 \times a^{n-2}}}\) may
be fubtracted from \(\frac{a a}{n-1)^{2}}\). Let them be fo fubtracted. And then we fhall have \(\frac{a a}{(m-1)^{2}}-\frac{2 a z}{m-1}+\approx z=\frac{a a}{m-1)^{2}}-\) \(\frac{2 \times n^{m}-n^{2}}{m \times \overline{m-1} \times n^{m-2}}\). Therefore the fquare-root of the trinomial quantity \(\frac{a a}{m-1)^{2}}-\frac{2 a z}{m-1}+z z\) will be equal to the fquare root of the compound quantity \(\xlongequal[m^{n-1} n^{2}]{a \pi}\) \(\frac{2 \times a^{m}-x}{m \times m-1} \times a^{m-2}\); or, if, for the fake of brevity, we denote the faid compound quantity by the capital letter \(P\), the
 will be \(=\sqrt{ } \mathrm{P}\). But, whenever \(z\) is lefs than \(\frac{a}{m-I}\), (as is commonly the cafe in thefe extractions of the roots of numbers,) \(\frac{a}{m-1}-z\) will be the fquare-root of the trinomial quantity \(\frac{a a}{m-1]^{2}}-\frac{2 a z}{m-1}+z z\). Therefore \(\frac{a}{m-1}-z\) will \(=\sqrt{ } \mathrm{P}\), and confequently \(\frac{a}{m-1}\) will be \(=\sqrt{ } \mathrm{P}+z\), and \(z\) will be \(=\frac{a}{m-\mathrm{I}}-\sqrt{ } \mathrm{P}\). Therefore \(a-z\) will be \((=a-\) \(\sqrt{\left.\frac{a}{m-1}-\sqrt{ } \mathrm{P}\right)}=a-\frac{a}{m-1}+\sqrt{ } \mathrm{P}\); and confequently \(a-\frac{a}{m-1}\) \(+\sqrt{ } \mathrm{P}\), or \(a-\frac{a}{m-\mathrm{I}}+\sqrt{\frac{a a}{m-1}-\frac{2 \times a^{2}}{m \times \sqrt{m-1} \times a^{m-2}}}\)
will be a fecond near value of \(\sqrt{ }^{m} \mathrm{~N}\), or of the mith root of the given number N .々. E. I.

Art. 29. When \(m\) is \(=3\), the former of thefe two expreffions,
preflions, to wit, the rational expreffion a -
\(\frac{2 a \times a^{m}-\mathrm{N}}{\overline{n-1} \times \mathrm{N}+\overline{m+1} \times a^{m}}\), will be \(\left(=a-\frac{2 a \times \overline{a^{3}-N}}{2 \mathrm{~N}+4^{a^{3}}}\right)=a-\) \(\frac{a \times-\frac{a^{3}-N}{N+2 a^{3}}}{}\); and the latter, or irrational, expreffion, \(a\) -\(\frac{a}{m-1}+\sqrt{\frac{a a}{m-1)^{2}}-\frac{2 \times a^{m}-\mathrm{N}}{m \times \overline{m-1} \times a^{m-2}}}\) will be \((=a-\)
\(\frac{a}{2}+\sqrt{\frac{a a}{4}-\frac{2 \times \overline{a^{3}-N}}{3} \times 2 \times a}=\frac{a}{2}+\sqrt{\frac{a a}{4}-\frac{\sqrt{a^{3}-N}}{3 a}}=\frac{a}{2}\) \(+\sqrt{\frac{3 a^{3}}{12 a}-\left(\frac{-a^{3}-4 \mathrm{~N}}{12 a}\right.}=\frac{a}{2}+\sqrt{\frac{\left.3 a^{3}-\frac{4 a^{3}+4 \mathrm{~N}}{12 a}\right)}{1 a}}=\frac{a}{2}+\) \(\sqrt{\frac{4 \pi}{12 a}}\). Therefore the two expreffions for the fecond near value of the cube-root of a given number N , when \(a\), or the former near value of it, is greater than its true value, are \(a-\frac{a \times \overline{a^{3}-N}}{N+2 a^{3}}\) and \(\frac{a}{2}+\sqrt{\frac{4 \mathrm{~N}-a^{3}}{1_{2} a}}\).

Art. 30. And, when \(m\) is \(=5\), the former of the two foregoing general expreffions, to wit, the rational expreffion
\(a-\frac{2 a \times a^{m}-\mathrm{N}}{\overline{m-1} \times \mathrm{N}+m+1} \times a^{m}\), will be \(\left(=a-\frac{2 a \times \overline{a^{5}-N}}{4 N+\overline{6 a^{5}}}\right)\)
\(=a-\frac{a \times \overline{a^{5}-N}}{2 N+a^{a^{5}}}\); and the latter, or irrational, expreffion,
\(a-\frac{a}{m-1}+\sqrt{\frac{a a}{m-1)^{2}}-\frac{2 \times a^{m}-N}{m \times \overline{m-1} \times a^{m-2}}}\), will be (=
\(a-\frac{a}{4}+\sqrt{\frac{a a}{16}-\frac{2 \times \overline{a^{5}-v}}{5 \times 4 \times a^{3}}}=\frac{3 a}{4}+\sqrt{\frac{a, z}{16}-\sqrt{\frac{a^{5}-\sqrt{10}}{10 a^{3}}}}\)
\(=\frac{3 a}{4}+\sqrt{\frac{10 a^{5}}{160 a^{3}}-\sqrt{\frac{16 a^{5}-16 \mathrm{a}}{160 a^{3}}}}=\frac{3 a}{4}+\sqrt{\frac{10 a^{5}-\sqrt{16 a^{5}-16 w}}{160 a^{3}}}\)
4 A
\(\left.=\frac{3 a}{4}+\sqrt{\frac{10 a^{5}-16 a^{5}+16 N}{160 a^{3}}}=\frac{3 a}{4}+\sqrt{\frac{16 w-6 a^{5}}{160 a^{3}}}\right)=\frac{3 a}{4}\) \(+\sqrt{\frac{8 N-a^{5}}{80 a^{3}}}\). Therefore the two expreffions for the fecon near value of the fifth root of a given number N , when \(a\), or the former near value of the faid root, is greater than its true value, are \(a-\frac{a \times \overline{a^{5}-N}}{2 \mathrm{~N}+3 a^{5}}\) and \(\frac{3^{a}}{4}+\) \(\sqrt{\frac{8 \mathrm{~N}-3^{a^{5}}}{8 \rho a^{3}}}\).

Art. 3 I . And, when \(m\) is \(=7\), the former of the two foregoing general expreffions, to wit, the rational expreffion \(a-\frac{2 a \times \overline{a^{m}-N}}{n-1} \times \mathrm{N}+\overline{m+1} \times a^{n n^{n}}\), will be \(\left(=a-\frac{2 a \times \overline{a^{7}-N}}{6 \times+8 a^{7}}\right)\)
\(=a-\frac{a \times \overline{a^{7}-x}}{3^{x}+a^{7}}\); and the latter, or irrational, expreffion, \(a-\frac{a}{m-1}+\sqrt{\frac{a a}{\overline{m-n}^{2}}-\frac{2 \times a^{m!}-x}{m \times} \frac{a^{m-1} \times a^{m-2}}{}}\) will be \(\left(=a-\frac{a}{6}+\sqrt{\frac{a a}{36}-\frac{2 \times \overline{a^{7}-v}}{7 \times 6 \times a^{5}}}=\frac{5 a}{6}+\sqrt{\frac{a a}{36}-\sqrt{\frac{a^{7}-N}{21 a^{5}}}}\right.\) \(=\frac{5 a}{6}+\sqrt{\frac{21 a^{7}}{36 \times 21 a^{5}}-\sqrt{\frac{36 a^{7}-36 \mathrm{~N}}{36 \times 21 a^{5}}}}=\frac{5 a}{6}+\sqrt{\frac{21 a^{7}-\sqrt{36 a^{7}}-36 \mathrm{~N}}{3^{6} \times \frac{11 a^{5}}{25}}}\) \(=\frac{5 a}{6}+\sqrt{\frac{21 a^{7}-36 a^{7}+33_{N}}{36 \times 21 a^{5}}}=\frac{5 a}{6}+\sqrt{\frac{36 \mathrm{~N}-15 a^{7}}{36 \times 21 a^{5}}}=\frac{5 a}{6}+\) \(\left.\sqrt{\left(\frac{12 N-5 a^{7}}{36 \times 7 a^{5}}\right.}\right)=\frac{5 a}{6}+\sqrt{\frac{12 N-5 a^{7}}{252 a^{5}}}\). Therefore the two expreffions for the fecond near value of the 7 th root of a given number N , when \(a\), or the former near value of the faid root, is greater than its true value, are \(a-\frac{a \times \overline{a^{7}-n}}{3^{N}+4^{a^{7}}}\) and \(\frac{5 a}{6}+\sqrt{\frac{12 N-5 a^{7}}{252 a!}}\).

Examples

Examples of the Extraction of the Roots of given Numbers by means of the Two General Exprefions a \(-\frac{2 a \times a^{m}-\mathrm{N}}{m-1 \times \mathrm{N}+\overline{m+1} \times a^{m}}\) and \(a-\frac{a}{m-1}+\sqrt{\left(\frac{a a}{m-1}\right)^{2}-\frac{2 \times a^{m}-\mathrm{N}}{m \times \overline{m-1} \times a^{m-2}}}\), which have been found by the Solution of Problem II, when a, or the Firft near Value of \(\sqrt{ }^{n \mathrm{~N}} \dot{\mathrm{~N}}\), is greater than its true Value.

\section*{EX A MP LE I.}

Art. 32. Let it be required to find the fifth root of 2 , which has been already inveftigated by means of the two expreffions inveftigated in Problem I, and found to be \(=\) 1.148,697,34. And let us fuppofe that we have already diffcovered that this root is greater than I.14, but left than I.I5, and differs lees from 1.15 than from 1.14; fo that 1,15 may be taken for \(a\), or its frt near value. Then, by art. 30, the two expreflions of the fecond near value of this root will be \(a-\frac{a \times \overline{a^{5}-N}}{2 N+3 a^{5}}\) and \(\frac{3 a}{4}+\sqrt{\frac{8 N-3 a^{5}}{80 a^{3}}}\), in which 2 mut be fubftituted inftead of N , and 1.15 inftead of \(a\).

Now, fince N is \(=2\), and \(a\) is \(=1.15\), we foal have \(2 \mathrm{~N}(=2 \times 2)=4\), and \(a^{3}=1,520,875\), and \(a^{5}=\) \(2.011,357,187,5\), and \(a^{5}-\mathrm{N}(=2.011,357,187,5-\) \(2.000,000,000,0)=0.011,357,187,5\), and \(a \times \overline{a^{5}-\mathrm{N}}\) \((\) 二, \(1.15 \times 0.011,357,187,5)=0.013,060,765,625\), and \(3 a^{5}(=3 \times 2.011,357,187,5)=6.034,071,562,5\), and \(2 \mathrm{~N}+3 \mathrm{a}^{5}(=4+6.034,071,562,5)=10.034,07 \mathrm{I}, 562,5\), and \(\frac{a x \overline{a^{5}-x}}{24+3 a^{a^{5}}}\left(=\frac{0.013,060,765,625}{10.034,071,52,5}\right)=0.001,301,641\), and \(4 \mathrm{~A}_{2}\)
confequently \(a-\frac{a \times \overline{a^{5}-N}}{2 \mathrm{~N}+3^{a^{5}}}(=\mathrm{I} .150,000,000-0.001\), \(301,641)=1.148,698,359\). Therefore \(1.148,698,359\) will be a fecond near value of the fifth root of the given number 2 . C. E. 1.

And, fince \(a\) is \(=1.15\), and \(a^{3}\) is \(=1.520,875\), and \(a^{5}\) is \(=2.011,357,187,5\), and \(3 a^{5}\) is \(=6.034,071,562,5\), we fhall have \(80 a^{3}\left(=80 \times 1.520,87_{5}\right)=121.670,000\), and \(8 \mathrm{~N}-3 a^{5}(=8 \times 2-6.034,071,562,5=16.000,000\), \(000,0-6.034,071,562,5,)=9.965,928,437,5\), and \(\frac{8 \mathrm{~N}-3 a^{3}}{80 a^{3}}\left(=\frac{9.065,928,+37,5}{121.670,000}\right)=0.081909,496486\), and \(\sqrt{\frac{8 \mathrm{~N}-3 a^{5}}{80 a^{3}}}(=\sqrt{ } 0.081909,496486)=0.286,198,351,\), and \(3 a(=3 \times 1.15)=3.45\), and \(\frac{3 a}{4}\left(=\frac{3.45}{4}\right)=0.8625\), and \(\frac{3 a}{4}+\sqrt{\frac{8 v-3 a^{5}}{80 a^{3}}}(=0.8625+0.286,198,351)=\) 1.148,698,351. Therefore \(1.148,698,351\) will be a fecond near value of the fifth root of the given number 2 .
Q. E.I.

As thefe two approximations to the fiffh root of 2 , to wit, \(1.148,698,359\) and \(1.148,698,351\), agree with each other in the firt nine figures \(1.148,098,35\), we may reafonably conclude that thofe nine figures are exact, or are the firft nine figures of a more accurate value of the faid fifth root.

Art. 33. If we make ufe of Mr. Raphfon's expreffion, to wit, \(a-\sqrt{\frac{a^{m}-N}{m a^{m-1}-1}}\), or \(a-\sqrt{\frac{a^{5}-N}{5 a^{4}}}\), for the purpofe of obtaining a fecond near value of the fifth root of 2 , after r.is has been taken for \(a\), or, its firft near value, the cormputation of it will be as follows.

Since \(a\) is \(=1.15\), we fhall have \(a^{4}=1.749,006,25\), and \(a^{5} \frac{=2.011,357,187,5, ~ a n d ~}{6} a^{4}(=5 \times 1.749,006,25)\)
\(=8.745,031,25\), and \(a^{5}-\mathrm{N}(=2.011,357,187,5-2)\)
\(=0.011,357,187,5\), and \(\frac{a^{5}-N}{5 u^{4}}\left(=\frac{0.011,357,187,5}{8.7+5,031,25}\right)=\)
\(0.00 \mathrm{I}, 298,7\), and \(a-\sqrt{\frac{a^{5}-\mathrm{N}}{5 a^{4}}}(=\mathrm{I} .150,000,0-0.00 \mathrm{I}\), \(298,7)=1.148,701,3\). Therefore 1.148,701,3 will be the lecond near value of the fifth root of 2 , refulting from Mr. Raphfon's expreffion \(a-\sqrt{\frac{a^{5}-x}{5 a^{4}}}\). Q.E.I.

This number 1.148,70r,3, is greater than the true value of the 5 th root of 2 , to wit, the number \(1.143,698,3\), but exceeds it by only the very fmall quantity \(0.000,003,3\).

\section*{EXAMPLEII.}

Art. 34. Let it be required to find the 5 th root of the number \(2,327,834,559,873\).

Now this number, which confilts of thirteen figures, is greater than 100,000 , or the fifth power of 10 ; and it is Tikewife greater than \(10,000,000,000\), or the fifth power of 100 : but it is lefs than \(1,000,000,000,000,000\), or the fifth power of 1000 . Therefore its fifth root muft be greater than 100, but lefs than 1000 .

Further, this number, \(2,327,834,559,873\), is greater than \(2,320,000,000,000\), or than \(2.32 \times 10,000,000,000\), or than \(232 \times\) the fifth power of 100 . Therefore the fifth root of \(2,327,834,559,873\) will be greater than \(100 \times\) the fifth root of 232. But the difference will not be great; and confequently, if we can find a number that thall be nearly equal to the fifth root of 232 , we need only multiply the faid number into 100 , and the product will be nearly equal to the fifth root of \(2,320,000,000,000\), and therefore will likewife
likewife be pretty nearly equal to the firth root of the propofed number \(2,327,834,559,873\), fo as to be a convenient firft near value of the faid fifth root, and a proper bafis to found a further approximation upon to a fecond near value of the faid fifith root, by either of the two foregoing expreffions of Mr. de Lagny, which have been inveltigated above in the Solution of Problem II, or by Mr. Raphfon's expreffion. We will therefore endeavour to find the fifth root of the number 232.

Art. 35. Now the fifth power of the number 2 is 32 , which is much lefs than \(23_{2}\); and the fifth power of 3 is 243, which is a litule greater than 232 . Therefore the fifth root of 232 mult be much greater than 2, and a little lefs than 3. We may therefore reafonably conjecture that it will be nearly equal to \(2+\frac{9}{10}\), or 2.9 . We will therefore fuppofe it to be \(=2.9\), and try what the refult of that fuppofition will be.

Now the fifth power of 2.9 is 205 .III49, which is lefs than 232. Therefore the fifth root of 232 will be greater than 2.9. And, as 232 differs much lefs from 243 , or the the fifth power of 3 , than from 205.11149 , or the fifth power of 2.9 , we may reafonably fuppofe that the fifite root of 232 will differ much lefs from 3 than from 2.9; and theretore we will fuppofe that it is nearly \(=2.9^{8}\), and will raife the faid number 2.98 to its fifth power, in order to examine the truth of the faid fuppofition.

Now \(2.987^{5}\) is \(=235.007,282,396,8\); which is nearly equal to, but a little greater than, \(2 \hat{j}^{2}\). Therefore 2.98 mult be nearly equal to, but a little greater than, the fifth roor of 232 ; and confequently \(100 \times 2.98\) muft be nearly equal to, but a little greater than, the fifth root of \(2.32 \times\) \(10,000,000,000\); or 293 mult be nearly equal to, but a little greater than, the fifth root of \(2,320,000,000,000\). And, further, fince 2.98 is the fifth root of the number \(235.007,282,396,8\), the number \(100 \times 2.98\), will be the fifth root of the number \(235.007,282,396,8 \times 10,000,000\),

000 ; that is, the number 298 will be the fifth root of the number \(2,350,072,823,968\), which is greater than the propofed number \(2,327,834,559,873\). Therefore 298 will be greater than the fifth root of the faid number \(2,327,834,559,873\). But it will be near enough to it to make it a very convenient bafis of a further approximation to the true value of the fifth root of the faid number, \(2,327,834,559,873\), by means of the two expreffions \(a-\frac{a \times \overline{a^{5}-N}}{2 N+3 a^{5}}\), and \(\frac{3 a}{4}+\sqrt{\frac{8 N-a^{5}}{80 a^{3}}}\).

Art. 36. Here then we fhall have \(N=2,327,834,559,873\), and \(a=298\). Therefore \(a^{3}\) will be \(=26,463,592\), and \(a^{4}\) will be \(=7,886,150,416\), and \(a^{5}\) will be \(=2,350,072\), 823,968 ; and confequently \(a^{5}-\mathrm{N}\) will be ( \(=2,350,072\), \(823,968-2,327,834,559,873)=22,238,264,095\), and \(\overline{a^{5}-N} \times a\) will be \((=22,238,264,095 \times 298)=\) \(6,627,002,700,310\), and 2 N will be ( \(=2 \times 2,327,834\), \(559,873)=4,655,669,119,746\), and \(3 a^{5}\) will be \((=3 x\) \(2,350,072,823,968)=7,050,218,471,904\), and \(2 \mathrm{~N}+3 a^{5}\) will be \((=4,655,669,119,746+7,050,218,471,904)=\) \(11,705,887,591,650\), and \(\frac{a^{5}-\mathrm{N} \times a}{2 \mathrm{~N}+3 a^{5}}\) will be \((=\) \(\left.\frac{6,627,002,700,310}{11,705,887,591,650}\right)=0.566,125,605\), and confequently \(a-\frac{a \overline{\times a^{5}-N}}{2 N+3 a^{5}}\) will be \((=298.000,000,000-0.566,125\), \(605)=297.433,874,395\). Therefore \(297 \cdot 433,874,395\) will be a fecond near value of the fifth root of the propofed number \(2,327,834,559,873\). \&.E.I.

And \(3 a\) will be \((=3 \times 298)=894\), and \(\frac{3 \pi}{4}\) will be \((=\) \(\left.\frac{894}{4}\right)=223.5\), and \(a^{3}\) will be \(\left(=\overline{298}^{3}\right)=26,463,592\), and 8 N will be \((=8 \times 2,327,834,559,873)=18,622\), \(676,478,984\), and \(a^{5}\) will be \(\left(=29^{5}\right)=2,350,072\), 823,968 , and \({ }^{2} 3 a^{5}\) will be ( \(\left.=3 \times 2,350,072,823,968\right)=\) \(7,050,218,471,904\), and 8 N - \(3 a^{5}\) will be \((=18,622\), 676,
\(676,478,984-7,050,218,471,904)=11,572,458,007,080\), and \(80 a^{3}\) will be \((=80 \times 26,463,542)=2,117,087,360\), and \(\frac{8 \mathrm{~N}-3 a^{5}}{80 a^{3}}\) will be \(\left(=\frac{11,572,458,007,080}{2,117,087,5^{60}}\right)=5466.2 \times 6\), \(569,863,2\), and \(\sqrt{\frac{8 \mathrm{~N}-3 \mathrm{a}^{5}}{80 a^{3}}}\) will be \(\left(=\sqrt{5466.216} 5^{6} 9\right.\), \(8632)=72.933,866,190\), and confequently \(\frac{3^{a}}{4}+\) \(\sqrt{\frac{8 \mathrm{~N}-3 a^{5}}{80 a^{3}}}\) will be \((=223.5+72.933,866,190)=\) 297.433,866,190. Therefore \(297 \cdot 433,866,190\) will be a fecond near value of the fifth root of the propoied number \(2,327,834,559,873\). C. E. I.

Thefe two numbers \(297 \cdot 433,874,395\), and \(297.433,866\), 190, agree with each other in the firft feven figures \(297 \cdot\) 433,8 . Therefore we may conclude that thefe feven figures are exact, or are the firft feven figures of a more accurate value of the fifth root of the propofed number \(2,3^{2} 7,834\), 559,873.

Art. 37. If we make ufe of Mr. Raphfon's expreffion, to wit, \(a-\sqrt{\frac{a^{m}-N}{m a^{m-1}}}\), or \(a-\sqrt{\frac{a^{5}-N}{5 a^{4}}}\), for the purpofe of obtaining a fecond near value of the fifth root of the propofed number \(2,327,834,559,873\), after 298 has been taken for \(a\), or its firft near value, which is fomewhat greater than the truth, the computation of it will be as follows.

Since \(a\) is \(=298\), we fhall have \(a^{4}=7,886 ; 150,416\), and \(a^{5}=2,350,072,823,968\), and \(a^{5}-\mathrm{N}(=2,350,072\), \(823,968-2,327,834,559,873)=22,238,264,095\), and \(5 a^{4}(=5 \times 7,886,150,416)=39,430,752,080\), and \(\frac{a^{5}-N}{5^{a^{4}}}\left(=\frac{22,238,264,0055}{39,430,752,080}\right)=0.563,982\), and \(a-\sqrt{\frac{a^{5}-N}{5^{a^{+}}}}\) \((=298.002,000-0.563,982)=297.436,018\). Therefore \(297.436,018\) will be a fecond near value of the fifth root of the propofed number \(2,327,834,550,873\). Q. E. 1 .

The firf five figures, 297.43, of this number, \(297.436,018\), obtained by Mr. Raphfon's expreffion, are exact.

And, if we make \(a=297 \cdot 436\), and repeat the application of Mr. Raphfon's expreffion, we fhall obtain the value of the fifth root of the faid propofed number 2,327,834, 559,873 , to a much greater degree of exactneis. This may be done in the manner following.

If \(a\) is taken \(=297.436\), we fhall have \(a^{4}=7,826,617,827.880,165,417,216\), and \(a^{5}=2,327,917,900,253 \cdot 364,881,035,05^{8,17} 6\), and
\(a^{5}-\mathrm{N}(=2,327,917,900,253 \cdot 364,88 \mathrm{I}, 035,058,176\)
- \(2,327,834,559,873.000,000,000,000,000\) )
\(=83,340,380 \cdot 364,881,035,058,176\),
and \(5 a^{4}(=5 \times 7,826,617,827.880,165,417,216)=\) \(39,133,089,139 \cdot 400,827,086,080\), and confequently \(\frac{a^{3}-w}{5 a^{+}}\) \(\left(=\frac{83,340,380 \cdot 364,881,055,058,176}{39,133,089,09,139 \cdot 400,827,086,080}\right)=0.002,129,662\), and
\(a-\frac{a^{3}-N}{5 a^{4}}(=297 \cdot 4 \cdot 36,000,000-0.002,129,662)=\) \(297433,870,338\). Therefore \(297 \cdot 433,870,338\) will be the more accurate value of the fifth root of the propofed number \(2,327,834,559,873\). C. Е. . .

Of this number, \(297.433,870.338\), which we have now found for the laft near value of the filth root of \(2,32 \%, 834\), 554,873 , I believe the firlt ten figures \(297 \cdot 453,870,3\) to be exact, if no miftakes have been made in the calculation. Yet Mr Raphonn (from whofe Analyis AEquationum Univerfalis, Problem iV, page 12, this example is taken,) makes this fifth root equal to \(297 \cdot 4: 33,874,8,5\). But 1 believe the four lat figures, 4.895 , of this number to be erroncous; becaule in Mr. Rafbion's laft procefs, (of which this number, \(297.433,574,895\), is the refult, ) the value of \(g\) (which anliwers to \(a\) in our notation,) was taken equal only to 297.46 , which is exact only in the firt four figures 297.4, whereas in the laft procefs of the foregoing computarion we 4 B
took
took a equal to 297.436 , which is exact in the firt five figures, 297.43; and confequently the number refulting from this fuppofition ought to be more exact than that which refults from the orher lefs accurate fuppofition made by Mr. Reppjon. But we may, at leaft, conclude that the firt eight figures, \(297.433,87\), of thofe two numbers, which are the fame in both, are exact, or are the firt eight figures of a number approaching more nearly than either of them to the true value of the fifth root of the propofed number \(2,327,83+, 559,873\).

Art. 38. Thefe two examples will, I prefume, be fufficient to illultate Monfieur de Lagny's method of extracting the \(m\) th root of any propofed number N , by means of either of the two expreffions, \(a-\frac{2 a \times a^{m}-N}{\overline{m-1} \times N+\overline{m+1} \times a^{m}}\)
and \(a-\frac{a}{m-1}+\sqrt{\frac{a a}{m-1)^{2}}-\frac{2 \times a^{m-v}}{m \times m-1} \times a^{m-2}}\), when \(a\),
or the firft near value of \(V^{m 2} \mathrm{~N}\), which is fuppofed to be already known, is greater than its true vaiue; which is the cafe fuppofed above in Problem II, by the folution of which thofe expreffions were obtained. I have therefore nothing more to add concerning the explanation of Monfeur de Lagny's method aforefaid. But I will juft make another obfervation, or two, concerning the faid method of extracting the roots of numbers, as compared with other methods of performing the fame thing.

Obfervations on the feveral different Methods that may be taken for Extracting the Roots of Numbers.

Art. 39. In the 1 ft place, then, it is manifeft that either of Mr. de Lagny's two expreffions, the rational one and the irrational one, for obtaining a fecond near value of the root of a given number, when a former near value of it is already known, is greatly to be preferred to the common, or, rather, the old, method of extracting fuch root, by which, with a great deal of trouble, we obtain only one new figure of the root fought by every new procefs; except, perhaps, in extracting the fquare-root of a number, which is eafy enough in the common way, (at leaft for the firft three or four figures of the root fought, ) to make it unneceffary to have recourfe to other methods. But in extracting the cube-root, or the fifth root, or the feventh root, or any higher root, of a propofed number, the cafe is very different, and it will be found highly expedient to have recourfe either to Mr. de Lagny's method of extracting them, or to Mr. Rapblon's, or to fome other method of performing the faid extraction.

Secondly, if the \(m\) th root of any number is to be found only to four, or five, figures, it will be moft advifeable to have recourfe to a Table of Logarithms for this purpofe. For, by the ufe of fuch a Table, we may always obtain any propofed root of a given number exact to four, or five, places of figures, with very great eafe, and without making ufe of the proportional parts fet down in thofe tables, and which are neceffary to the obtaining the faid roots exactly to fix, or feven, or more, places of figures. Whenever therefore we want to find the \(m\) th root of a propofed number only to four, or five, places of figures, it feems beft to have recourfe at once to a Table of Logarithms for that purpofe.

But, 3 dly, if we wifh to obtain the nth root of any number, exactly to nine, or ten, or more, places of figures, it 4 B 2
will

556 Mr. de Lagny's Metbod of EvtraEing, Sic.
will be convenient to have recourfe to cither Mr. de Lagny's or Mr. Raphfon's methods of approximation for that purpofe. And, if we wifh to obtain the faid root exact only to nine places of figures, I thould think it would be expedient to make ufe of Mr. Raplefon's expreffion for that purpofe, in preference to either of Mr . de Lagny's expreffions, as being fimpler and eafier to compute than the latter; but, if we wifh to obtain the faid root exact to fourteen, or fifteen, places of figures, I thould think it would be moft advifeable to have recourfe to one of Mr. de Laghy's expreffions for that purpofe, rather than to make ule of Mr. Raphon's expreflion, and repeat the procefs a fecond time, as was done above in art. 37. And of Mr. de Lagny's two expreffions, the latter, or irrational, expreffion will be found lefs troublefome to compute, and, ufually, in a fmall degree more exact, than the rational expreffion. But it may often be prudent to compute them both, to be checks upon each other; and the number of figures in which the refults of both expreffions are found to agree, may be juitly concluded to be exact.

And, 4 thly, when we make ufe of either Mr. Rapbon's or Mr. de Lagny's methods of extracting the muh root of a given number, I conceive it will be always advifeable to make ufe of a Table of Logarithms firft, in order to obtain the firft near value of the root fought, from which we are afterwards to derive a fecond and more accurate near value of it, by means of the exprefions invented by thofe ingenious Gentlemen. This, indeed, is not abfolutely neceflary, as it is always eafy to find the propofed root exact to one, or two, figures, by fome very fimple reafonings and trials, as is thewn above in all the foregoing examples. But it will always be fill eafier to find thefe firt figures by the help of a Table of Logarithms, and we may find them by that means not only to two places of figures, but to five.

End of the Trart, intitled, Mr. de Lagny's General Metbod of Extracing the Roots of Numbers by Approximation.

\section*{OBSERVATIONS}

\section*{ON}

MR. RAPHSON'S METHOD
\[
O F
\]

RESOLVING AFFECTED EQUATIONS OF ALL DEGREES

\author{
B Y \\ APPROXIMATION.
}

\title{
OBSERVATIONS
}

\author{
ON \\ MR. RAPHSON'S METHOD
}

O F
RESOLVING AFFECTED EQUATIONS OF ALL DEGREES

\section*{B Y}

\author{
APPROXIMATION.
}

Arcicle 1 .N the foregoing Tract I have given a pretty full explanation of Monfieur de Lagny's Method of Extracting the Roots of Numbers by Approximation, and I have likewife mentioned Mr. Rapbfon's more fimple and eafy, though lefs exact, method of performing the fame thing. But both thefe methods may be applied to the refolution of all forts of equations, thofe which are called affected equations*, or in which the unknown quantity occurs

\footnotetext{
* This expreflion of affected equatiens feems to require fome further explanation. It was introduced by the celebrated Vieta, the great father and reftorer of Algebra. He has many expreffions peculiar to himfclf, and which have not been adopted by fublequent Algebräifts. Amongft thefe are the following ones. Hc calls a fet of quantities in continual geometrical proportion, (fuch as the quantities \(1, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}, x^{7}, \& c\), ) a fet of fcalar quantities, or magnitudines foalares; and, when there are feveral of thefe fcalar quantitics connected with each other by the figns + and - , or by Addition and Subtraction, (as in the compound quantity \(x^{5}+\) \(a x^{4}-b^{2} x^{3}\), ) he calls the higheft quantity, or that which is fartheft in the fcale of quantitics \(\mathrm{I}, x, x^{2}, x^{3}, x^{4}, x^{5}, x^{6}, x^{7}, \& x\), (to wit, the quantity \(x^{5}\) in the faid compound quantity \(x^{5}+a x^{4}-b^{2} x^{3}\), the power of the fundamental quantity \(x\), or of the fecond term in the faid fcale; and he calls the lower fcalar quantitic3, which are involved in the fecond and third terms of the faid compound quantity \(x^{5}+a i^{4}-b^{2} x^{2}\), to wit, the quanti-
}
in more than one term, as well as thofe which are called pure equations, or in which the unknown quanrity occurs in only one term, and which are refolved by the mere extraction of the roots of given numbers. And in all affected equations beyond biquadraticks, or thofe of the fourth power, thefe methods of approximation are the only methods that can be taken for difcovering their roots, or the values of the unknown quantities contained in them. And even in cubick and biquadratick equations, though particular methods have been invented by Mathematicians, for the accurate refolution of moft of the cafes of thefe equations, (to wit, the rules called Cardan's rules for the refolution of mooft cafes of cubick equations, and the rules invented by Lewis Ferrari of Bologna in Italy, about the year I545, and explained at large in Bombelli's Algebra, in the year 1579, and thofe afterwards invented by Minfieur Des Cartes, and publifhed in his Geometry in the yearl 1637, for
ties \(x^{4}\) and \(x^{3}\), (or, in our prefent language, the inferiour powers of \(x\), ) fealar quantities of a parodic degree to \(x^{5}\), or the poiver of the fundancutal quantity \(x\). This word parodic I take to be derived (though Vieta does
 a wony, or road, becaufe thefe inferiour fcalar quantitics, \(x^{-3}\) and \(x^{-4}\), lie in the svay as you pafs along in the fcale of the aforefaid quantities \(\mathrm{I}, x, x^{2}, x^{-3}\), \(x^{4}, x^{5}, x^{6}, x^{7}, \& c\), from 1 to \(x^{5}\), which he calls the power of \(x\) in the faid compound quantity \(x^{5}+a x^{4}-b^{2} x^{3}\). Thefe inferiour fcalar quantities \(x^{-3}\) and \(x^{4}\) are therefore parodic, or fiteated in the way to, or are leading to, the faid pozver, or higher fealar quantity, \(x^{5}\). He then procceds to define a pure porver and an affected porver, and tells us, that a pure porver is a fcalar quantity that is not affected with, or mixed with, any parodic, or inficions fcalar quantity, and that an afficter porver is a fcalar quantity that is mixed, or connected by Addition, or Subtraction, with one, or nore, inferiour, or parodic, fcalar quantities, combined with co-efficients that raife them to the fame dimenfiou as the poiver itfelf, or make them bonogeneous to it, and confequently capable of being added to it, or fubtracted from it. 'Thus \(x^{5}\) alone is a furc power of \(x\), namely, its fifth power; and \(x^{5}+a a^{4}-l^{2} x^{3}{ }^{3}\) is an affected finwer of \(x\), namely, its tifth power aficted by, or connected ewith, the two parodic, or infcrimer fcalar quantities, \(x^{3}\) and \(x^{3}\), which are multiplied into \(6 b\) and \(a\), in order to make them homenoneons 10 , or of the fame dimenforn with, \(2^{5}\) itfelf, and confequently capable of being added to it, or fubtracted from it. See Schooten's cedition of Vieta's Works, publiflicd at Leyden in Holland, in the year 10 \(\sigma_{4} 6\), pages 3 and 4 .

This, then, being the meaning of the expreffions a pure power and an offilled porver, the meaning of the correfponding expretlions of a pure cyia-
for the refolution of biquadratick equations, by the mediation of cubick equations, ) it will be found that thefe methods of approximation will, for the moft part, enable us to find the values of their roots to any propofed degree of exactnefs, with lefs trouble than the particular and accurate methods above-mentioned, which have been invented for that purpofe. So that thefe methods of refolving equations by approximation ought to be confidered as of the higheft utility, and as being abfolutely neceffary to the completion of the Doctrine of the Refolution of Algebräick Equations, which is the moft important branch of the Science of Algebra.

Art. 2. But it is not fo eafy to determine, which of thefe two methods of approximation, Mr. Raphfon's, or Mr. de Lagny's, deferves to be preferred to the other on thefe occafions. Mr. Rapplfon's is certainly much fimpler than the other, becaufe it proceeds by confidering the new, or tranfformed, equation, (refulting from the fubtitution of \(a+z\),
tion and an affeled cipuation follows from it of courfe: a pure equation fignifying an equation in which a pure power of an unknown quantity is declared to be equal to fome known quantity; fuch as the equation \(x^{5}=79\); and \(a n\) affected equation fignifying an equation in which a power of an unknown quantity affected by, or connected, cither by Addition or Subtraction, with, fome inferiour powers of the fame unknown quantity, (multiplied into proper co-eficients in order to make them bomngecheous to the faid highelt power of the faid unknown quantity,) is declared to be equal to fome known quantity; fuch as the equation \(x^{5}+a x^{4}-b^{2} x^{3}=79\). This I take to be the original meaning of the expreflion an affered cquation. But, as the language of \(l\) 'icta has not been adopted by fublequent writers of Algebra, I fhould think it would be more convenient to call them by fome other name. And, perhaps, thofe of binomial, trinomial, quadrinomial, quinquinomial, and, in general, that of multinomial equations, would be as convenient as any. Thus, \(x x+a x=r r\), and \(x^{3}+a x^{2}=r^{3}\), and \(x^{3}+a^{2} x=r^{3}\), and \(x^{4}+\) \(a^{3} x=r^{4}\), and \(x^{4}+a x^{3}=r^{4}\), might all be called binomial equations, becaufe they voould be equations in which a binomial quantity, or quatity confifting of two terms that involved the unknown quantity \(x\), is declared to be equal to a known quantity; and, for a like reafon, the equations \(x^{3}+a x^{2}\) \(+b^{2} x=r^{3}\), and \(x^{4}-a x^{3}+b^{2} x^{2}=r^{-}\), and \(x^{4}-a x^{3}+b^{3} x=r^{4}\), and \(x^{5}+a x^{4}+b^{2} x^{3}=r^{5}\), and \(x^{5}+a x^{4}-b^{2} x^{3}=r^{5}\), and \(x^{5}+b^{2} x^{3}+c^{4} x\) \(=r^{5}\), might be called trinomial equations. And the like names might be given to equations of a greater number of terms. Dr. Hutton, I obferve, in his excellent new Mathematical and Philofophical Dictionary, juft now publifhed, (Feb. 2, 1795,) calls them compound equations; which is likewife a very proper name for them, and lefs obfcure than that of affeced equations.
or \(a-z\), inftead of \(x\), in the original equation,) as being only a fimple equation, and refolving it accordingly, or by the mere operation of Divifion; whercas, in Mr. de Lagny's method, the faid new, or transformed, equation is confidered as a quadratick equation, and refolved accordingly ; which, when a (or the firft near value of the root, that is fuppofed to be already known,) is a number confitting of five, or fix, figures, produces a great deal of labour, and often a great deal of perplexity. I am therefore inclined to give the preference to Mr. Raphfon's method in relolving all affected equations, more efpecially when the number a confilts of more than two figures: but it muft be confeffed that the celebrated Dr. Halley (who had much experience, and was an excellent judge of thefe matters,) was of a different opinion, and gave the preference to Mr. de Laghy's method, which he has therefore taken the pains to explain in a better manner than had been done by Monfieur de Lagny himfelf, and likewife to illuftrate by examples, in his Tract in the Philofophical Tranfactions, Number 210, intitled, "A Nero, Exaut, and Eafy. Metbod, of finding the "Roois of any Equations Generaly, and that without any pre" vious Reduction," which was publifhed in the year 1694. On the ocher hand we may obferve, that Mr. Rap.bfon always continued to give his own method the preference, after the publication of the tracts of Monfeur de Lagny and Dr. Halley upon the fubject, as well as before their publication, when he tells us he had himfelf had the thought of adopting the principle which was afterwards followed by Mr . de Laginy and Dr. Halley, of treating the transformed equation as a quadratick equation, but had deliberately rejected it on account of the greater eafe and fimplicity of the other method, in which the faid transformed equation is confidered and treated as a fimple equation. And Sir Ifaac Nervon in his method of refolving equations by approximation (which difiers very litule from Mr. Raphfon's, ) feems alfo to prefer Mr. Raphoroiz's practice, of treating the transformed equation as a mere fimple equation, to that of Mr. de Laginy and Dr. Ilalley, of treating the faid equation as a quadratick equation. I therefore cannot but recommend it to all young Algebräitis to Ctudy Mr. Rapbon's excellent Trea-
tife
tife on this fubject, intitled, Analy is Aquationum Univerfalis, with great attention, and to endeavour to make themfelves mafters of it, by going carefully through all the examples given in it, and performing all the arithmetical operations contained in them. And 1 will venture to fay that they will thereby acquire more ufeful knowledge in Algebra, towards the bufinefs of refolving affected, or compound, or multinomial, equations, than by reading all that has been written by Harriot and Des Cartes, and his learned Commentator Van Scbooten, and all his other Commentators, and their numerous followers, on the boafted doctrine of the Generation of Equations one from another, by fuppofing \(i-a\) to be \(=0\), and \(x-b\) to be \(=0\), and \(x-c\) to be \(=0\), and \(x+d\) to be \(=0\), and \(x+e\) to be \(=0\), and fo on; and then multiplying the binomial quantities \(x-a, x-b, x-c\), \(x+d, x+e, \& c\), into each other, and likewife all the abftufe and intricate matter that has been delivered by Sir Ifaac Newtor, and Mr. Gravefende and Mr. Mac Laurin, and other learned Algebraifts of modern times, on the invention of Divifors, which is grounded on that doctrine of the Generation of Equations from each other.

Art. 3. Yet in reading this excellent Treatife of Mr : Raphfon, which I fo much recommend, there will now and then occur fome difficulties which are not inherent in the fubject itfelf, but which might have been avoided, if Mr . Rapbron had not unfortunately adopted the perplexing doctrines of modern writers of Algebra, about negative quantizies and negative roots of Equations. The quantities called negative are fuch as it is impoflible to form any clear idea of, being defined, by Sir Iface Newton and other Algebräifts *,

\footnotetext{
* Quantitates vel Affrmaiver funt, feu majores Nihilo, vel Nrgative, feu Nihilo minores.-Newton's Aritbmetica Univerfalis, page 3.
}

When a greater quantity is taken from a leffer of the fame kind, the remainder becomes of the oppolite kind.- Mac Latrin's Algcbra, page 5.

An affirmative quantity is a quantity greater than nothing, and is known by this fign, + ; a negative quantity is a quantity lefs than nothing, and is known by this fign, -._Saunderfon's Algara, Vol. I. page 50, article 2.
to be fuch quantities as are lefs than no:bing, or as arije from the fubtraction of a greater quantity from a lefler, which is an operation evidently impoffible to be performed : and, as to the negative roots of an equation, they are in truth the real and pofitive roots of another equation confifting of the fame terms as the firft equation, but with different figns + and - prefixed to fome of them; fo that, when writers of Algebra talk of the negative roots of an equation, they, in fact, jumble two different equations together, and fuppofe the propofed, or firf, equation to have not only its own proper roots (which they call its affirmative, or pofitive, roots,) but to have likewife the roots of a different equation, which they call its negative roots. Thus, for example, they would fay, that the quadratick equation \(2 x+4 x=320\), has two roots, to wit, the pofitive, or affirmative, root, +16 , and the negative root, -20 . But this latter number, 20 , is, in truth, the root of a different equation, to wit, of the equation \(x \cdot x-4 x=320\). So that this kind of abfurd and fantaftick language only tends to the confounding together the two different equations \(x x+4 x=320\), and \(x x-4 x\) \(=320\), and confidering them as if they were one and the dame equation. Now this perplexing language is unforturately ufed by Mr. Rapbfon in this valuable Treatife, and rends to throw an air of mytery and obfcurity upon fome of the Problems folved in it, from which they would otherwife have been intirely free. As a proof of the truth of this obfervation, I flall here infert one of the faid Problems, the folution of which is by this means rendered fo obfcure, that I had a good deal of trouble to find out the meaning of it; though, if this language had been avoided, and the proper and natural language, belonging to the conditions of the Problem, had been ufed in its itead, there could not have been the leart difficulty in underfanding it. This Problem is the 24 h , in page 32 of the \(2 d\) edition of the book, and is, verbatim et litieratim, as follows.

\section*{P R O B L E M A XXIV.}

\section*{正quationuin Quintce Poteftatis Adfectarum Solutio.}

Proponatur -aaaaa + 7aaaa-20aaa \(+{ }_{155} 5 a=10,000\).
Hoc eft, - aaeaa + baaaa - caaa + daa \(=f\).
\[
\text { Theor. } x=\frac{f+g g g g g+c g g g-\operatorname{lgggg}-d g g}{4^{b g g g}+2 d g-5 g g g g-3 \operatorname{cgg} g}
\]
```

Sit $g=-5$
$f+\operatorname{lgggg}+\operatorname{cggg}-\mathrm{Sigggg}^{-5} \mathrm{dgg}=-3875$
$4 b g g g+2 d g-5 g g g g-3 \operatorname{cgg}=-9675)(-3875,0(+, 4=2$
-5 ,
$+, 4$
$g=\overline{-4,6}$
$f+g g g_{g}+{ }^{2} g g g-\operatorname{bggg} g-d g g=-420,36896$
$\left.4 \mathrm{bggg}+2 \mathrm{dg}-55 g g g-3 \operatorname{cgg}=-7659,73^{6}\right)-420,36896(+, 055=x$
$-4,6$
$+\quad, 055$
$g=-4,545$

```

```

$4 \mathrm{bggg}+2 d g-5 g g g g-3 \operatorname{cgg}=-7410,748)-5,9603594(+, 00080428=ぬ$
$-4,545$
$+, 000,804,28$
$a=-4,544,195,72$

```

To this folution I have, in my copy of Mr. Raphfon's Tract, fubjoined the following Note.

Numerus \(4.544,195,72\) eft radix xquationis \(a^{5}+7 a^{4}+\) \(20 a^{3}+155 a^{2}=10,000\); quod bic obfcurè innuitur fub fpecie radicis negativæ æquationis \(-a^{5}+7 a^{4}-20 a^{3}+\) \({ }_{155 a^{2}}=10,000\). Omnes ferè difficultates quibus permulti cultioris ingenii viri ab Algebrâ difcendâ et excolendâ deterrentur, ex hífee radicibus negativis et aliis quantitatibus negativis,
gativis, feu (ut hodierni Algebræ fcriptores abfurdè loquuntur, ) nihilo minoribus, ortum habent.

In this Problem the letter \(a\) is ufed for the unknown quantity, or root of the equation, which is ufually denoted by the letter \(x\); and the letter \(g\) is ufed for the firt near value of the root of the equation, which in the two foregoing Tracts has been denoted by the letter \(a\); and the letter \(x\) is ufed for the difference between \(g\), the firt near value of the root of the equation, and \(c\), its true value, which difference has been denoted in the two foregoing Tracts by the letter \(z\). So that, if we exprefs the enunciation of the foregoing Problem in the notation that has been ufed in the two foregoing Tracts, it will be as follows.

Proponatur - \(x \times x \times x+7 x x_{x} x-20 x x+155 x x=10,000\)
\[
\text { Sive }-x^{5}+7 x^{4}-20 x^{3}+155 x x=10,000
\]

Sive \(-x^{5}+b x^{4}-c x^{3}+d x^{2}=f\).
\[
\begin{aligned}
& \text { or } z=\frac{f+a^{5}+c a^{3}-b a^{4}-d a^{2}}{4^{b a^{3}}+2 d a-5 a^{4}-3 c a^{2}} \text {. }
\end{aligned}
\]

Ast. 4. Here, then, the equation propofed by Mr. Rapp, \(\boldsymbol{H}_{-}\) foos to be refolved, is faid to be - \(x^{5}+7 x^{4}-20 x^{3}+\) \(155 x x=10,000\), or \(155 x x-20, x^{3}+7 x^{4}-x^{5}=10,000\). But this is not the equation he refolves; and, indeed, it is not a poffible equation, becaufe the greatelt poffible magnitude of the compound quantity \(155 x x-20 x^{3}+7 x^{4}-\) is \({ }^{5}\) is that which it has when the infinitely fmall increment of the binomial quantity \(20 x^{3}+x^{5}\) becomes equal to the contemporary increment of the binomial quantity \(155^{x y}+\) \(7 x^{4}\), that is, (if we put \(\dot{x}\), or \(x\) with a point placed over it, for the infinitely fmall increment of \(x^{\prime}\) ) when \(20 \times 3 x^{2} \dot{\hat{v}}\) \(+5 x^{4} \dot{x}\) becomes equal to \(155 \times 2 \times \dot{x}+7 \times 4 x^{3} \cdot \dot{x}\), or when \(60 x^{2}+5 x^{4}\) is \(=310 x+28 x^{3}\), or when \(60 x+5 x^{3}\) is \(=310+28 x x\), or when \(5 x^{3}-28 x x+60 x\) is \(=310\),
or when \(x^{3}-\frac{2 \operatorname{s.xx}}{5}+12 x\) is \(=62\), or when \(x^{3}-5.6 \times 3\) \(412 x\) is \(=62\); and that is when \(x\) is nearly \(=5 \cdot 5\); at which time the compound quantity \(155 x x-20 x^{3}+7 x^{4}-\) \(x^{5}\) will be nearly equal to 2733 , as will appear by fubftituting 5.5 inftead of \(x\) in the terms of the faid quantity \(55 x x-20 x^{3}+7 x^{4}-x^{5}\) : and this quantity 2733 (which is the greatelt poffible magnitude of the compound quantity \({ }^{1} 55 x-20 x^{3}+7 x^{4}-x^{5}\) ) is very much lefs than 10,000 , or the abfolute term of the equation \(155 \times x-20 x^{3}+7 x^{4}\) \(-x^{5}=10,000\), and confequeritly the faid equation is impofible. But Mr. Raphen, though he fers down this equation \(155 x \cdot 20 x^{3}-7 x^{4}-x^{5}=10,000\), as the equation that is to be refolved, yet really means to refolve a quite different equation, to wit, the equation that refults from fuppofing \(x\) to be a negative quantity, or from fubftituting the powers of \(-x\), to wit, \(+x x^{\prime},-x^{3},+x^{4}\), and \(-x^{5}\), in the terms of the faid equation \(155 x x-20 x^{3}+7 x^{4}-x^{5}\) \(=10,000\), inftead of the like powers of \(+\infty\), to wit, \(+x x,+x^{3},+x^{4}\), and \(+x^{5}\); by which fubftitution the faid equation will be converted into the equation \(155 x\) \(+x: x-20 \times-x^{3}+7 x+x^{4}-1 \times-x^{5}=10,000\), or \(155 x x+20 x^{3}+7 x^{4}+x^{5}=10,000\), which is evidently a pofible equation, and of which the root is 4.544 ., 195,72 , or the fame number which he obtains by his folution of the Problem, and which, with the fign - prefixed to it, he calls the negative root of the propofed equation \(155 x x-20 x^{3}+5 x^{4}-x^{5}=10,000\). Now all this perplexity would have been avoided, if Mr. Raphfon had propofed at firft to find the root, or, in the language of modern writers of Algebra, the affimative, or pofitive, root, of the equation \(155 x \%+20 x^{3}+7 x^{4}+x^{5}=10,000\), or \(x^{5}+\) \(7 x^{4}+20 x^{3}+155 \% x=10,000\), which equation is evidently poffible, and can have only one roor. And then all the fteps of his folution would liave been clearand eafy, as will appear by refolving this equation \(x^{5}+7 x^{4}+20 x^{5}\) \(+155 \times x=10,000\) according to the principles of his method; which may be done in the manner following.

The Refolution of the Affected Equation \(x^{5}+7 x^{4}+20 x^{3}+\) \({ }^{155 x}\) = 10, 000 , by Mr. Raphfon's Metbod of Approximas tion.

Art. 5. In confidering this equation \(x^{5}+7 x^{4}+20 x^{3}+\) \({ }_{55} 5 \times 10=10,000\), it is, in the ift place, eafy to fee that \(x\) muft be greater than I. For, if we fuppofe \(x\) to be \(=1\), we thall have \(x x=1\), and \(x^{3}=1\), and \(x^{4}=1\), and \(x^{5}\) \(=1\); and confequently \(x^{5}+7 x^{4}+20 x^{3}+155 x x\) will be \(=1+7+20+1.55=183\); which is very much lefs than the abfolute term ro,000. Therefore i mult be much lefs than \(x\).

In the fecond place, if we fuppofe \(i x\) to be \(=10\), we fhall have \(x x=100\), and \(x^{3}=1000\), and \(x^{4}=10,000\), and \(x^{5}=100,000\); fo that \(x^{4}\) alone will be equal to the abfolute term 10,000, and confequently \(x^{5}+7 x^{4}+20 x^{3}+\) \({ }^{1} 55^{x}\) muft be very much greater than the faid abfolute term; and confequently 10 muft be much greater than \(x\).

Thirdly, fince \(x\) is lefs than 10 and greater than \(x\), let us fuppofe it to be equal to 5. Then we thall have \(x x=\) 25 , and \(x^{3}=125\), and \(x^{4}=625\), and \(x^{-5}=3125\), and confequently \(x^{5}+7 x^{4}+20 x^{3}+155 x x\) ( \(=3125+7 x\) \(625+20 \times 125+155 \times 25=3125+4375+2500\) \(+3875)=13,875\); which is greater than the abfolute term in,000. Therefore 5 is greater than the true value of \(x\) in the equation \(x^{5}+7 x^{4}+20 x^{3}+155 x x=10,000\).

We will therefore, in the \(4^{\text {th }}\) place, fuppofe \(x\) to be \(=4\). And then we fhall have \(x x=16\), and \(x^{3}=64\), and \(x^{4}\) \(=256\), and \(x^{5}=1024\), and confequently \(x^{5}+7 x^{4}+\) \(20 x^{3}+{ }_{155 x x}(=1024+7 \times 256+20 \times 64+155\) \(\times 16=1024+1792+1280+2480)=6576\); which is lefs than the abfolute term 10,000 . Therefore 4 is lefs than the true value of \(x\) in the equation \(x^{5}+7 x^{4}+20 x^{3}\) + 155 \(^{2} \times 10,000\).

It appears therefore that the root of the equation \(x^{5}+\) \(7 x^{4}+20 x^{3}+155 x x=10,000\), is greater than 4 , but lefs than 5 . And either of thefe values might very well ferve for a firft near value of the faid root, or for the bafis of a further approximation to it. Mr. Raphfon makes choice of 5 , which is greater than the truth.

Art. 6. Let us then fuppofe \(a\), or the firft near value of \(x^{4}\) in the equation \(x^{5}+7 x^{4}+20 x^{3}+155 x x=10,000\), to be \(=5\); and let \(z\) be the difference by which it exceeds the true value of \(x\). Then will \(x\) be \(=a-z\), and confe quently \(x x\) will be \(\left(=a-\left.z\right|^{2}\right)=a a-2 a z+\& c\), and \(x^{3}\) will be \(\left(=\overline{a-z^{3}}\right)=a^{3}-3^{2} z+8 x \mathrm{c}\), and \(x^{4}\) will be \(\left.(=\overline{a-z})^{4}\right)=a^{4}-4 a^{3} z+8 c\), and \(x^{5}\) will be \((=\) \(\left.a-z)^{5}\right)=a^{5}-5 a^{4} z+\& c\). Therefore \(x^{5}+7 x^{4}+20 x^{3}\). \(+{ }_{1} 55^{x x}\) will be \(=\left\{\begin{array}{l}+\quad 7 \times \frac{a 5-5 a^{4} z+8 c,}{a^{4}-4 a^{3} z+8 c,} \\ +20 \times \frac{a^{3}-3 a^{2} z+8 c,}{a a-2 a z+8 c_{2}}\end{array}\right\}\)
\[
=\left\{\begin{array}{c}
a^{5}-5 a^{4} z+8 c, \\
+7 a^{4}-28 a^{3} z+8 c, \\
+20 a^{3}-60 a^{2} z+8 c, \\
+155 a a-310 a z+8 c .
\end{array}\right\}
\]

But \(x^{5}+7 x^{4}+20 x^{3}+155 x x\) is \(=10,000\).
Therefore \(a^{5}+7 a^{4}+20 a^{3}+155 a a-5 a^{4} z-28 a^{3} z\) - \(60 a^{2} z-3\) Ioaz \(+8 c\), will allo be \(=10,000\), and confequently (adding \(5 a^{4} z+28 a^{3} z+60 a^{2} z+3\) 10az to both fides, ) we fhall have \(a^{5}+7 a^{4}+20 a^{3}+155 a a=\) \(10,000+5 a^{4} z+28 a^{3} z+60 a^{2} z+310 a z\), or (becaufe \(a\) is \(=5\), and confequently \(a^{5}+7 a^{4}+20 a^{3}+155 a a\) is \(=\) \(I_{3}, 875\), as has been hewn in art. 5 , ) we fhall have 13,875 \(=10,000+5 a 4 z+28 a^{3} z+60 a^{2} z+310 a z\), and confequently (fubtracting 10,000 from both fides,) \(3875=5 a^{4} z\) \(+28 a^{3} z+60 a^{2} z+310 a z=z \times \longdiv { 5 a ^ { 4 } + 2 8 a ^ { 3 } + 6 0 a ^ { 2 } + 3 1 0 a } .\) 4 D

Therefore

Therefore \(z\) will be \(=\frac{3875}{5 a^{4}+28 a^{3}+60 a^{2}}+310 a(=\)
\(\frac{3^{875}}{5 \times 5^{4}+28 \times 5^{3}+60 \times 5^{2}}+310 \times 5\)
\(\frac{3875}{5 \times 625+28 \times 125+60 \times 25+310 \times 5}=\frac{3875}{3125+3500+1500+1550}\) \(\left.=\frac{3875}{9675}\right)=0.4\). Therefore \(a-z\), or \(x\), will be \((=a\) \(-0.4=5.0-0.4)=4.6\); and 4.6 will be a fecond near value of the root of the equation \(x^{5}+7 x^{4}+20 x^{3}\) \(+155 x x=10,000\).
Q. E. I.

We muit next try whether this fecond near value of \(x\) is greater or lefs than its true value; and for this purpofe we mult fubfitute it, inftead of \(x\), in the compound quantity \(x^{5}+7 x^{4}+20 x^{3}+155 x x\).

Now, if we fuppofe \(x\) to be \(=4 \cdot 6\), we hall have ax \(\left.(=\overline{4.6})^{3}\right)=21.16\), and \(x^{3}\left(=\widetilde{4.60^{3}}\right)=97.336\), and \(x^{4}\) \(\left(=4.00^{4}\right)=447.7456\), and \(x^{5}\left(=4.6^{5}\right)=2059.62976\), and \(155 \times x(=155 \times 21.16)=3279.80\), and \(20 x^{3}(=20\) \(\left.\times 97.33^{6}\right)=1946.720\), and \(7 x^{4}\left(=7 \times 447.745^{6}\right)=\) 3134.2192 , and confequently \(x^{5}+7 x^{4}+20 x^{3}+155 \times x\) \((=2059.62976+3134.2192+1946.720+3279.80)\) \(=10,420.36896 ;\), which is greater than 10,000 , or the abfolute term of the equation \(x^{5}+7 x^{4}+20 x^{3}+155 x \cdot=\) 30,000. Therefore 4.6 will be greater than the true value of \(x\) in that equation.

Art. \%. To find a third near value of the root of this efuation, let \(a\) be fuppofed to be \(=4.6\), and \(\dot{z}\) be the dfference by which \(a\), or 4.6 , exceeds the true value of the faid root.

Then we fhall have, as before, \(x=a-z\), and confequently \(x i x\left(=\bar{a}-z_{i}^{2} ;=a a-2 a z+8 c\right.\), and \(x^{3}(=\) \(\left.a-\left.z\right|^{3}\right)=a^{3}-3 a^{2} z+\& c\), and \(x^{4}\left(=a-2{ }^{4}\right)=a^{4}\) \(-4 a^{3} z+\& c\), and \(\left.x^{5}(=a-)^{5}\right)=a^{5}-5^{4} z+\& c\), and
and \(7 . x^{4}\left(=7 \times \overline{\left.a^{4}-4 u^{3} z+8 c,\right)}=7 a^{4}-28 a^{3} z+\right.\) \(\& \mathrm{c}\), and \(20 x^{3}\left(=20 \times \overline{a^{3}-3 a^{2} z-\& c,}\right)=20 a^{3}-60 a^{2} z\) \(+\& c\), and \({ }_{155} \times x\left(=155 \times \overline{\left.a a-2 a z+8 c_{,}\right)}={ }_{155 a}\right.\) \(-310 a z+8 \mathrm{c}\), and \(x^{5}+7 x^{4}+20 x^{3}+155 x x=\)
\[
\left\{\begin{array}{r}
a^{5}-5 a^{4} z+8 c, \\
+\quad 7 a^{4}-28 a^{3} z+8 c, \\
+20 a^{3}=60 a^{2} z+8 c, \\
+155 a a-310 a z+8 c .
\end{array}\right\}
\]

But \(x^{5}+7 x^{4}+20 x^{3}+{ }^{1} 55 x x\) is \(=10,000\).
Therefore \(\left\{\begin{array}{r}a^{5}-5 a^{4} z+\& c, \\ +\quad 7 a^{4}-28 a^{3} z+\& c, \\ +\quad 20 a^{3}-60 a^{2} z+\& c, \\ +155 a a-310 a z+\& c,\end{array}\right\}\) will likewife be \(=10,000\), and confequently (adding \(5 a^{4} z+28 a^{3} z+\) \(60 a^{2} z+310 a z\) to both fides,) \(a^{5}+7 a^{4}+20 a^{3}+155 a a\) will be \(=10,000+5 a^{4} z+28 a^{3} z+60 a^{2} z+310 a z\).

But it has been fhewn in the laftarticle, that \(a^{5}+7 a^{4}\) \(+20 a^{3}+155 a a\), or \(\overline{4.6}^{5}+7 \times \overline{4.64^{4}}+20 \times \overline{4.61^{3}}+\) \(155 \times \overline{4.61}^{2}\), is \(=10,420.36896\).

Therefore 10,420.36896 will be \(=10,000+5 a^{4} z+\) \(28 a^{3} z+60 a^{2} z+310 a z\); and confequently (fubtracting 10,000 from both fides of the equation,) 420.36896 will be \(=5 a^{4} z+28 a^{3} z+60 a^{2} z+310 a z\left(=5 \times 4.61^{4} \times z+\right.\) \(28 \times 4 . \mathrm{El}^{3} \times z+60 \times 4 . \mathrm{C}^{2} \times z+310 \times 4.6 \times z=\) \(5 \times 447.7456 \times z+28 \times 97.33^{6} \times z+60 \times 27.16\) \(\times z+310 \times 4.6 \times z=2238.7280 \times z+2725.408\) \(\times z+1269.60 \times z+1426.0 \times z)=7659.7360 \times z\), and confequently \(z\) will be \(\left(=\frac{420.35896}{7659.7360}\right)=0.0548\), or nearly 0.055 . Therefore \(x\), or \(a-z\), or \(4.6-z\), will be nearly \((=4.6-0.055\), \()=4.545\); and confequently this number 4.545 will be a third near value of the root of the propofed equation \(x^{5}+7 x^{4}+20 x^{3}+155 x x=10,000\). e. E. I.

Now let this number 4.545 be fubftituted inftead of \(x\) in the compound quantity \(x^{5}+7 x^{4}+20 x^{3}+155 x x\), in order to difcover whether the refult will be greater, or lefs, than 10,000 , or the abfolute term of the propofed equation \(x^{5}+7 x^{4}+20 x^{3}+155 x x=10,000\).

Now, if \(x\) be fuppofed to be \(=4.545\), we fhall have \(x x_{x}\) \(\left(=4.545^{2}\right)=20.657,025\), and \(x^{3}\left(=4.54 b^{3}\right)=93.886\), 778,625 , and \(x^{4}\left(=4.5451^{4}\right)=426.712,681,850,625\), and \(x^{5}\left(=4.545^{5}\right)=1939 \cdot 409,139,011,090,625\), and confequently \(7 x^{4}(=7 \times 426.712,681,850,625)=2986.988\), \(772,954,375\), and \(20 x^{3}(=20 \times 93.886,178,625)=\) \(1877.723,572,500\), and \(155 \times(=155 \times 20.657,025)=\) \(3201.838,875\), and \(x^{5}+7 x^{4}+20 x^{3}+{ }_{5} 55 x\) (= 1939. \(409,139,011,090,625+2986.988,772,954,375+1877\). \(\left.723,57^{2,500}+3^{201} \cdot 8_{3} 8,875\right)=10,005960,359,465\), 465,625 ; which is greater than 10,000 , or the abfolute term of the equation \(x^{5}+7 x^{4}+20 x^{3}+155: x=10,000\). Therefore 4.545 will be greater than the true value of \(x\) in that equation.

Art. 8. To find a fourth near value of the root of this equation \(x^{5}+7 x^{4}+20 x^{3}+155 x x=10,000\), let a be fuppofed to be \(=4545\), and \(z\) be fuppofed to be the difference by which \(a\), or 4.545 , exceeds the true value of the fäid root.

Then we thall, as before, have \(x=a-z\), and confequently \(x x\left(=a-z^{2}\right)=a a-2 a z+\& x c ́\), and \(x^{3}(=\) \(\left.a-z 1^{3}\right)=a^{3}-3 a^{2} z+8 c\), and \(x^{4}\left(=\bar{a}-z_{1}^{4}\right)=a^{4}\) \(-4 a^{3} z+8 x c\), and \(\left.x^{5}(=a-z]^{5}\right)=a^{5}-5 a^{4} z+8 \mathrm{c}\), and \(7 x^{4}\left(=7 \times \overline{\left.a^{4}-4 a^{3} z+8 c,\right)}=7 a^{4}-28 a^{3} z+\right.\) \& \(c\), and \(20 x^{3}\left(=20 \times \overline{\left.a^{3}-3 a^{2} z+\& c_{2}\right)}=20 a^{3}-\right.\) \(60 a^{2} \approx+8 c\), and \(155 \times x(=155 \times \overline{a a-2 a z+8 c,})=\) \(155 a-310 a z+8 x\), and confequently \(x^{5}+7 x^{4}+20 x^{3}\) \(+155 \times i=\)
\[
\left\{\begin{array}{r}
a^{5}-5 a^{4} z+8 c, \\
+\quad 7 a^{4}-28 a^{3} z+8 c, \\
+20 a^{3}-60 a^{2} z+8 c, \\
+155 a^{2}-310 a z+8 c,
\end{array}\right\}
\]

But \(x^{5}+7 x^{4}+20 x^{3}+155 x x\) is \(=10,000\).
Therefore \(a^{5}+7 a^{4}+20 a^{3}+155 a a-5 a^{4} z+\& c,-\) \(28 a^{3} z+\& c,-60 a^{2} z+\& c,-310 a z+\& c\), will likeWife be \(=10,000\), and confequently (adding \(5 a^{4} z+28 a^{3} z\) \(+60 a^{2} z+310 a z\) to both fides,) \(a^{5}+7 a^{4}+20 a^{3}+\) \(155 a a\) will be \(=10,000+5 a^{4} z+28 a^{3} z+60 a^{2} z+\) 3 10az.

But it has been fhewn in the laft article, that \(a^{5}+7 a^{4}+\) \(20 a^{3}+155 a a\), or \(4.545^{75}+7 \times 4.545^{14}+20 \times 4.545^{3}\) \(+155 \times 4.545{ }^{2}\), is \(=10,005.960,359,465,465,625\).

Therefore \(10,005.960,359,465,465,625\) will be \(=10,000\) \(+5 a^{4} z+28 a^{3} z+60 a^{2} z+310 a z\); and confequently (fubtracting 10,000 from both fides,) \(5.960,359,465,465,625\) will be \(=5 a^{4} z+28 a^{3} z+60 a^{2} z+310 a z\left(=5 \times 4.545^{4}\right.\) \(\left.\times z+28 \times 4.5455^{3} \times z+60 \times 4.545\right)^{2} \times z+310\) \(\times 4.545 \times z=5 \times 426.712,681,850,625 \times z+28\) \(\times 93.886,178,625 \times z+60 \times 20.657,025 \times z+\) \(310 \times 4.545 \times z=2133.563,400,253,125 \times z+2638\). \(813,001,500 \times z+1239.421,500^{\circ} \times z+1408.950 \times z\) ) \(=7410 \cdot 747,910,753,125 \times 2\). Therefore \(z\) will be \((=\) \(\left.\frac{5.950,359,465,46,6,65}{7410.747,910,753,125}\right)=0.000,804,28\), and \(x\), or \(a-z\), or \(4.545-z\), will be ( \(=4.545,000,00-0.000,804,28\) ) \(=4 \cdot 544,195,72\). Therefore \(4.544,195,72\) will be a fourth near value of the root of the propofed equation \(x^{5}+7 x^{4}\) \(+20 x^{3}+155 x=10,000 . \quad\) C. е. I.

This number \(4.544,195,72\), agrees with the number found by Mr. Raphfon, in all its figures.

Art. 9. The foregoing refolution of the equation \(n^{5}+\) \(7 \times 4+20 x^{3}+155 x x=10,000\), has been performed ai grcat
great length, in order to fet forth, in as clear a manner as poffible, the feveral reafonings upon which the arithmetical operations ufed in it are grounded, as well as the faid operations themfelves. And by fo doing the fubject is rendered fo much eafier than in Mr. Raphfon's very concife and compreffed way of treating it, (in which all the reafonings are dropped, and only the arithmetical operations are exhibited,) that, though the above refolution of the faid equation is three, or four, times as long as Mr. Raphfon's, yet 1 am fully perfuaded that it may be read and underftood in a third, or fourth, part of the time that is neceffary to a thorough comprehenfion of Mr. Raphfon's refolution of it; even if he had not puzzled the matter by talking of the negative root of the equation \(-x^{5}+7 x^{4}-20 x^{3}+155 x x\) \(=10,000\). But that this may appear the more clearly, I will now repeat the forcgoing refolution of this equation in the ftyle and manner of Mr. Raphfon, by omitting the feveral reafonings fet forth in the foregoing articles, and making ufe of a Canon, or Theorem, for the purpofe of computing the fecond, third, and fourth values of \(z\), in the fame manner as Mr. Raphion has done.

Art. 10. Since each of the three firft fucceffive near values of \(x\), or the root of the propofed equation \(x^{5}+7 x^{4}+20 x^{3}\) \(+15 x^{x}=10,000\), from which the next near values of it are derived, to wit, the three numbers 5, 4.6, and 4.545, and which are fucceffively denoted by the letter \(a\), is greater than the true value of \(x\) in the faid equation, or than the soot of the faid equation, it follows that the fecond, and third, and fourth near values of \(x\) will, each of them, be fucceffively denoted by the refidual quantity \(a-z\); and confequently, by applying the reafonings ufed in art. 6 , in order to obtain the values of \(z\), and of \(a-z\), or \(x\), we fhall find that \(z\) will be, fucceffively, nearly equal to the value of the fraction \(\frac{a^{5}+7 a^{4}+20 a^{3}+155 a a-10,000}{5 a^{4}+28 a^{3}+60 a^{2}+310 a}\), and, therefore, that \(a-z\), or \(x\), will be, fucceffively, nearly equal to the value of the quantity \(a\) - the fraction
\[
a^{5}+
\]
\(\frac{a^{5}+\eta a^{4}+20 a^{3}+155 a^{2}-10,000}{5 a^{4}+28 a^{3}+60 a^{2}+310 a}\). This, then, is the Theorem, or Canon, by the application of which we are to compute the fecond, and third, and fourth, near values of a - \(z\), or \(x\), after taking 5 for the firft near value of it, or for the firt value of \(a\).

Now, if \(a\) is \(=5\), we thall have \(z=\) the fraction \(\frac{a^{5}+7 a^{4}+20 a^{3}+155 a a-10,000}{5 a^{4}+28 a^{3}+60 a^{2}+310 a}=\frac{3875}{9675}=0.4\). Therefore \(a-z\) will be \((=5-0.4)=4.6\); which will therefore be the fecond near value of \(x\), or of the root of the equation \(x^{5}+7 x^{4}+20 x^{3}+155 x x=10,000\).

Secondly, if \(a\) be \(=4.6\), we fhall have \(z \simeq\)
\(\frac{a^{5}+7 a^{4}+20 a^{3}+155 a a-10,000}{5 a^{4}+28 a^{3}+60 a^{2}+310 a}=\frac{420.36895}{7659.7360}=0.0548\), or, nearly, 0.055 . Therefore \(a-z\) will be ( \(=4.6-0.055\) ) \(=4.545\); which will therefore be the third near value of \(x\), or of the root of the equation \(x^{5}+7 x^{4}+20 x^{3}+155^{x} x\) \(=10,000\).

Thirdly, if \(a\) be \(=4.545\), we Thall have \(z=\)
\(\frac{a^{3}+7 a^{4}+20 a^{3}+155 a a-10,000}{5 a^{4}+28 a^{3}+60 a^{2}+3^{10 a}}=\frac{5 \cdot 960,359,465,465,625}{7410.747,910,753,125}=\) \(0.000,804,28\). Therefore \(a-z\) will be \((=4.545-\) \(0.000,804,28)=4.544,195,72\); which will therefore be the fourth near value of \(x\), or of the root of the equation \(x^{5}+7 x^{4}+20 x^{3}+155 x x=10,000\). ©. е. I.

Art. 11. Mr. Raphfon's Canon, or Theorem, for the value of \(z_{2}\) is expreffed more concifely than the foregoing Theorem, \(z=\frac{a^{5}+7 a^{4}+20 a^{3}+155 a-10,000}{5 a^{4}+28 a^{3}+60 a^{2}+310 a}\). For he ufes the letters \(b, c, d\), and \(f\), for the co-eficients 7,20 , and 155 , of the fourth, third, and fecond, power of \(x\) in the equation \(x^{5}+7 x^{4}+20 x^{3}+155 x x=10,000\), and for 10,000 , the abfolute term of that cquation, refpectively; which produces the following Canoiz, or Theorm, for the value of \(z\),
to wit, \(z=\frac{a^{5}+b a^{4}+c a^{3}+d a^{2}-f}{5 a^{4}+4 a^{3}+3 c a^{2}+2 d a}\). But it appears to me that, though we may feem to gain fomething in point of brevity by ufing this very general notation, we lofe as much in the article of perfpicuity, which is a matter of much greater importance. However, this latter refolution of the equation \(x^{5}+7 x^{4}+20 x^{3}+1551 x=10,000\), which is expreffed in Mr. Raphfon's concife ftyle and manner, and the foregoing more explicit refolution of it in art. 5, 6, 7, and 8, (in which the reafonings, on which the feveral arithmetical operations are grounded, are diftincty fet forth and repeated, ) are, both of them, the fame in fubltance, and are, as I belicve, the very beft method that can be taken for difcovering the root of the faid equation.

Art. 12. It has been obferved above in art. 2, that Sir Ifanc Newton's method of refolving numeral equations by approximation differed but little from Mr. Raphfon's, both methods being founded on the fame principle of confidering the new, or transformed, equation, (refulting from the fubftitution of \(a+z\), or \(a-z\), inftead of \(x\), in the original equation,) as a mere fimple equation, or neglecting, or omitting, all the terms of it which involved in them any higher power of \(z\) than its fimple power; which reduces the refolution of all equations, of whatever orders, to the refolution of a fimple equation, or, rather, to the refolution of feveral fucceffive fimple equations, by which we make continual approaches to the true value of the root of the original equation. In this grand principle Sir Ifaac Newton's method and Mr. Raphfon's method perfectly agree; and, in finding the fecond near value of \(x\), or in making the firft approximation to the true value of \(x\), after having obtained, by conjecture, or trial, or in fome other manner, the value of what has been here called \(n\), or a firft near value of \(x\), or the root fought, there is not the fmalleft difference between them. But in the inveltigation of the third, and fourth, and other following near values of \(x\), there is a little difference in their manner of proceeding, which the reader may be glad to fee examined. I fhall therefore now comst
pare the two methods together，in the cafe of a very early equation，by which Sir fac Newton himfelf has thought proper to illuftrate his method．

A Comparison between Sir Ifaac Newton＇s and Mr．Raphfon＇s Methods of Resolving Numeral Equations by Approximation．

Art．13．Sir Isaac Newton＇s Method of Refolving Nu－ meal Equations by Approximation，is explained by him－ Pelf in his curious little Tract，intitled，Analysis per 疋qua－ tiones Numero Terminorum Infinitas，（which was written in the year 1666，and communicated to Dr．Ifaac Barrow，and to Mr．John Collins，and to other learned men of that time， in the year 1669 ，）by an example；which is as follows．

Art．14．Let it be required to refolve the cubick equal－ ton \(x^{3}-2 x=5\) ．

Here，in the firm place，it is eafy to fee that \(\mathscr{x}\) is fomewhat greater than 2，but much less than 3．For，if \(x\) is taken equal to 2 ，we fall have \(2 x=4\) ，and \(x^{3}=8\) ，and confequently \(x^{3}-2 x(=8-4)=4\) ；which is lefs than 5 ，or the true value of \(x^{3}-2 x\) in the proposed equation：and，if \(x\) is taken equal to 3 ，we hall have \(2 x=6\) ，and \(x^{3}=27\) ，and cone－ quently \(x^{3}-2 x(=27-6)=2 I\) ；which is very much greater than 5 ，or the true value of \(x^{3}-2 x\) in the pro－ poled equation．Therefore the true value of \(x\) in that equa－ ton mut be much lees than 3 ，and a little greater than 2. Let it therefore be fuppofed to be equal to the quantity \(2+z\) ，in which \(z\) denotes the unknown quantity by which the true value of \(x\) exceeds 2 ．And let \(2+z\) be fubtti－ tufted，infead of \(x\) ，in the proposed equation \(x^{3}-2 x=50\) This may be done as follows．

Since \(x\) is \(=2+z\) ，we hall have \(\left.x^{3}(=2)^{3}+3 \times 2\right)^{2}\) 4 E
\(x z+3 \times 2 \times z z+z^{3}=8+3 \times 4 \times z+3 \times 2 z z\) \(\left.+z^{3}\right)=8+12 z+6 z z+z^{3}\), and \(2 x(=2 \times 2+z)\) \(=4+2 z\), and confequently \(x^{3}-2 x(=8+12 z+6 z z\) \(\left.+z^{3}-4-2 z\right)=4+10 z+6 z z+z^{3}\). But \(x^{3}-2 x\) is \(=5\). Therefore \(4+10 z+6 z z+z^{3}\) will alfo be \(=\) 5, and confequently (fubtracting 4 from both fides,) \(10 z\) \(+6 z z+z^{3}\) will be \(=1\); and, (fubtracting \(6 z z+z^{3}\) from both fides,) \(10 z\) will be \(=1-6 z z-z^{3}\). Therefore \(z\) will be \(=\frac{1-6 z z-z^{3}}{10}=\frac{1}{10}-\frac{6 z z-z^{3}}{10}=0.1 \frac{-6 z z-z^{3}}{10}\), that is, \(z\) is lefs than \(\frac{1}{10}\), or O.I, by the quantity \(\frac{6 z+z^{3}}{10}\). Therefore \(n\), or \(2+z\), is lefs than \(2+\frac{1}{10}\), or \(2+0.1\), or 2.1 , by the faid quantity \(\frac{6 z z+z^{3}}{10}\); which, on account of the frmallnefs of \(z\), (which is lefs than \(\frac{1}{10}\),) will be a very fimall quantity in comparifon of \(z\), or of \(\frac{1}{10}\), and, à fortiort, in comparifon of 2 , and confequently may be neglected. And therefore 2.1 will be a focond near value of \(x\), or the root of the propofed equation \(x^{3}-2 x=5\), that will be a litule greater than its true value, but nearer to it than any orther number that confifts of only two places of figures.
Q. E. I.

This is the fuft ftep of Sir Ifac Newton's approximation to the root of the equation \(n^{3}-2 x=5\), after the affumption of the number 2, by conjecture and trial, for its firft near value. And in this firft thep of the approximation Sir Ifaac Newton's and Mr. Kaphfon's methods exactly co-incide.

Art. 15. But in the next Rep of the approximation to the value of \(x\), in the faid equation \(x^{3}-2 x=5\), the two methods are fomewhat different from each other, though the number of new figures of the true value of \(x\), that are exact in the next near values of it refulting from both methods,
thods, is the fame. The difference between the methods in this fecond ftage of the approximation is as follows.

Mr . Raphifon corrects the value of \(x\), or the root of the original equation \(x^{3}-2 x=5\), already found, to wit, 2.1 , (and which is known to be fomewhat greater than the truth,) by fubtracting from it the unknown quantity by which it exceeds \(x\); and which we may call \(v\), and fubftituting 2.1 - \(v\) inftead of \(x\) in the faid original equation, \(x^{3}-2 x=\) 5. whereby it is transformed into another cubick equation, in which \(v\) will be the only unknown quantity; and then he finds a near value of \(v\) by refolving the faid transformed equation as if it were only a fimple equation, or by neglecting the terms which involve the fquare and cube of \(v\), on account of their finallnefs, jult as we before neglected the terms \(6 z z\) and \(z^{3}\) in the foregoing transformed equation \(10 z+6 z z+z^{3}=1\) for the fame reafon. But Sir Iface Newton takes no further notice of the original equation \(x^{3}-2 x=5\), till he has compleated the whole procefs of his approximation; but, 'inftead of the faid original equation, he confiders the former transformed equation, \(10 z+\) \(6 x z+z^{3}=1\), which was derived from it, and inveftigates the value of its root, \(z\), to a greater degree of exactnefs, than that to which it was before obtained. And this he does in the manner following.

Since it has been feen that \(z\) is lefs than 0.1 , let the quantity by which 0.1 exceeds it be called \(v\), fo that \(z\) fhall be \(=0.1-v\); and let \(0.1-v\) be fubftituted, inftead of \(z\), in the transformed equation \(10 z+6 z z+z^{3}=1\). This may be done as follows,

Since \(z\) is \(=0.1-v\), we thall have
\[
\left.z z(\equiv 0.1-v)^{2}\right)=0.01-0.2 v+v v
\]
and \(z^{3}(=0.1-v)^{3}=0.001-3 \times 0.01 \times v+3 \times 0.1 \times v v\).
\[
\left.-v^{3}\right)=0.001-0.03 v+0.3 v v-v^{3},
\]
and \(10 z(=10 \times 0.1-v)=1-10 v_{9}\).
and \(6 z z=0.06-1.2 v+6 v v\),
and confequently
\[
\begin{array}{r}
\left\{\begin{array}{c}
10 z \\
+6 z z \\
+\quad z^{3}
\end{array}\right\}=\left\{\begin{array}{r}
1.00-10 v \\
+0.06-1.2 v+6 v v \\
+0.001-0.03 v+0.3 v v-v^{3}
\end{array}\right\} \\
=1.061-11.23 v+6.3 v v-v^{3}
\end{array}
\]

But \(10 z+6 z z+z^{3}\) is \(=1\).
Therefore 1.061 - I1.23v + 6.3 vv - \(v^{3}\) will likewife be =1. And confequently (adding I 1.23 v to both fides,) we thall have \(1.061+6.3 v v-v^{3}=1+11.23 v\); and, (fubtracting i from both fides,) we fhall have \(0.061+\) \(6.3 v v-v^{3}=11.23 v\), and (neglecting \(6.3 v v\) and \(v^{2}\) as inconfiderable in comparifon of 0.061 and 11.23 v ) we fhall have \(0.06 \mathrm{I}=\mathrm{II} .23 v\), or \(11.23 v=0.061\); and confequently (dividing both fides by II.23,) we fhall have \(v\) (二 \(\left.\frac{0.061}{11.23}\right)=0.0054\). Therefore \(z\), or \(0.1-v\), will be (二 \(0.1-0.0054)=0.0946\), and confequently \(x\), or \(2+z\), will be \((=2+0.0946)=2.0946\). \&. е. 1.

In this manner Sir Ifaac Newton finds the root of the propofed equation \(x^{3}-2 x=5\) to be equal to 2.0946 , which is as near the truth as five figures can exprets it.

Art. 16. He then carries the inveftigation one ftep further, by which he obtains the value of \(x\) exact to nine places of figures; and for this purpofe he proceeds in the manner following.

The laft transformed equation was II.23v \(=0.061+\) \(6: 3 v v-v^{3}\); from which it follows that \(v\) is accurately equal to \(\frac{0.061}{11.23}+\frac{6.3 v v-. v^{3}}{11.23}\), or \(0.0054+\frac{6.3 v v-v^{3}}{11.23}\), which is greater than 0.0054 alone, becaufe 6.3 ev is greater than \(v^{3}\). Since, therefore, \(v\) is greater than 0.0054 , let us fuppole it to be \(=0.0054+2 v\); and let this binomial quantity be fubftituted, initead of \(v\), in the laft transformed equation \(11.23 v=0.061+6.3 v v-v^{3}\), or, rather, in the equation
equastion \(11.23 v-6.3 v v+v^{3}=0.061\), confifting of the fame rerms as the former, but in which the terms involving the unknown quantity \(v\) are all brought to the fame fide of the equation, and ranged according to the powers of \(v_{0}\) beginning from irs lowett power, or the fimple power of \(v_{0}\) This may be done in the manner following.

Since \(v\) is \(=0.0054+w\), we fhall have
\[
\begin{aligned}
&\left.v v(=0.0054+w)^{2}=0.0054^{2}+2 \times 0.0054 \times w+w w^{3}\right) \\
&= 0.000,029,16+0.0108 \times w+w w^{2}, \\
& \text { and } v^{3}=0.0054+w)^{3}=\left.0.0054\right|^{3}+3 \times 0.0054^{2} \times w \\
&+3 \times 0.054 \times w^{2}+w^{3} \\
&= 0.000,000,157,464+3 \times 0.000,029,16 \times w \\
&\left.+0.0162 \times w+w^{2}\right) \\
&= 0.000,000,157,464+0.000,087,48 \times w+ \\
& 0.0162 \times w^{2}+w^{3},
\end{aligned}
\]
and 11.23 v \((=11.23 \times \widetilde{0.0054+w})=0.060,642+\) II. \(23 \times w\),
and \(6.3 v v\left(=6.3 \times \overline{\left.0.000,029,16+0.0108 \times w+w^{2}\right)}\right.\) \(=0.000,183,708+0.068,04 \times w+6.3 w w:\) and confequently \(11.23 v-6.3 v v+v^{3}\) will be \(=\)
\(\left\{\begin{array}{l}\left.\begin{array}{l}0.060,642+11.23 \times w \\ -0.000,183,708-6.068,04 \times w-6.3 \text { wvzu } \\ \left.+0.000,000,557,464+0.000,087,48 \times w+0.0162 z w^{2}+w^{3}\right)\end{array}\right\}\end{array}\right\}\)

\(=0.060,45^{8,449,464+11.162,047,48 w-6.2838 w w^{2}+w^{3} .}\)
But ir.23v-6.3vv \(+v^{3}\) is \(=0.061\).
Therefore \(0.060,45^{8,449,464}+11.162,047,48 \times w\) \(-6.2838 \times w r w+r v^{3}\) will likewife be \(=0.061\); and confequently (fubtracting \(0.060,45^{8,449,464}\) from both fides, ) 11.162,047,48 \(\times w-6.2838 w w+w^{3}\) will be ( \(=\) \(0.061,000,000,000-0.060,45^{8,449,464)}=0.000,541\), \(550,53^{6}\); and (neglecting the terms \(6.2838 w w\) and \(w^{3}\), as inconliderable in comparifon of \(11.162,047,48 \times w\), ) we Shall have \(11.162,047,4^{8} \times v=0.000,541,550,536\), and confe-
confequently \(w\left(=\frac{0.000,547,5 ; 0,536}{111.152,0+7,3^{8}}-=0.000,048,52\right.\). Therefore \(v\), or \(0.0054+w\), will be \((=0.0054+\) \(0.000,048,52)=0.005,448,5^{2}\), and \(z\), or \(0.1-v\), will be \((=0.100,000,00-0005,448,58)=0.094,551,4^{8}\), and \(x\), or \(2+z\), will be \((=2+0.094,551,48)=2.094\), \(55^{1}, 48\); that is, the root of the propofed equation \(x^{3}-2 . x\) \(=5\) will be \(=2.094,551,48\). Q. е. . 1 .

This number \(2.094,551,48\) is exact in all the figures, as will be shewn in a fubfequent article.

Art. 17. Having thus fer forth Sir Ifaac Newton's methad of inveftigating the root of the propofed equation \(x^{3}\) \(2 x=5\) to nine places of figures, we mut now perform the fame thing by Mr. Raphfon's method, in order to make a comparifon between the neceffary operations of the two methods,

Now Mr. Raphfon's method of approximating further to the root of the equation \(x^{3}-2 x=5\), after having found it to be equal to \(2+0.1-\frac{6 z z-z^{3}}{10}\), or to be fomewhat leis than 2.1 , is to put \(v\) for the unknown quantity by which it falls flirt of 2.1 , and then to fubftitute the refidual guantity \(2.1-v\) in the terms of the original equation \(x^{3}\) \(2 x=5\), whereby the fair equation will be transformed into another cubick equation, in which \(v\) will be the only unknown quantity: and then he determines the value of \(v\) by refolving the laid transformed equation as if it was a mere fimple equation, or by neglecting the terms in which the fquare or the cube of a occur. This may be done in the manner following.
Since \(x\) is \(=2.1-\tau\), we foal have \(1 \times x\left(=\overline{2.1-v}{ }^{2}\right.\) \(\left.=2.11^{2}-2 \times 2.1 \times v+8 \mathrm{cc}\right)=4.4^{1}-4.2 v+8 \mathrm{cc}\), and \(x^{3}(=2.1-2)^{3}=2.1^{3}-3 \times 2.1^{2} \times v+8 \pi c=\) \(9.261-3 \times 4.41 \times v+8(c)=9.261-13.23 \times v+\) \&ic.

Sic, and \(2 . x(=2 \times \overline{2.1}-v)=4.2-2 v\), and confequently \(x^{3}-2 . x(=9.261-13.23 \times v+8 c-4.2\) \(+2 v)=5.061-11.23 \times v \& \mathrm{c}_{\mathrm{c}}\).

But \(x^{3}-2 . x\) is \(=5\).
Therefore \(5.061-11.23 \times v 8 c\), will likewife be \(=5\), and confequently (adding \(11.23 \times v\) to bo:h fides,) we fhall have \(5.061=5+11.23 \times v\), and (fubtracting 5 from both fides,) we fhall have \(11.23 \times v=0.06 \mathrm{I}\), and confequently \(v\left(=\frac{0.061}{11.23}\right)=0.0054\). Therefore \(x\), or \(2 . \overline{1}\) - v, will be \((=2.1-0.0054)=2.0946\); or 2.0946 will be a third near value of the root of the propofed equa\(\operatorname{tion} x^{3}-2 x=5\).
e. E. I.

This third near value of \(\tilde{x}\) is the very fame with the third near value of it obtained above, in art. 15, by Sir Ifanc Newton's method.

Art. 18. In this ftep of the approximation, by which we obtain the number 2.0946 for the third near value of the toot of the propofed equation \(x^{3}-2 x=5\), the principal difference between the two neethods feems to confift in this, to wit, that by Mr. Raphfon's method we are obliged to raife the two firtt terms of the powers of the compound quantity 2.1 - \(\tau\), and confequently to raife the powers of the number 2.1, which confits of two figures; whereas in Sir Iface Newton's method of proceeding, we had occafion only to raife the powers of the compound quantity \(0.1-v_{2}\) and confequently to raife the powers of the number o.I, which confifts of only one figure; which is fomewhat eatier than to raife the powers of 2.1. But both operations are fo cafy, that the difference of the labour of performing them is hardly worth confidering. And, with refpect to the fimplicity of conception in the two methods, Mr. Raphfon's method feems to be preferable to Sir Ifaac Newton's; becaufe the former always refers to the original equation \(x^{3}-\) \(2 x=5\), whereas the latter method refers to the precceding transformed equation \(10 z+6 z z+z^{3}=1\), which has
more terms and larger co-efficients than the original equattion \(x^{3}-2 x=5\).

Art. 19. But in the next flep of the approximation by Mr. Raphfon's method, we fhall find the labour of raifing the powers of the valuc of \(x\) already found, to wit, the powers of 2.0946 , to be confiderably greater than that of raifing the powers of the lait preceeding fupplement of it according to Sir Ifaac Newton's method, that fupplement being only the decimal fraction 0.0054 , in which there are only two fignificant figures. This will appear by performing this ftep of the approximation by Mr. Raphfon's method; which may be done as follows.

Art. 20. The laft near value we found for \(x\), or the root of the equation \(x^{3}-2 x=5\), by Mr. Raphfon's method, was 2.0946 . Now this near value of \(x\) is greater than its true value. For, if we fuppofe \(x\) to be \(=2.0946\), we fhall have \(x^{3}\left(=2.0947^{3}\right)=9.189,741,550,536\), and \(2 . x\) ( \(=\) \(2 \times 2.0946)=4.1892\), and confequently \(x^{3}-2 x(=\) \(9.189,741,550,536-4.1892)=5.000,541,550,536\); which is greater than 5 , or the abfolute term of the equation \(x^{3}-2 x=5\) : and confequently 2.0946 mutt be greater than the true value of the root of the faid equation.

We will therefore fuppofe \(x\) to be \(=2.0946-w\), and fubftituce this refidual quantity inftead of 2, in the terms of the equation \(x^{3}-2 x=5\).

Now, fince \(x\) is \(=2.0946\) - \(w\), we flall have \(x:(=\) \(\left.\left.2.0946-\left.w\right|^{2}=2.0946\right)^{2}-2 \times 2.0946 \times w+8 c\right)=\) \(4.387 .3+9,15-4.1892 \times w+8 c \mathrm{c}\), and \(x^{3}(=2.0946-20)^{3}\) \(=2.0940^{3}-3 \times 2.0940^{2} \times v+8 c=9.189,74 \mathrm{I}, 550\), \(536-3 \times 4.337,349,16 \times w+8 c)=9.189,741,5,50,536\) \(-13.162,047,48 \times w+i x c\), and \(2 . x(=2 \times \overline{2.0940-w)}\) \(=4.1892-2 w\), and confequently \(x^{3}-2 x=\)
\(\left\{\begin{array}{l}9.189,74 \mathrm{r}, 550,536-13.162,047,48 \times w+8 \% c \\ -4.189,2 \times 2.000,000,00 \times w\end{array}\right\}\)
\(=5.000,541,550,535-11.162,047.48 \times v+8 i c\).
But

But \(\dot{x}^{3}-2 x\) is \(=5\).
Therefore \(5,000,541,550.536-11.162,047,48 \times w+\) \(\& \mathrm{c}\), will be \(=5\); and confequently (adding \(11.162,047,48\) \(\times w\) to both fides, \()\) we thall have \(5 \cdot 000,54^{1,550,536}=5\) \(+11.162,04,7,48 \times w\), and (fubtracting 5 from both fides, \(0.000,54 \mathrm{~T}, 550,536=11.162,047,48 \times w\), or II.162, \(047,48 \times w=0.000,54 \mathrm{I}, 550,536\). Therefore \(w\) will be \(\left(=\frac{0.000,541,550,536}{11.162,047,4^{8}}\right)=0.000,048,52\); and confequently \(x\), or \(2.0946-w\), will be ( \(=2.094,600,00-0.000,048,52\) ) \(=2.094,55 \mathrm{I}, 48\). Therefore \(2.094,55^{1}, 48\) will be a fourth near value of \(x\), or the root of the propofed equation \(x^{3}\) \(2 x=5\) 。 e. E. I.

This fourth near value of \(x\) is the very fame with the fourth near value of it obtained above, in art. 16; by Sir Iface Newton's method.

Art. 21. In this laft ftage of Mr. Riphfon's approximation to the root of the propofed equation \(x^{3}-2 x=5\), we have been obliged to raife the powers of the number 2.0946 , which confifts of five places of figures; whereas in Sir Ifaac Newton's way of proceeding we only raifed the powers of the decimal fraction 0.0054 , which contains only two fignificant figures. But then in that way of proceeding we were obliged to multiply \(v\), or \(0.0054+w\), into 11.23, and \(v v\), or \(0.000,029,16+0.0108 \times v+w^{2}\), into 6.3 ; whereas in Mr. Raphfon's way of proceeding we have only to multiply \(x\), or 2.0946 - w, into the very fimple co-efficient 2. So that, upon the whole, the difference of the labour of computation in the two methods is not very confiderable, though it is rather lefs in Sir Ifaac Newton's method thari in Mr. Raphfon's. But in point of fimplicity of conception Mr. Raphfon's method feems much fuperion' to Sir Ifaac's, becaufe it never lofes fight of the original equation \(x^{3}-2 . x\) \(=5\), which is to be refolved.

And, further, we may obfcrve, in favour of Mr. Raphfon's method, that it never requires us to raife any more 4 F
than
than the two firft terms of the binomial and refidual quantities \(2+z\), and \(2.1-v\), and 2.0946 - \(w\), which are fubftituted inftead of \(x\) in the original equation \(x^{3}-2 x=\) 5 ; whereas in Sir Ifaac Newton's method it is neceffary to raife the other terms of the binomial and refidual quantities \(2+z\), and \(0.1-z\), and \(0.0054+w\); which increafes the number and intricacy of the operations of the inveftigation. And therefore, upon the whole, I confider Mrr. Raphfon's method of approximating to the values of the soots of fuch equations as preferable to Sir Ifaac Newton's.

A Prof of the Exactucys of the Number 2.094,551,4S, that has bcen found by the foregoing Metbods of Approximation for the Root of the Equation \(x^{3}-2 . x=5\).

Art. 22. It remains that we prove the work to have becn rightly performed, or that we fhew that the laft number. \(2.094,55^{1}, 48\), obtained by both there methods, is a very near value of the root \(x\) of the propofed equation \(x^{3}-2 x\) \(=5\), and that we determine to how many figures it is exact.

Now the plaineft and beft method of doing this is to fubftitute the nunber \(2.094 .255^{1}, 48\), inftead of \(\check{\infty}\), in the compound quantity \(x^{3}-2 x\), in order to difcover whether the quantity refulting from this fubftitution will be greater, or lefis, than 5 , or the abfolute term of the propofed equation \(x^{3}-2 x=5:\) and, if it Chall appear that the faid refult is greater than 5 , we may conclude that the faid number \(2.094,55 \mathrm{r}, 48\) is greater than the true value of \(x\) in the laid equation; and, if it thall appear that the faid refult is lefs than 5 , we may conclude that the faid number is lefs than the true value of \(x\). And, when this has been thus difco-
difcovered, we muft, in the next place, endeavour to determine to how many figures this number \(2.094,55 \mathrm{I}, 48\) coincides with the more accurate value of \(x\) : and, for this purpofe, we muft, if this number be lefs than \(x\), increafe it by the addition of an unit in the lalt place of figures; and, if it be greater than \(x\), we muft diminifh it by the fame fmall quantity, and then fubftitute the new number thereby obtained, to wit, \(2.094,55^{1}, 49\), or \(2.094,55^{1}, 47\), inftead of \(x\), in the compound quantity \(x^{3}-2 x\). And, if it fhal! appear that the value of that compound quantity refulting: from that fubftitution is greater, or lefs, than 5, we may conclude that the number \(2.094,551,49\), or \(2.094,551,47\), is accordingly greater, or lefs, than the true value of \(x\), in the equation \(x^{3}-2 x=5\), and confequently that the faid true value is of an intermediate magnitude between 2.094, \(55^{1,49}\) and \(2.094,55^{1,48}\), or between \(2.094,55^{1,48}\) and 7.094,55I, 47.

Now, if we take \(x=2.094,551,48\), we fhall have
\[
x_{i c}=4 \cdot 3^{87}, 145,902,370,190,4,
\]
and \(x^{3}=9.189,102,942,785,4 \times 7,810,201,79^{2}\),
and \(2 x=4.189,102,95\),
and confequently
\(x^{3}-2 x=4.999,999,982,785,4 \mathrm{I} 7,810,201,792\); which number is fomewhat lefs than 5 , or the abfolute term of the propofed equation \(x^{3}-2 x=5\). Therefore 2.094, 551,40 mult be fomewhat lefs than the true value of \(x\) in the faid equation,

Secondly, fince \(x\) is greater than \(2.094,5^{1}, 48\), we muft now compare it with \(2.094,55^{1}, 49\), by fubftituting that number inftead of it in the compound quantity \(x^{3}-2 x\).

Now, if \(x\) is taken \(=2.094,55 \mathrm{I}, 49\), or \(2.094,55^{1}, 48\) 中 \(0.000,000,01\), we thall have \(x^{3}(=2.094,551,48)^{3}+3 x\) \(\left.2.094,55^{1,48}\right)^{2} \times 0.000,000,01+3 \times 2.094,55^{1,48} \times\) \(0.000,000,011^{2}+0_{0.000,000,01}{ }^{3}=9.189,102,94^{2}, 8 \mathrm{c},+\) \({ }_{4} \mathrm{~F}_{2}\)
\(3 \times 4.387,145,902,8 c \times 0.000,000,01+0.000,000,000\), \(\& x c+0.000,000,000, \&<c=9.189,102,94^{2}, \& c+\) \(13.161,437,706, \& c \times 0.000,000,01+0.000 .000,000, \& c\) \(+0.000,000,000, \& c=9.189,102,942, \& c+0.000\), \(000,13 \mathrm{I}, 8 \mathrm{Ec}+0.000,000,000,8 \mathrm{Ec}+0.000,000,000,8 \mathrm{zc})\) \(=9.189,103,073,8 \mathrm{c}\); and \(2 \times(=2 \times 2.094 .551,49)=\) 4.189,102,98; and confequently \(x^{3}-2 x(=9.189,103,07\), \(\& c-4.189,102,98)=5.000,000,09, \& c\); which is greater than \(5^{\circ}\). Therefore \(2.094,551,49\) mult be greater than the true value of \(x\) in the equation \(x^{3}-2 x=5\).

But it has been fhewn that \(2.094,55 \mathrm{I}, 48\) is lefs than the faid true value.

Therefore the true value of \(x\) in the equation \(x^{3}-2 x\) \(=5\), will be of an intermediate magnitude between 2.094 , 551,48 and \(2.094,551,49\); and confequently all the figures of the number \(2.094,551,48\), which we found by the forsgoing proceffes of Sir Ifaac Newton's and Mr. Raphfon's methods of approximation for a fourth near value of the root of the equation \(x^{3}-2 x=5\), are exact. Q.E. D.

Of the Difficuly of finding a, or the Firft near Value of the Roos of an sifferled Equation, in certain Cajes.

Art. 23. There is another difficulty that occurs fometimes in refolving high equations by approximation, whether by Sir Ifaac Newton's method or by Mr: Raphfon's ; which in deed are fubftantially the fame. The difficulty I mean, is that of finding the firft near value of the root fought (which we have called \(a\) in this difcourfe, ) to one, or two places of figures, in order to make it the bafis of a further approximation to the true value of the root by either of thefe methods of approximation. Now, when the equation is known to have but one root, that is, but one real and affirmative roor,
(for all other roots are not worth confidering, this difficulty will not be great ; becaufe it will always be eafy to find a tolerably near value of the root by conjectures and trials, and particularly by fuppofing \(x\), or the root of the propofed equation, firtt, to be equal to 1 , and \(2 d\) ly, to be \(=10\), and 3 dly, to be equal to fome fhort intermediate number confifting of only one figure, or, if the root appears to be greater than 10 , by fuppofing it to be equal to 100 , or 1000 , and afterwards fuppofing it to be equal to fome fhort intermediate number confifting of two figures; as was done above in art. 5, in finding the firft near value of \(x\) in the equation \(n^{5}+7 x^{4}+20 x^{3}+155 x x=10,000\). But, when the equation confifts of terms connected together partly by the fign + , and partly by the fign - , and confequently it may, for aught we know to the contrary, have two, or three, or four, or more real and affirmative roots, which may be of very different magnitudes, the aforefaid method of conjectures and trials (though by no means ufelefs, ) is lefs expeditious and fatisfactory in affifting us to find the firtt near value of one of the roots than in the former cafe; and we are often puzzled to know which of the roots it would be moft expedient to begin to inveftigate. Now, in moft of thele cafes, I believe, it will be advifeable to begin by inveftigating the leaft root, and for that purpofe to expunge from the equation all the terms that have the fign - prefixed to them, and to find, to about two places, or, at moft, to three places, of figures, the root of the remaining equa-: tion. For this root will always be lefs than the leaft root of the original equation, if it really has (as it appears to have,) more than one real and affirmative root; or it will be lefs than the orly root of the original equation, if (notwithftanding the appearances to the contrary,) it really has but one root. When the root of this fecond, or curtailed, equation, has been difcovered, it may be called \(a\), and made the ground-work of an approximation to the leaft root of the original equation, and the binomial quantity \(a+z\) may be fubftituted in the original equation inftead of \(x\), and the transformed equation thence arifing may be refolved as if it was a mere limple equation, agreeably to Mr. Raph-
fon's method of approximation; and the value of \(z\) thereby obtained, being added to \(a\), will give us a known value of \(a+z\), or a fecond near value of the lealt, or the only, root of the propofed equation: after which we may proceed to find the faid leaft, or only, root of the propofed equation by a further profecution of Mr. Raphfon's method of approximation above-defcribed. This method of finding a firft near value, \(a\), of the lealt root of a propofed equation that feems to have more than one real and affirmative root, is explained more at length in the third volume of the Collection of Mathematical Tracts, called Scriptores Logaritbmici, in my Difcourfe on the Reverfion of Infinite Seriefes publifhed in that Volume; to which I refer the reader. See the faid 3d Volume, pages \(724,725,726,72.7, \& c, \ldots\) to page \(7^{61}\). And, with this improvement of it in the cafe of equations that have, or feem to have, more than one real and pofitive roor, I believe it may fafely be affirmed that Mr. Raphfon's Method of Refolving Affected Equations is the beft General Method of effecting that purpofe in all equations above quadraticks that has hitherto been difcoyered.

End of the Objervations on Mrr. Raphfon's Method of Refolving Affcited Equations by Approximation.

\section*{T A B L E}

OFTHE

\section*{SQUARE AND CUBE ROOTS OF THE NATURAL} NUMBERS \(1,2,3,4,5,8 c\), to 180 ;

Being Table XIX. of Mr. James Dodfon's valuable Tables of Computation, intitled The Calculator, that were publifged in the Year 1747.
\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline & & & & & & & & \\
\hline & 1.000,000 & & & & & & , & \\
\hline 2 & & & 32 & & & 2 & \(7.874,008\) & \\
\hline 3 & 1.732, & 1.442,250 & 33 & & & 3 & \% & 57 \\
\hline 4 & \(2.000,000\) & & 34 & & & & -.00, 0 & 4.000,000 \\
\hline 5 & \(2.236,068\) & & 35 & & & & & \\
\hline 6 & -40 & 1.817,121 & 36 & 6.0 & \(3 \cdot 301,927\) & & & 4.041,240 \\
\hline 7 & & & 37 & 6.0 & & & & \\
\hline & & 2.000,000 & 38 & & & 68 & & \\
\hline 9 & \(3.000,000\) & 2.080,084 & 39 & & 3-391, 211 & & & \\
\hline 10 & 3.162,278 & \(\underline{2,154,435}\) & 40 & & 3-419,952 & & & \\
\hline & & & & & & & & \\
\hline & 3.464 & 2.2 & & & & 72 & & \\
\hline 13 & 3.60,5551 & & 43 & & 3.503,39 & 8 & & \\
\hline & & \(2 \cdot 410,142\) & 44 & 6.633 & 3.530,348 & 74 & 8. & 4.1.88,33 \\
\hline 1 & & 2.466,212 & 45 & 6. 70 & & 75 & & \\
\hline & & \(2.519 .8+2\) & 46 & & & 768 & & \\
\hline & & & 47 & & & & & \\
\hline 18 & & 2.620 & 48 & 6.92 & & & & \\
\hline & & 2.668 & & 7.000,00: & 3 3, & & & \\
\hline 20 & 4-472,130 & 2.714, & 50 & 7.0 & 3.684,031 & & 72 & 4.308,870 \\
\hline 21 & & & & & & 81 & & \\
\hline 22 & & & 52 & & & 82 & & \\
\hline 23 & & & 53 & 7.28 & \(3 \cdot 756,286\) & 83 & 9.1 10,43 & \\
\hline 24 & +.89 & & 54 & & & & & \\
\hline & & ?. & 55 & \(7 \cdot+\) & & & & \\
\hline 20 & & 2.962,496 & & & & & 9.2 & \\
\hline 27 & \(5 \cdot 19\) & 3.000,000 & 57 & & & & & 4.431,047 \\
\hline 28 & . 29 & 3.c36,589 & & & & & & \\
\hline 29 & & 3.072,317 & & 7.081 & & & 9. & \\
\hline & 5 & & & 7.745 & & & - & \\
\hline & R & Cube & & Sn. Ro & Cube & & S. Ko & 起 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & Sq. Root. & \\
\hline & & \\
\hline 92 & 9.591,663 & \\
\hline 93 & 9.643,651 & \\
\hline 94 & & \\
\hline & 19.746,794 & \\
\hline 9 & & \\
\hline & 9.8 & \\
\hline y & 19.899,495 & \\
\hline & 9.94 & \\
\hline 100 & 10.000,00 & \\
\hline & 10 & \\
\hline & 10.0 & 4. \\
\hline & 10.1 & \\
\hline & 10.1 & \\
\hline & 10. & \\
\hline & 10.2 & +. \\
\hline & 10.344,08 & 4-747,459 \\
\hline & 10.3 & 4.762 \\
\hline & 10.440 & \\
\hline & 10.4 & +791 \\
\hline & & \\
\hline & 10.5 & 1.8 \\
\hline & 10.6 & \\
\hline & 10.677 .08 & \\
\hline & \(10.723,8\) & \\
\hline & \(10.710,33\) & +.876,999 \\
\hline & 10.816 & \\
\hline & 10.862,78 & t. 90 \\
\hline & 10.908,71 & +.9 \\
\hline & \(10.954,45\) & \\
\hline & iq. Roo & he \\
\hline
\end{tabular}

\title{
A \\ \\ Г A B L E \\ \\ Г A B L E OE THE \\ SQUARE-RCOTS AND RECIPROCALS OF ALL NUMBERS,
}

\author{
From I to 1000.
}

Computed by Dr. Charles Hutton, Profefor of Mathematicks at the Royal Military Academy at Woolzeicb in Kent.


\begin{tabular}{|c|c|c|c|c|c|}
\hline & Reciprocal & Square Root． & No． & ．Reciprocal & Square Root． \\
\hline & 0．009，900，9 & \[
10.0+9,975,621,1
\] & 1 & \[
50006,622,5
\] & \[
12.288,205,727,4
\] \\
\hline & 0．009，803，9 & \(10.099,504,958,4\) & 52 & 20．006， 5 ，8，9 1 & \(12 \cdot 328,829,005,9\) \\
\hline & 0．009， 708,7 & 10．148，591，565，1 & 153 & \(30.006,535,911\) & 12 \\
\hline & 0．009； & 10．198，039，027，2 & 154 & 0．006，493，51 & 12 \\
\hline & 0．009， 52 & 10．246，950，766，0 & 56 & \(50.006,451,61\) & \\
\hline & 0．000，43 & 10．295，630，141，0 & 156 & 60．006，410，3 & \\
\hline & 0．009， \(3+5\) & \(10.344,080,432,8\) & & 70．006，369， 4 & \\
\hline & －． \(0009,259,2\) & \(10.392,30+8+5\) & & 3 0．006，329， 1 & \(12.569,8050,090,0\) \\
\hline & －．009， & 10．140，306，508，9 & & \(90.006,289,3\) & ［2．609，520，212，9 \\
\hline & o．cog； & \(10.488,088: 481,1\) & & 0＇0．006，25 & 12．649， \(110,640,7\) \\
\hline & －．0c9， \(0^{0.9}\) & \(10.535,6 ; 30752,0\) & & \(10.006,211,2\) I & 12．688，577，540，4 \\
\hline & 0．008，928，6 & \(10.58,005,244,3\) & & \(0.006,172,81\) & 12.727 \\
\hline & \(0.008,8+9,6\) & \(10.530,5+5,312,7\) & & 0．006，135，0 1 & I \\
\hline & \(0.008,77\) 5，9 & 10．677，078，252，0 & & 0． & \(12.806,248,474,9\) \\
\hline & \(0.008,695.7\) & \(10 \cdot 123,305,264,8\) & & 0．006，060，6 1 & \(12.845,232,578,7\) \\
\hline & 0．008，620，7 & 10．770，329，614，3 & & 0.005 & \(12.884,098,726,7\) \\
\hline \({ }_{11} 1_{7}\) & 0．008，547，0 & \(10.816,553,826,4\) & & \(0.005,988,011\) & \(12.922,547\) \\
\hline & 0．008，47 & 10．852，780，495，2 & & 0.0 & \(12.951,481,396,8\) \\
\hline & o．cos， & 10.903, & & 900．005，917，2 1 & 13．000，000，000， \\
\hline & 0.008, & 95 & & －05 & \\
\hline 1210 & 0．008， & 1．000，000， 0000 & & \(10.005,84\) & ．076，696， 8 ；0， 6 \\
\hline c & c．008，196，7 & 11．045，361，017，？ & & －． & \(13.114,977,0+8,6\) \\
\hline & 0．008，130，0 & 11．092，535，506，4 & & 1730000，780，31 & \(13.152,946,438,0\) \\
\hline & 0．008，064，5 & \(11.135,528,725\) ， & & ＋0．005，147， 1 & \(3 \cdot 190\), \\
\hline & 0．008， & 11．180，3．39，887 & & 0．005，754，31 & \(13 \cdot 2=8,7\) \\
\hline & 0.007 .936 & If．224，97ニ， 160,3 & & 05，08 & \(13.266,499,1\) \\
\hline & 0.007 & 269， \(2^{2-669,6}\) & & \(0.005,649,7\) & ［3．304，134，645，\({ }^{\text {a }}\) \\
\hline & & 313，708，＋99，0 & & \(0.005,618,01\) & 13．341，6 \\
\hline & 0.0 & 357， \(16,691,6\) & & \(90.005,586,6\) I & 70， \\
\hline & 0．007 & 1，754，251，0 & & 0，0．005，555，5 \({ }^{1}\) & \\
\hline & &  & & 5，524，911 & \(13.453,6\) \\
\hline & & （1．489，1ここ，293， & & \(820.005,49+251\) & \(13.490,7\) \\
\hline & 0.00 & \(11.532,5 \mathrm{G}\), & & &  \\
\hline 1340 & \(0.007,462\) & \(11.575,836,902,8\) & & & 13.56 \\
\hline 135 & 0．007，407 & \(11.618,95 \mathrm{C}, 23 \mathrm{S,6}\) & & & \(13.601,470,508\) \\
\hline 1360 & \(0.007,35=9\) & \(11.661,4,03,789,7\) & & 860．00 & \(13.638,181,697\), \\
\hline 1370 & \(0.007,200,3\) & 11．704， \(6099,911,1\) & & \(8_{7} 10.0\) & 13.674 \\
\hline 138 & \(0.007,240,4\) & 11．747， \(34,380,8\) & & ， 810.0 & 13.71 \\
\hline ＇39 & \(0.007,1542^{2}\) & \(11.789,826,122,6\) & & 89，0．005，291，01 & \(113.747,727,084,9\) \\
\hline & \(0.007,14^{2}, 9\) & \(11.832,159,566,2\) & & 900．005，263，2，1 & \(13.784,048,55^{2}, 1\) \\
\hline 1410 & \(0.007,092,2\) & 11．874，342，037，0 & & \(10.005,255,6\) & \(1.3 .820,2,4,96 \mathrm{r}, 1\) \\
\hline  & \(0.007,0 \pm 2\) & 11．916，37，5，287， 8 & & 20000 \(, 208,31\) & \(13.856,406,4\) \\
\hline 1430 & 0．006，993 & \(11.958,260,743,1\) & & \(33^{0.005,181,31}\) & \(13.892,443,98\) \\
\hline & \(0.026,9+4\) & 12．000，000，000， & & ＋ \(0.005,154,61\) & \(13 \cdot 928,388,277,2\) \\
\hline & \(0.005,5,96,6\) & 12．041，504：578，8 & & \(550.005,128,21\) & \(13 \cdot 964,2+0,043,8\) \\
\hline \({ }^{1} 460\) & \(0.006,8+9,3\) & ［2．083，045，973，6） & & 9＋0．005，102，0 & \(14.000,000,00\) \\
\hline & \(0.006,802,7\) & 12．124，355，653，0 & & －10．065，076，1 1 & 14．035，668， \\
\hline & \(0.006,756,7\) & 12．165，525，060，6 & & \(8,0.005,050,5{ }^{\text {1 }}\) & 14．071，247， \\
\hline 1490 & \(0.006,711,4\) & 12，206，555，615，3 & & 5，0 & 1 ＋ \\
\hline & 0006, & 12，247，448，713，9 & & & \\
\hline
\end{tabular}

No. 020.003,3 \(11,317 \cdot 378,147,106,0\) \(3030.003,300,3\) [7.406,895,185,5 \(3040.003,289,517 \cdot 435,595,774,2\) \(3050.023,278,717 \cdot 464,249,196,6\) \(3060.003,268,017 \cdot 492,855,684,5\) \(3070.003,257,317 \cdot 521,415,467,9\) \(3080.003,246,8\) I \(7 \cdot 549,928,774,8\) \(3090.003,236,2\) 17.578,395,831,2 \(3100.003,225,8\) 17.606,816,86 I, 7 3 II \(0.003,215,417.635,192,088,5\) \(3120.003,205,117.663,521,732,7\) \(3130.003,!94,9)\) 17.691,806,013,0 \(3140.003,18+, 717 \cdot 7=0,045,146,7\) \(3150.003,17+, 617 \cdot 748,239,349,3\) \(316,0.003,164,6\) 17.776,388,8 34,6 \(3170.003,154,617.804,493,814,8\) \(3180.003,144,7 \quad 17.832,554,500,1\) \(3190.003,134,817.860,571,009,5\) \(3200.003,125,17.888,543,820,0\) 3210.003, I 15,3 I \(7 \cdot 916,472,86,7,2\)
\(3220.003,105,6 \mid 17.9+4,358,744,9\) \(3230.003,096,017.972,200,755,6\) \(0.003,086,+18.000,000,000,0\) 32; \(0.003,0-7,9,918.027,756,377,3\) j26 0.003,067,5 I IS.0 55, +70,085,3 \(3270.003,058,1,18.083,141,320,0\) \(3^{28} 0.003,048: 8\) IS. \(110,770,275,3\) \(3290.003,039,5\) I8. I 38,357, 147,2 \(330,0.003,03031\) I \(8.16 ;, 902,12+, 6\) \(3310.023,02121\) 18.193, 405,3937 \(3320.003,012,0,18.220,867,15^{8,3}\) \(3330.003,003,018.245,28-, 500,0\) \(3340.002,994 \times 0 \quad 18.275,666,882,5\) \(3350002,985,118.303,005,217,7\) \(3360.002,976,218.330,302,779,8\) \(3370.002,967 \cdot 4\) (8.357,550,750,7 \(3380.002,95^{8,5} 18.384,775,310,9\) \(3390.002,949,9\) 18.411,952,639,5 \(3400.002,94^{1,2}\) 18.439,08S,914,6 \(3410.002,932,6: 18.4^{66}, 185,312,6\) \(3420.002,924,0\) 15.493,2.42,008,9 \(3430.002,915,5\) IS \(520,250,177,5\) \(3440.002,907,018.547,236,991.0\) \(3450.002,89^{8,6118.574,175,621,0}\) \(3460.002,800,2\) I \(8.601,075,237,7\) \(3470.002,881,818.627,936,010,2\) \(3430.002,873,618.654,758,106,2\) 349 0.022, \(865,318.681,5+1,692,3\) 3500.022, 857,111.708,2866,933.9
\begin{tabular}{|c|c|c|}
\hline No. & Keciprocal & Siqua \\
\hline & 0.002, 8+9,0 & \\
\hline & 0.002,840,9 & \(18.761,663,039,3\) \\
\hline & \(0.002,832,9\) & 18. \(788,294,228,1\) \\
\hline & 0.002, 824,8 & \(18.814,887,722,2\) \\
\hline & 0.002,816,9 & \(18.8+1,443,681,4\) \\
\hline & 0.002,809,0 & \(18.867,962,264,1\) \\
\hline 357 & 0.00三,801,1 & \(18.894,443,627,7\) \\
\hline \(35^{8}\) & \(0.002,793,3\) & \(18.920,887,928,4\) \\
\hline & \(0.002,785,5\) & \\
\hline & \(0.002,777,7\) & 18.973,665,961,0 \\
\hline & 0.002,770, 1 & 19.000,000,000,0 \\
\hline & \(0.002,762,4\) & I \(9.026,297,590,4\) \\
\hline & 0.002,754,8 & \(19.052,558,883,3\) \\
\hline & 0.002,747,3 & 19.078,78 \\
\hline & 0.002,739,7 & 19.104,973, \\
\hline & \(0.002,7.32,2\) & 19.131,126,469,7 \\
\hline & 0.002, \(7^{24} 4,8\) & 19.157,244,0 \\
\hline & \(0.002,717,4\) & 19.183,326,00 \\
\hline 3 & 0.002,710,0 & 19.209,372,712,3 \\
\hline & 0.002,702,7 & \(19.235,384\) \\
\hline 371 & 0.002,695:4 & \(19.261,360,284,3\) \\
\hline 5 & 0.002,688,2 & \(19.287,301\) \\
\hline & 0.002,68 & \(19.313,207,915,8\) \\
\hline & 0.002 & 19.339 \\
\hline & 0.002,663,6 & \(19.364,916\) \\
\hline & 0.002,659,6 & 19.390,710 \\
\hline & 0.002,65 & \(19.416,487,838,0\) \\
\hline & 0.002,67 & 19-44~, 222 \\
\hline & 0.002,6 & 19.467,9 \\
\hline 380 & 0.002,631,6 & \(19.493,588,689,6\) \\
\hline & \(0.002,624,7\) & 19.519,221, \\
\hline & 0.002, 17.8 & \(19.544,820,285\) \\
\hline & 0.002,611,0 & \(19 \cdot 570,385,790,8\) \\
\hline & -.002,504,2 & \(19.505,917,9+2\) \\
\hline & 0.002,597,4 & \(19.621,416,870,3\) \\
\hline & 0.002,590,7 & 19.646,882 \\
\hline & 0.002,584,0 & 19.672 \\
\hline & \(0.002,577,3\) & 19.697,715,603,6 \\
\hline & -0.002,5,0,7 & \(19.723,082,923,1\) \\
\hline & \(0.002,564,1\) & \(19.748,417,6,88,1\) \\
\hline & 0.002,557,5 & 19.773,719,03.3,3 \\
\hline & \(0.002,551,0\) & 19.798,989,873,2 \\
\hline & 0.002, 544,5 & \(19.824,227,601,6\) \\
\hline & 0.002,538, & 19.849,433,241,3 \\
\hline & 0.002,531,6 & \(19.874,606,914,4\) \\
\hline & 0.002,525,2 & I \(9.399,748.54{ }^{2}, 1\) \\
\hline & \(0.002,5 \mathrm{IS}\), & \(19.924,85^{8,8} 45,2\) \\
\hline & 0.002,5 12,6 & 19.949,937,343,3 \\
\hline & 0.002,506,3 & 19.9ア4,984,355.4 \\
\hline & 0.002,5 & 20.000,000,000 \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|}
\hline & 0. Reciprocal & Square Root. & No. & Reciprocal & Square Root. \\
\hline & 0.002,493,8 20 & 20.024,984,394,5 & & 10.002,217,3 \({ }^{2}\) & 1.1.236,760,581,61 \\
\hline & \(0.002,4^{8} 7,6=0\) & 20.049,937,655,8 & 452 & \(20.002,212,4{ }^{2}\) & \(21.260,291,625,50\) \\
\hline & \(30.002,4^{81},+20\) & 20.074,859, 899,9 & 453 & \(3^{0.002,207,5}\) 2 & \(21.283,796,653,8\) \\
\hline & \(0.002,475,2=20\) & 20.099,751,242,2 & 54 & \(40.002,202,6{ }^{2}\) & \(21 \cdot 301,275,752,7\) \\
\hline & \(0.002,469,120\) & 20,124,611,797,5 & +55 & \(50.002,197,8\) & \(21.330,729,007,7\) \\
\hline & \(0.002,453,1=12\) & 20.149,441,579,6 & 456 & \(60.002,193,01\) & \(21.354,156,504,1\) \\
\hline & \(0.002,457,0=1\) & 20.174,241,001,8 & & , \(0.002,188,2\) & \(21.377,55^{8,3}\) \\
\hline & \(0.002,45 \mathrm{I}, 02\) & 20.199,009,87 & & 80.0 & \\
\hline & \(0.002,44 ;, 0 \mid 2\) & \(20.223,748,416,2\) & & 90.00 & \\
\hline & \(0.002,439,0=\) & \(20.248,450,731,3\) & & \(600.002,173,9\) & 21.447:610,589,5 \\
\hline & \(0.002,433,1{ }^{2}\) & \(20.273,134,932,7\) & 461 & 610.002,169,2 & 2T.470,910,553,6 \\
\hline & 0.002,427,2 2 & \(20.297,783,130,2\) & 462 & 62 0.002, 164 & 21.494,185,257,9 \\
\hline & \(0.002,421,3{ }^{2}\) & \(20.322,401,432,9\) & 463 & \(630.002,159,8\) & 21.517,434,791,4 \\
\hline & \(0.002,415,5{ }^{2}\) & \(20.346,989,949,4\) & & \(640.002,155,2\) & \(21.540,65.9,228,5\) \\
\hline & \(0.002,409,6{ }^{20}\) & 20.371,548,787,5 & & \(50.002,150,5\) & 21.563,858,65 \\
\hline & 0.002,403,8 \({ }^{20}\) & \(20.396,078,054,4\) & & 600.002,145,0 & \(21.587,033,1442\). \\
\hline & 0.002,398,1/2 & \(20.420,577,856,7\) & & 670.002, & 21.610, 182,785, \\
\hline & 0.002,392,32 & 20.445,0,48,300,3 & & 680.002 & 21.633 \\
\hline & 0.002,386 & \(20.469,489,490,5\) & & 690.002 & 21.656,407,827,7 \\
\hline & \(0.002,38\) r, 02 & 20.493,901, 531,9 & & \(700.002,127,7\) & \(21.679,483,388,7\) \\
\hline & 0.002, \(375,3{ }^{2}\) & \(20.518,284.528,7\) & & \(710.002,123,1\) & 21.702, \(534,414,2\) \\
\hline & 0.00 & 20.542,638,584,2 & & \(720.002,118,7\) & \(21.725,560,982,4\) \\
\hline & 0.002,36+1: \(=\) & 20.566,963,801,2 & & \(730.002,114,2\) & 21.748,563,170, \\
\hline & 0.002,358,5 & \(20.591,260,282,0\) & & \(740.092,109) \cdot 7\) & =1.771,541,05711 \\
\hline & 0.002,352,9 & 20.615,528,128,1 & & \(750.002,105,3\) & 31.794,494,71797 \\
\hline & 0.022,347,4 & 20.639,767,440,6 & & \(60.002,100,8\) & 21.817,424,229,3 \\
\hline & 0.002,341,9 & 20.663,978,319, & & \(70.022,006,4\) & 4 21. \(8.40,329,6\) \\
\hline & 0.002,33 \({ }^{\text {, }}\), & 20,698, 160,865,6 & & 78 c.002,092, & 21.863,211,109,1 \\
\hline & 0.002,331,0 & 20.712,315,177,2 & & \(79.0 .002,087,7\) & 21.886,068,628,2 \\
\hline & 0.002.3 & 20.736,441,353,3 & & 80 0.002,08 & 21.908,902,30022 \\
\hline & 0.002,3 & 20.760,539,492,0 & & 810.002 & 21.931:712,199'5 \\
\hline & & 20.784,609,690,8 & & \(820.002,074\) & 21.954,498,402,4 \\
\hline & 3 0.002,309,5 & 20.808,652,046,7 & & 83 0.002,070 & +21.977,250,975,8 \\
\hline & +0.002, & 20.832,666,656,0 & & 84 0.002,066, & \(122.000,000,000 \%\) \\
\hline & 0.00 & \(20.856,653,644,6\) & & \(850.002,061\) & 922.022,715,545,5 \\
\hline & 0.002,293,6 & 20.880,613,017,8 & & 86,0.002,057,6 & 22.045,407,685,01 \\
\hline & \(70.002,288,3\) & 20.904,544,960,4 & & 87 \(0.002,053,4\) & 4 22.068,0'76,490,7 \\
\hline & 0.002,283 & 20.928,449,536,5 & & \$8 \(0.002,049\) & \(222.090,722,034^{\prime} 4\) \\
\hline & 0.002, & \(20.952,326,839,8\) & & 890.002 & \(22.1 \times 3,344,3^{87} 75\) \\
\hline & 0.002,2 & 20.976,176,963 & & \(900.022,0\) & 822.135,943,621,2 \\
\hline & \(10.002,267,6\) & \(21.000,000,000\) & & \(910.002,036\) & 722.158,519,806,2 \\
\hline & \(20.002,262,4\) & 21.023,796,041,6 & & \(9^{2} 0.002\), & \(522.181,073\), \\
\hline & \(30.002,257,3\) & 21.047,505,179,8. & & 930.002 & 22.203,003, \\
\hline & \(40.002,25^{2,2}\) & 21.071,307,505,7 & & \(9+0.002,024\) & \(322.226,110,770,9\) \\
\hline & \(1450.002,2\) & 21.095,023,109,7 & & 0.002,020, 2 & 2 22.248,595,461,3 \\
\hline & \(4^{5} 0.002,24^{2}, 2\) & 21.118,712,031,9 & & 0.002,016,2 & \\
\hline & +7 \(0.002,237,1\) & 21.142,374, \(5^{11,9}\) & & 970.002,01? & \(122.293,49^{\prime \prime}, 809,6\) \\
\hline & 8 -002,2 & 121.166,010,488,5 & & \(49^{8} 0.002,008\) & 0) \(=2.315,913,604,4\) \\
\hline & \(90.002,227\) & ,21.189,620,100,4 & & 499 0.002,004 & 022.338,307,903,9 \\
\hline & 0.002,222, & \(21.213,203,435\), 11 & & 0.002. & \(22.360,679.77\) \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|}
\hline & & Square \\
\hline & 0.00 & \[
22.3^{8}
\] \\
\hline & 0.001,99?, 0 & 22.40 \\
\hline & 0.001,988,1 & \\
\hline & 10.001,984, & \\
\hline & 50.001,983, & \\
\hline & \(0.001,976\) & \\
\hline & & \\
\hline & 0. & \\
\hline & & \\
\hline & 0.001 & 22.583,179, \\
\hline & 0.001,95, & 22.60; 30 \\
\hline & 0.001,953 & 22 \\
\hline & -.001,949 & 22.6 \\
\hline & 0.001,9+5 & 22 \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & 0.001, & 2.75 \\
\hline & 0.031,9 & \(22.781,57\) \\
\hline & 20,0.001,923,1 & 22.803,50 \\
\hline & 0.001,91 & S25, \\
\hline & 0.001,91 & 47, \\
\hline & 0.00:, & 22.869, \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & & \\
\hline & 0.00 & 2.978,250,506, \\
\hline & O.00 & 23.00 \\
\hline & O.00 & 23.021, 728 \\
\hline & 0.001, 883, & 23.0 \\
\hline & \(20.001,879\), & 23. \\
\hline & \(30.001,876,2\) & \(23 .=86,792\) \\
\hline & \(40.001,872,7\) & 23.108,440 \\
\hline & \(50.001,86\) & 23 \\
\hline & & 2.1 \\
\hline & & 23.173 \\
\hline & 0.001, \(8,88,7\) & \\
\hline & 0.001 & \\
\hline & 1.001,851, & \\
\hline & 0.001,848, & 23.2 \\
\hline & \(20.001,845,0\) & 23.280,89 \\
\hline & \(30.001,841,6\) & 23.302,360 \\
\hline & \(40.001,838,2\) & 23.3 \\
\hline & \(510.001,834,5\) & 23.3 \\
\hline & 6:0.001, 831,5 & 23.356,6 \\
\hline & \(-0.001,8=8,2\) & 23.388,031, \\
\hline & 80.001,824, 8 & 23.409 \\
\hline & & \\
\hline & & \\
\hline
\end{tabular}
\(\frac{N(0 .}{551}\left|\frac{\text { Reciprocel }}{0 . c 01,814,9}\right| \frac{\text { Square Rnol. }}{3.475,389,18 Y, 6}\)
\(5520.001,811,623 \cdot 494,580,243,9\)
\(553^{0.001,808,3 / 23.515,952,032,6}\)
\(5540.001,805,123.537,204,591,9\)
\(5550.001,801,8: 23 \cdot 558,437,978,8\)
\(5560.001,798,6123 \cdot 579,652,2.55,1\) \(5570.001,795,32^{2} 3.600,95 \%, 42,4\) \(5,5.0,001,70^{2}, 1123.622,023,622,0\) \(5590.001,788,923.643,180,835,1\) ; \(600.001,785,723.664, \hat{j} 19,132,4\) \(5610.001,782,523.68,5,438,564,1\)
\(; 620.001,779,4=23 \cdot 706,539,182 i_{3}\)
563 0.co \(, 7,76,223 \cdot 727,521,035 \cdot 4\)
\(56+0.001,773,0,23 \cdot 748,684,174,1\)
\(565.0 .001,769,023.769,728,648,0\)
\(5600.001,766,823.790,75+506,7\)
; \(670.001,763,7{ }^{2} 3.811,761,799,6\)
\(56810.001,760,6=23.832,750,575,6\) \(569,0.001,757,5{ }^{2} 3.853,720,883,8\) \(57 \mathrm{C} 0.001,754,4^{2} 3.874,67^{2}, 772,5\) \(5710.001,751,3^{2} 3.895,606, ? 30,7\) \(5720.001,7+8,3 \cdot 2 \cdot 3 \cdot 916,521,406,2\) 573 0.001,745,2:23.937,418,.407,2 ; \(7+10.001,742,223.958,297,101,4\) \(5750.001,739,1=3.979,157,616,6\) \(5760.001,736,1^{2}+.000,000,000,0\) \(5770.001,733,1{ }^{2} 4.020,824,298,9\) \(5780.001,730,1{ }^{2} 4.041,630,560,3\) \(5790.001,727,1{ }^{2} 4.062,418,831,0\) \(5^{80} 0.001,7^{2} 7,{ }^{2}{ }^{2} 4.083,168,396, z\) \(5810.001,721,22^{2} 4.103,941,586,4\) \(5820.001,718,2^{2} 4.124,676,163,6\)
\(5830.001,715,3^{2} 4 \cdot 145,392,93523\) \(5840.001,712,3^{2} 4.166,091,947,2\) \(53500001,7 c 9,4{ }^{2} 4 \cdot 186,773,244,9\) \(585 \mid 0.001,706,5{ }^{2} 4 \cdot 207,436,873,6\) \(587|0.001,703,6|=4 \cdot 228,082,879,2\) \(5880.001,700,5.24 .248,711,306,0\) 589 -.001, \(597,8{ }^{2} 4.269,322,199,0\) \(5900.001,694,9^{2} 4.289,915,603,0\) \(5910.001,692,0{ }^{2} 4.310,491,562,3\) \(5920.001,689,1{ }^{2} 4.331,050,121,2\) \(5930.001,686,=24 \cdot 351,591,323,8\) \(5940^{0.001,683,5}{ }^{2} 4.372,115,213,9\) \(5950.001,680,7{ }^{2} 4 \cdot 392,621,835,3\) \(5960.001,677,9=2.453,111,231,5\) \(5970.001,675,0\) | \(24 \cdot 433,583,445,7\) \(59^{4} 0 . C 01,672,224 \cdot 454,038,521,3\) \(5990.001,660,424 \cdot 47+476,501,0\)
\(00000.001,666,6124 \cdot 494,897,427,81\)
\begin{tabular}{|c|c|c|c|c|c|}
\hline & Reciprocal & Square Root. & No. & ciprocal & Square Roo \\
\hline & \[
\overline{0.001,563,9}
\] & + 5 & & & 701,6,4,3 \\
\hline & 0.00 & & 652 & 0.001,533,7 & \(25 \cdot 534,290,669,5\) \\
\hline & 0.00 & 24.556,058,315,6 & 653 & 0.001, 531,4 & \(25.553,864,678,4\) \\
\hline & 0.00 & 24.576,411,454,9 & 654 & 0.001,529, 1 & 25.573,423,70 5,1 \\
\hline & 0.001,65 & 24.596,747,752,5 & 655 & 0.001, 526,7 & \(25 \cdot 592,967,784,1\) \\
\hline & 0.001,650, 1 & \(24.617,067,250,2\) & 65 & 0.0 & \\
\hline & 0.00 & \(2+637,3^{6} 9,989,5\) & & & \\
\hline & 0.001, 6 & \(24.657,656,011,9\) & & O. & \(25.651,510,6 ; 6,8\) \\
\hline & \(0.001,642,0\) & \(24.677,925,358,5\) & & 0.00 & 25.670,495,306,0 \\
\hline & \(0.001,639,3\) & \(24.698,178,070,5\) & & 0.001, \(5^{1}\) & \(25.690,465,157,3\) \\
\hline & 0.00 I, & 24.718,414, 158,6 & 661 & 0.001,512 & \(25.709,920\) \\
\hline & 0.001, & 24.738,633,753,7 & 662 & \(0.001,5\) & \(25.729,360,6\) \\
\hline & O.c & \(24 \cdot 758,836,806,3\) & 66 & \(0.001,508\), & 25.748,786,379,2 \\
\hline & 0.0 & 24.7'79,023,386,7 & & 0.00 & 25.768 , 1 \\
\hline & .001,626,0 & 24-799, 193,535,3 & & 0.001,503,8 & 25.787, \\
\hline & 0.001,623,4 & 24.819,347,292,0 & & \(0.001,501\) & 25.806 \\
\hline & 0.001,620,7 & \(24.839,484,696,7\) & & 0.001,499 & 25.826, \\
\hline & 0.001,618,1 & 24.859,605,789,3 & & 0.00 & 25.845,695,95 \\
\hline & -.001, 615,5 & \(24.879,710,609,2\) & & 0.001 & \(25.865,034,312,8\) \\
\hline & 0.001, 612,9 & 24.899,799, 196,0 & & 0.00 & 25.884,358,2 \\
\hline & .000 1, 6 10,3 & 24.919,871,588,8 & & 0.00: & 25.903,667, \\
\hline & 0.001,607 & 24.939,927,826,7 & & c. 001 & \(25 \cdot 922,962\) \\
\hline & 0.001, 60 5, 1 & 24.959,967,948,7 & & 0.001,485, & 25.942,243,54 \\
\hline & .001,602,6 & 24.979,991,993,6 & & 0.001 & 61,509 \({ }^{\text {a }}\) \\
\hline & , 6 & 25.000,000,000,0 & & 0.0 & \\
\hline & 0.001,597, 4 & 25.019,992 & & - & .co \\
\hline & -. 0 & 25.039,968,051,1 & & & 26.019,223,662,5 \\
\hline & 0.00 & 25.059,928,172,3 & & & \\
\hline & -0.01, 589,8 & \(25.079,872,408,0\) & & 0.001, 472, & \(26.057,628.441,6\) \\
\hline & -0.001,587,3 & 25.099,800, 796,0 & & 0.00 1,470, & 26.076,809,620,8 \\
\hline & 0.001, 584,8 & 25.119,713,374,2 & & 0.001,468 & 26.09 \\
\hline & -. & \(25 \cdot 139,610,180,0\) & & -0.0nI, 406 & 26.115 \\
\hline & . & 25.159,491,250,8 & & . & 26.134 \\
\hline & & 25.179,356,620,1 & & & , \\
\hline & & 2, & & & \\
\hline & & \(25.219,04\) & & & 26.191 \\
\hline & . & 25.238,858,928,2 & & & 26.210 \\
\hline & .00i1, 57,4 & \(25 \cdot 258,661,880,6\) & & \(0.001,453,5\) & \\
\hline & \(0.001,564,9\) & \(25.278,449,319,5\) & & . 0 & \(26.248,809,49^{6,8}\) \\
\hline & 0.001,562,5 & 25-298,221,281,3 & & \(0.001,449,3\) & \(26.267,851,073,1\) \\
\hline & 0.001,550,1 & 25-3 17,977,802,3 & 691 & \(0.001,4+7,2\) & 26.286,878,856,2 \\
\hline 64 & 0.001,557,6 & \(25 \cdot 337,718,918,6\) & 592 & 0.001,445, & \(26.305,592,875,9\) \\
\hline 64 & 0.001,555,2 & \(25.357,444,066,2\) & & 0001,443, & \(26.324,893,162,2\) \\
\hline & \(0.001,55^{2,8}\) & \(25.377,15\) & & \(0.001,440,92\) & \(26.343,879,744,6\) \\
\hline & 0.001,550,4 & \(25 \cdot 396,85\) & & & \\
\hline & .001,548,0 & \(25 \cdot 416,5\) & & & \\
\hline & 0.001,545,0 & \(25 \cdot 436,194,684,0\) & 697 & \(0.001,434\) & \\
\hline & . 0 & 25-455,844, 122,7 & & & \(26.419,689,627,2\) \\
\hline & & 475,478,405,7 & & & \\
\hline & .001,538, & 25.495,097, 568,0 & & & \\
\hline
\end{tabular}


No. Keciprocal Square Root.
\(7510.001,331,6\) 27.404,379,212,1
7520.001,329,8 27.422,618,401,6
\(7530.001,328,0\) 27.440,845,468,0
\(7540.001,326,3\) 27.459,060,435,5
\(7550.001,324,527 \cdot 477,263,328,1\)
\(7560.001,322,8=7.495,454,169,7\)
\(7570.001,32\) I , © \(27 \cdot 5\) 13,632,984, 4
\(7580.001,319,3 \mid 27 \cdot 531,799,795,9\)
7590.001,3 7,5 \(27 \cdot 549,054,627,9\)
\(7600.001,315,8\) 27.568,097,504,2
\(7610.001,314,127.586,228,448,3\)
7620001,3 12, \(327.604,347,483,7\)
\(7630.001,310,6\) 27.622,454,633,9
\(76+0.001,308,9=7.640,540,922,2\)
\(7650.001,307,227.658,633,371,9\)
\(7660.001,305,527 \cdot 676,705,006,2\)
\(7670.001,303,8=7.694,764,848,3\)
\(7680.001,302,127 \cdot 712,812,921,1\)
\(769,0.001,300,427 \cdot 730,849,247,7\)
\(7700.001,29^{8}, 727 \cdot 748,873,851,0\)
\(7710.001,297,0,27 \cdot 766,886,753,8\)
\(7720.001,295,3-27 \cdot 784,887,978,9\)
\(7730.001,293,727.502,87 \%, 548,9\)
\(7740.001,292,027.820,855,486,5\)
\(7750.001,290,327.838,821,814,2\)
\(7760.001,288,727.8 ; 6,776,554,4\)
\(777,0.001,287,027.874,719,729,5\)
\(7780.001,285,3\) 27.892,651,362,0
\(7790.001,283,727.910,571,473,9\)
780 \(0.001,282,1\) 27.928,480,087,5
\(7810 . c 01,280,427 \cdot 946,377,225,0\)
\(7820.001,278,8: 27 \cdot 964,262,908,2\)
\(7530.001,277,1227.982,137,159,3\)
\(7840.001,275,528.000,000,000,0\)
\(78 ; 0.001,273,928.017,851,45^{2}, 2\)
\(7860.001,272,328.035,691,537,8\)
\(7870.001,270,6 \mid 28.053,520,278,2\)
\(7880.001,267,028.071,337,688,1\) \(7890.001,267,428.089,143,810,4\) \(7900.001,265,828.106,938,645,1\) \(7910.001,264,2\{28.124,722,220,9\) 7920.001,262,6|28.142,494,558,9 \(7930.001,261,0\) 28.1 \(50,255,690,7\) \(7940.001,259,4 \mid 28.178,05,607,2\) 7950.001,257,9 28.195,744,357,7 \(7.960 .001,256,3\{29.213,471,959,3\) \(7970.001,254,728.231,188,427,0\) \(7980.001,253,128.248,893,783,7\) 7990.C01 ,251,6 28.266,585,050,2 EODO.001,25 \(28.284,271,245,5\)


604 TABLE of Square-Roots and Reciprocals.

No. Reciprocal Square Root.
\(0010.001,109,930.016,662,0.39,6\) \(10020.001,108,630.033,314,835,4\) \(9030.001,107,430.049,958,402,6\) \(9040.001,106,230.066,59^{2}, 756,7\) \(3050.001,105,030.083,217,913,0\) 9060.001, 103, 8 30.c99, 833, 886,6 \(9070.001,102,5\) 30.I 16, 440,692,8 \(9030.001,101,3330.133,038,346,6\) \(9090.001,100,130.149,626,863,4\) 910 0.001,098,9] \(30.166,206,2,58,0\) \(9110.001,097,730.182,776,545,6\) 912 \(0.001,096,530.199,337,741,1\) \(9130.001,095,3 \mid 30.215,889,8 ; 9,5\) \(9140.001,094,130.232,432,915,7\) 915 \(0.001,092,9330.248,966,924,5\) \(9160.001,001,730.26 ;, 491,900,8\) \(9170.001,050,530.282,007,859,5\) 9180.001,089,3 \(30.298,514,815,1\) \(9190.001,088,130.315,012,782,4\) \(9200.001,087,0\) 30.331,501,776,2 \(9210.001,085,8\) 30.347,981,811,0 \(9220.001,084,630 \cdot 364,452,901,4\) \(9230.001,083,430.380,915,051,9\) \(9240.091,082,3,30 \cdot 397,368,307,1\) ()2 \(50.001,081,030.413,812,651,5\) 9260.001,079,9 30.430,248, 109,4 \(9270.001,078,730.446,674,695,3\) \(928,0.001,07,630.463,092,423,5\) \(929|0.001,0,6,4| 30.479,501,308,3\) \(9300.001,075,330.495,901,364,0\) \(9310.001,074,130.512,292,604,8\) \(9320.001,073,030.528,675,044,9\) 933 , \(0.001,071,8\) 30.54 5,048,698,6 934 O.CO1,070,7|30.561,413,579,9 \(9350.001,069,530.577,769,702,8\) \(9360.001,068,430.594,117,081,6\) \(9370.001,067,230.610,455,730,0\) \(9380.001,066,130.626,{ }^{\prime} 85,662,2\) \(19300.001,065,0 \mid 30.643,106,892\), 1 940 0.00 1,063,8 \(30.659,419,433,5\) \(9410.001,062,730.675,723,300,4\) \(9420.001,061,630.692,018,506,4\) \(9430.001,060,430.708,305,065,6\) \(9440.001,059,330 \cdot 724,582,991,5\) \(9450.001,058,2\) 30.740,852,297,9 \(9460.001,057,130 \cdot 757,1\) I \(2,998,5\) \(94: 19.001,056, c 30.773,365,106,9\) \(9480.001,054, \mid 30.789,608,636,7\) \begin{tabular}{|l|l|l|l|}
949 & \(3.001,053,7\) & \(30.805,843,601,5\) \\
\(4, c\) & \(2.001,052,61\) & \(30.822,070,014,8\)
\end{tabular}

No. Reciprocal Square Root. 95 I 0.001,051,5 \(30.838,287,890,2\) \(9520.001,050,430.854,497,241, \%\) \(9530.001,049,3\) 30.870,698,080,9 \(9540.001,048,2,30.886,890,423,0\) \(9550.001,047,130.903,074,280,7\) \(9560.001,046,0\) 30.919,249,667,5 \(9570.001,044,930.935,416,596,5\) \(9580.001,043,830.951,575,08 \mathrm{I}, \mathrm{I}\) \(9590.001,042,830.967,725,134,4\) \(9600.001,041,630.983,866,769,7\) \(9610.001,040,631.000,000,000,0\) \(9620.001,039,531.016,124,838,5\) 963 D.001,038,431.032,241,298,4 964 0.001,037,3 3 1.048,349,392, 5 \(9650.001,036,3.31 .064,449,134,0\) 966 . \(001,035,231.080,540,535,8\) \(9670.001,034,13\) 1.096,623,610,9 \(9680.001,033,131.112,698,372,2\) \(9^{69} 0.001,032,031.128,764,832,5\) 970 0.001,030,9 \(31.144,823,004,8\) \(9710.001,029,931.160,872,901,8\) \(97=0.001,028,831 \cdot 176,914,536,2\) 973 0.001, 027,7|31.192,947,921,0 \(9740.001,026,731.208,973,068,7\) \(9750.001,025,631.224,989,992,0\) \(9760.001,024,531.240,998,703,6\) 97 0.CO1,023,5 31.256,999,216,2 \(97^{8} 0.001,022,531.272,991,542,2\) \(9790.001,021,531.288,975,694,3\) \(9800.001,020,431.304,95 \mathrm{I}, 685,0\) \(9^{81} 0.001,019,431 \cdot 320,919,526,7\) \(982,0.001,018,331.336,879,232,0\) \(9830.001,017,331.352,830,813,2\) \(9840.001,016,331 \cdot 368,774,282\), . \(98,0.001,015,231 \cdot 3^{8} 4,709,653,0\) \(9860.001,014,2 / 31 \cdot 400,636,936,2\) \(9870.001,013,231.416,556,144,8\) \(9880.001,012,131.432,467,291,0\) 9890.001,011, \(131.448,370,387,0\) \(9900.001,010,131.464,265,445,1\) \(9910.001,009,131.480,152,477,4\) \(9920.001,008,131.496,031,496,0\) \(9930.001,007,031.511,902,513,2\) 994 0.001 ,006,0 \(31.527,765,540,9\) \(9950.001,005,03\) I. 543,620, 591,2 \(9960.001,004,031.559,467,676,1\) \(9970.001,003,031.575,306,807,7\) \(9980.001,002,031.591,137,997,9\) \(9990.001,001,031.606,961,258,6\) 1000,0.001,

\section*{( 605 )}

Dr. Hutton's Account of the foregoing Table of the Reciprocals and the Square-Roots of the Natural Numbers 1, 2, 3, 4, 5, \(6,7, v^{\circ} c\), to 1,000 , given at the end of the Fourth Volume of bis Collection of Matbematical Problens and Tracts, intitled Mifcellanea Mathematica, publifbed in Four little Folumes, Duodecimo, in the Year 1775.

OF the preceeding Table, the ufe is evidently to Thorten arithmetical calculations, and will appear eminently great to thofe mathematicians and others who are frequently concerned in fuch kinds of computations. The ftructure of the table is evident; the firf column contains the natural feries of numbers from I to 1,000 , the 2d the reciprocals, and the \({ }_{3} d\) the fquare-roots of the fame numbers, very accurately calculated and printed. Thefe reciprocals and roots are the refults preferved of many years occafional and accidental calculations in various fubjects: in frequently making fuch computations, I found that I had often to make divifions by, and to extract the roots of, the fame numbers ; and as it feemed probable that this might be the cafe with mefor many years longer, I formed the refolution of preferving all fuch roots and 'reciprocals as -I fhould occafionally: produce in my calculations, that I might have them always ready on any future occafion; which I did, by entering them always in a little book, ruled for the purpofe, till I have at. laft collected to the number of 1,000 , as above; and I. now publifh them here in this cheap and eafy manner, that they may be of like ufe to other perfons as to myfelf. In the numerical calculations of fuch kinds of problems as have appeared in this Mifcellany and the Diary, the ufe of this table will be found to be very great, becaufe of the frequent divifions and extractions of roots which are to be made : and the manner and cares of applying thefe numbers

\section*{606 Dr. Hutton's Account of the foregoing Table, Esc.}
are generally evident; only it may be remarked, that the column of reciprocals (which are no other than the decimal values of the quotients refulting from the divifion of unity, or 1 , by each of the feveral numbers, from 1 to 1,000 ), is not only ufeful in thewing by infpection the quotient when the dividend is unity; but is alfo applied with much advantage in turning many divifions into multiplications, which are much eafier performed than the equivalent divifions. For, if we multiply any propofed dividend by the reciprocal of the divifor (as found in the table,) the product will be the quotient fought; which is the cafe mentioned in p. 54 of my Menfuration, where this table of reciprocals was promifed to be inferted at the end of that Wrork ; but it was then fuppreffed, as the book had been unavoidably extended. to fo great a fize, and becaufe it could properly enough be: onitted, as being no part of the fubject of the book. This: table of reciprocals may alfo be applied to good purpofe in. fumming the terms of many converging feriefes, as in the 2d folution of Queft. rob of this Mifcellany, in which a few of the firf terms are to be found by divifion, and then fummed; for the quotients of fuch divifions are here fhewn by infpection.

The reciprocals are carried on to 7 , and the roots to 10 places of decimals, each being put down to the neareft figure in the laft place, that is, when the next figure beyond the lait put down in the table came out a 5 , or more, the laft figure was increafed by 1 , otherwife not; excepting in the repetends which occurred among the reciprocals, where the real laft figure is always put down. The reciprocals which in the table confift of lefs than feven figures, are thofe which terminate and are complete within that number; fuch as .5 the reciprocal of \(2, .25\) the reciprocal of \(4, \& c\).

\section*{F I N I S}
- *
ise

\(2=\)

\(+\frac{1}{4}+\)

 8

( \(\stackrel{\rightharpoonup}{2}\)


3
3
\(+\)
yes in```


[^0]:    * Vide fuper hàc materià opera ipfius Johannis Bernoullii, edita Latlfanne anno Domini 1742 , Toalum tertium, paginan 221 , in 47 mâ Lectione de Calculo Integralium,

[^1]:    * See Dr. John Wallis's Difcourfe of Combinations, Alterations, and Aliw quot Parts, bound up with his Algebra, page 109.

[^2]:    * See upon this fubject the works of Mr. John Bernoulli himfelf, publifhed at Laufanne, in Switzerland, in the year 1742, in four volumes, quarto, vol. iii. page 52 I , in the 47 th lecture on the doctrine of the Integration of infinitely fmall differences, or the Inverfe method of différences.

[^3]:    * This is the famous binomial theorem invented by Sir Ifaac Newton, but of which he has no where given a demonftration. And the demonftration here given of it by Mr . James Bernoulli, is that to which I alluded in the firlt volume of the Collection of Tracts, in two volumes, quarto, called Scriptores Logarithmici, page 349, art. 4, and in the fecond volume of the fame Collection, page 157 , art. 9 -

